Published November 16, 2022 | Version v1
Journal article Open

Investigation of biological activities of Xeromphis uliginosa (Retz.) root extracts in Swiss-albino mice model, an extinctive medicinal plant of Bangladesh

  • 1. State University of Bangladesh
  • 2. The Hong Kong Polytechnic University
  • 3. Islamic University

Description

Xeromphis. uliginosa (Retz.) is an extinctive Bangladeshi medicinal plant that is locally used for the treatments of pain, diabetes, diarrhea, depressant, and other diseases. The present study was conducted to evaluate the peripheral analgesic activity (PAA), central analgesic activity (CAA), central nervous system antidepressant activity (CNS-AD), antidiarrheal activity (ADA), and hypoglycaemic activity (HGA) of methanolic root extract of X. uliginosa (MREXU) in a mice model. The acetic acid-induced writhing inhibition and tail flick method were applied to determine the PAA and CAA of MREXU. The CNS-AD was measured using the phenobarbitone sodium-mediated sleeping method whereas, the castor oil-induced antidiarrheal method was used to determine the ADA of the crude extracts. To determine the HGA of MREXU crude extract, the tail tipping technique was conducted in a mice model. The MREXU displayed potential PAA and CAA in mice models. The MREXU 200 and 400 mg/kg significantly inhibit the number of writings along with diclofenac sodium. On the other hand, MREXU both doses significantly inhibit thermal stimulus after 60 and 90 minutes respectively. In the CNS-AD study, crude extract of 200 and 400 mg/kg significantly increase the onset of sleep by decreasing the duration of sleep. Similarly, the dose of 200 mg/kg significantly reduced diarrheal faeces for the whole 4 hours of experiments. The heartiest outcome of MREXU was displayed in the HGA assay. Both doses of MREXU significantly reduced the blood sugar level for the entire 3 hours of the experiments. In this study, it is revealed that the root of MREXU has extremely significant blood sugar-reducing activity, potential CNS-AD and mild to moderate nociceptive activity in the mice model

Files

2600-Article Text-7133-1-10-20221116.pdf

Files (752.0 kB)

Name Size Download all
md5:f83da9fe4c649cf48793db82c32b7f2c
752.0 kB Preview Download

Additional details

References

  • Agarwal, R. S. et. al. (2018). A review on medicinal plant of mimosacae: mimosa hamata willd in liver disorder. Indian Journal of Drugs, 6 (1), 59–61.
  • Parihaar, R., Bargali, K., Bargali, S. (2014). Diversity and uses of Ethno-medicinal plants associated with traditional agroforestry systems in Kumaun Himalaya. Indian Journal of Agricultural Sciences, 84, 1470–1476.
  • Rates, S. M. K. (2001). Plants as source of drugs. Toxicon, 39 (5), 603–613. doi: https://doi.org/10.1016/s0041-0101(00)00154-9
  • Farnsworth, N. R. et. al. (1985). Medicinal plants in therapy. Bulletin of the World Health Organization, 63 (6), 965–981.
  • Raut, J. S., Karuppayil, S. M. (2014). A status review on the medicinal properties of essential oils. Industrial Crops and Products, 62, 250–264. doi: https://doi.org/10.1016/j.indcrop.2014.05.055
  • Ashraf, M. A., Khatun, A., Sharmin, T., Mobin, F., Tanu, A. R., Morshed, T. et. al. (2014). MPDB 1.0: a medicinal plant database of Bangladesh. Bioinformation, 10 (6), 384–386. doi: https://doi.org/10.6026/97320630010384
  • Ghani, A. (1998). Medicinal plants of Bangladesh: chemical constituents and uses. Asiatic society of Bangladesh.
  • Bernardini, S., Tiezzi, A., Laghezza Masci, V., Ovidi, E. (2017). Natural products for human health: an historical overview of the drug discovery approaches. Natural Product Research, 32 (16), 1926–1950. doi: https://doi.org/10.1080/14786419.2017.1356838
  • Nesa, Mst. L., Karim, S. M. S., Api, K., Sarker, Md. M. R., Islam, Md. M., Kabir, A. et. al. (2018). Screening of Baccaurea ramiflora (Lour.) extracts for cytotoxic, analgesic, anti-inflammatory, neuropharmacological and antidiarrheal activities. BMC Complementary and Alternative Medicine, 18 (1). doi: https://doi.org/10.1186/s12906-018-2100-5
  • Billah, M. M., Islam, R., Khatun, H., Parvin, S., Islam, E., Islam, S. A., Mia, A. A. (2013). Antibacterial, antidiarrhoeal, and cytotoxic activities of methanol extract and its fractions of Caesalpinia bonducella (L.) Roxb leaves. BMC Complementary and Alternative Medicine, 13 (1). doi: https://doi.org/10.1186/1472-6882-13-101
  • Mannan, A., Abir, A. B., Rahman, R. (2015). Antidepressant-like effects of methanolic extract of Bacopa monniera in mice. BMC Complementary and Alternative Medicine, 15 (1). doi: https://doi.org/10.1186/s12906-015-0866-2
  • Sharmin, T., Rahman, Md. S., Mohammadi, H. (2018). Investigation of biological activities of the flowers of Lagerstroemia speciosa, the Jarul flower of Bangladesh. BMC Complementary and Alternative Medicine, 18 (1). doi: https://doi.org/10.1186/s12906-018-2286-6
  • Mondal, H., Saha, S., Awang, K., Hossain, H., Ablat, A., Islam, M. K., Jahan, I. A. et. al. (2014). Central-stimulating and analgesic activity of the ethanolic extract of Alternanthera sessilis in mice. BMC Complementary and Alternative Medicine, 14 (1). doi: https://doi.org/10.1186/1472-6882-14-398
  • Srivastava, R., Pandey, V. (2013). An Updated Review on Xeromphis uliginosa: An Underutilised Plant. Int. J. Pharm. Sci. Rev. Res., 21 (2), 68–70.
  • Mohammad, F. K., Zahirul, I. K., Md, R. U., Mohammad, S. R., Mohammad, A. R. (2015). In vivo hypoglycemic and alloxan induced antidiabetic activity of Xeromphis uliginosa Retz. African Journal of Pharmacy and Pharmacology, 9 (11), 363–366. doi: https://doi.org/10.5897/ajpp2015.4293
  • Hewitt, D. J., Hargreaves, R. J., Curtis, S. P., Michelson, D. (2009). Challenges in Analgesic Drug Development. Clinical Pharmacology & Therapeutics, 86 (4), 447–450. doi: https://doi.org/10.1038/clpt.2009.161
  • Hanson, G., Venturelli, P., Fleckenstein, A. (2011). Drugs and society. Jones & Bartlett Publishers.
  • Mol, M., Radhamany, P. (2016). GC-MS profiling in the fruits of Tamilnadia uliginosa (Retz.) Tirveng and Sastre (Rubiaceae). World Journal of Pharmacy and Pharmaceutical Science, 5 (1), 890–896.
  • Kaushik, D., Kumar, A., Kaushik, P., Rana, A. C. (2012). Analgesic and Anti-Inflammatory Activity of Pinus roxburghii Sarg. Advances in Pharmacological Sciences, 2012, 1–6. doi: https://doi.org/10.1155/2012/245431
  • Pizziketti, R. J., Pressman, N. S., Geller, E. B., Cowan, A., Adler, M. W. (1985). Rat cold water tail-flick: A novel analgesic test that distinguishes opioid agonists from mixed agonist-antagonists. European Journal of Pharmacology, 119 (1-2), 23–29. doi: https://doi.org/10.1016/0014-2999(85)90317-6
  • Williamson, E. M., Okpako, D. T., Evans, F. J. (1996). Selection, preparation and pharmacological evaluation of plant material. Vol. 1. John Wiley & Sons, 238.
  • Shoba, F. G., Thomas, M. (2001). Study of antidiarrhoeal activity of four medicinal plants in castor-oil induced diarrhoea. Journal of Ethnopharmacology, 76 (1), 73–76. doi: https://doi.org/10.1016/s0378-8741(00)00379-2
  • Sisay, M., Engidawork, E., Shibeshi, W. (2017). Evaluation of the antidiarrheal activity of the leaf extracts of Myrtus communis Linn (Myrtaceae) in mice model. BMC Complementary and Alternative Medicine, 17 (1). doi: https://doi.org/10.1186/s12906-017-1625-3
  • Dürschlag, M., Würbel, H., Stauffacher, M., Von Holst, D. (1996). Repeated Blood Collection in the Laboratory Mouse by Tail Incision – Modification of an Old Technique. Physiology & Behavior, 60 (6), 1565–1568. doi: https://doi.org/10.1016/s0031-9384(96)00307-1
  • Scapinello, J., Müller, L. G., Schindler, M. S. Z., Anzollin, G. S., Siebel, A. M., Boligon, A. A. et. al. (2019). Antinociceptive and anti-inflammatory activities of Philodendron bipinnatifidum Schott ex Endl (Araceae). Journal of Ethnopharmacology, 236, 21–30. doi: https://doi.org/10.1016/j.jep.2019.02.037
  • Chen, Z., Quan, L., Zhou, H., Zhao, Y., Chen, P., Hu, L. et. al. (2019). Screening of active fractions from Curcuma Longa Radix isolated by HPLC and GC-MS for promotion of blood circulation and relief of pain. Journal of Ethnopharmacology, 234, 68–75. doi: https://doi.org/10.1016/j.jep.2018.09.035
  • Gong, L., Yang, S., Liu, H., Zhang, W., Ren, L., Han, F. et. al. (2019). Anti-nociceptive and anti-inflammatory potentials of Akebia saponin D. European Journal of Pharmacology, 845, 85–90. doi: https://doi.org/10.1016/j.ejphar.2018.11.038
  • Ma, M.-H., Wu, X.-H., He, Y. (2011). Anti-inflammatory and analgesic effects of saponins from D. zingiberensis C. H. Wright and diosgenin derivative on mice. Sichuan Da Xue Xue Bao Yi Xue Ban, 42 (4), 494–497.
  • Deraedt, R., Jouquey, S., Delevallée, F., Flahaut, M. (1980). Release of prostaglandins E and F in an algogenic reaction and its inhibition. European Journal of Pharmacology, 61 (1), 17–24. doi: https://doi.org/10.1016/0014-2999(80)90377-5
  • Wigdor, S., Wilcox, G. L. (1987). Central and systemic morphine-induced antinociception in mice: contribution of descending serotonergic and noradrenergic pathways. J. Pharmacol. Exp. Ther., 242 (1), 90–95.
  • Hijazi, M. A., El-Mallah, A., Aboul-Ela, M., Ellakany, A. (2017). Evaluation of Analgesic Activity of Papaver libanoticum Extract in Mice: Involvement of Opioids Receptors. Evidence-Based Complementary and Alternative Medicine, 2017, 1–13. doi: https://doi.org/10.1155/2017/8935085
  • Bai, X.-Y., Zhang, X.-Q., Zhang, Y.-H., Wu, S., Hao, L.-H., Liu, R. et. al. (2014). WS0701. Behavioural Pharmacology, 25 (7), 648–660. doi: https://doi.org/10.1097/fbp.0000000000000075
  • Ain, Q., Khan, H. (2019). Pharmacological basis for sedative and hypnotic like effects of Pyrus pashia using in vivo experimental models. International Journal of Geriatric Psychiatry, 34 (9), 1345–1350. doi: https://doi.org/10.1002/gps.5059
  • Czapinski, P., Blaszczyk, B., Czuczwar, S. (2005). Mechanisms of Action of Antiepileptic Drugs. Current Topics in Medicinal Chemistry, 5 (1), 3–14. doi: https://doi.org/10.2174/1568026053386962
  • ffrench-Mullen, J., Barker, J., Rogawski, M. (1993). Calcium current block by (-)-pentobarbital, phenobarbital, and CHEB but not (+)-pentobarbital in acutely isolated hippocampal CA1 neurons: comparison with effects on GABA-activated Cl- current. The Journal of Neuroscience, 13 (8), 3211–3221. doi: https://doi.org/10.1523/jneurosci.13-08-03211.1993
  • Iwao, I., Terada, Y. (1962). On the mechanism of diarrhea due to castor oil. Japanese Journal of Pharmacology, 12 (2), 137–145. doi: https://doi.org/10.1254/jjp.12.137
  • Mascolo, N., Izzo, A. A., Autore, G., Barbato, F., Capasso, F. (1994). Nitric oxide and castor oil-induced diarrhea. J Pharmacol Exp Ther, 268 (1), 291–295.
  • Mascolo, N., Izzo, A. A., Autore, G., di Carlo, G., Borrelli, F., Capasso, F. (1994). Nitric oxide and castor-oil-induced diarrhoea. Pharmacological Research, 29 (4), 396. doi: https://doi.org/10.1016/1043-6618(94)80070-7
  • Hou, Y. C., Janczuk, A., Wang, P. G. (1999). Current trends in the development of nitric oxide donors. Curr Pharm Des, 5 (6), 417–441.
  • Pinkey, A. A. H., Khan, Z. I., Taher, M. A., Soma, M. A. (2021). Elaeocarpus serratus l. Exhibits potential analgesic and antidiarrheal activities in mice model. International Journal of Medicine and Medical Research, 6 (2), 44–51. doi: https://doi.org/10.11603/ijmmr.2413-6077.2020.2.11388
  • Nell, G., Rummel, W. (1984). Action Mechanisms of Secretagogue Drugs. Handbook of Experimental Pharmacology, 461–508. doi: https://doi.org/10.1007/978-3-642-69508-7_12
  • Jain, M. K. (1965). Chemical examination of Randia uliginosa DC. Current Science, 34 (17), 505–505.
  • Zhang, Z., Jiang, M., Xie, X., Yang, H., Wang, X., Xiao, L., Wang, N. (2017). Oleanolic acid ameliorates high glucose-induced endothelial dysfunction via PPARδ activation. Scientific Reports, 7 (1). doi: https://doi.org/10.1038/srep40237
  • Wang, X., Chen, Y., Abdelkader, D., Hassan, W., Sun, H., Liu, J. (2015). Combination Therapy with Oleanolic Acid and Metformin as a Synergistic Treatment for Diabetes. Journal of Diabetes Research, 2015, 1–12. doi: https://doi.org/10.1155/2015/973287
  • McCarty, M. F. (2001). The chlorophyll metabolite phytanic acid is a natural rexinoid – potential for treatment and prevention of diabetes. Medical Hypotheses, 56 (2), 217–219. doi: https://doi.org/10.1054/mehy.2000.1153
  • Heim, M., Johnson, J., Boess, F., Bendik, I., Weber, P., Hunziker, W., Flühmann, B. (2002). Phytanic acid, a natural peroxisome proliferator‐activated receptor agonist, regulates glucose metabolism in rat primary hepatocytes. The FASEB Journal, 16 (7), 718–720. doi: https://doi.org/10.1096/fj.01-0816fje