Electrical characterisation and analysis of dominant contributions in disordered semiconducting systems with an application to the pure bentonite material for civil engineering applications
Creators
- 1. Cadi-Ayyad University
- 2. Sultan Moulay Slimane University
Description
Semiconductors and clay materials have significant applications in environmental, civil engineering and optoelectronic sectors. The application of an electric field to such systems is subject of many works. However, to understand the behaviour of such materials under the influence of an electric field, the perception of its electrical properties is essential. In the present study, the powerful technique of complex impedance spectroscopy (CIS) is introduced to illustrate the electrical characteristics of two types of disordered semiconducting materials. These are Cu5In9Se16, an ordered defect compound of the I-III-VI2 family and a novel bentonite clay system which is an insulator at room temperature and semiconductor above 400 °C. Na-bentonite has been studied extensively because of its strong adsorption capacity and complexation ability while Cu5In9Se16 is considered for its use in solar and phtovoltaique domain. Some of selenides have turned out to be leading materials for electro-optical devices and the tellurides for thermoelectric power generation. It is very likely that study of bentonite clay and other similar materials may lead to the technology of heterojunction and clay composite. The frequency dependence of conductivity of bentonite was investigated using an impedance analyzer in the frequency range (20 Hz–1 MHz). The experimental data of CIS are analyzed using some analytical methods that take into account the effect of the grains and grain boundaries. The impedance data confirm the non-Debye behavior in these systems. Some important parameters related to the identified dominant contribution such as relaxation time and activation energies are estimated for the studied materials in the considered temperature and frequency ranges
Files
2628-Article Text-7241-1-10-20221129.pdf
Files
(3.0 MB)
Name | Size | Download all |
---|---|---|
md5:aaeed4f035bcfd179ebe5386ca9a1400
|
3.0 MB | Preview Download |
Additional details
References
- Sahu, M., Minnam Reddy, V. R., Park, C., Sharma, P. (2021). Review article on the lattice defect and interface loss mechanisms in kesterite materials and their impact on solar cell performance. Solar Energy, 230, 13–58. doi: https://doi.org/10.1016/j.solener.2021.10.005
- Nugroho, H. S., Refantero, G., Septiani, N. L. W., Iqbal, M., Marno, S., Abdullah, H. et. al. (2022). A progress review on the modification of CZTS(e)-based thin-film solar cells. Journal of Industrial and Engineering Chemistry, 105, 83–110. doi: https://doi.org/10.1016/j.jiec.2021.09.010
- Rakić, V., Rajić, N., Daković, A., Auroux, A. (2013). The adsorption of salicylic acid, acetylsalicylic acid and atenolol from aqueous solutions onto natural zeolites and clays: Clinoptilolite, bentonite and kaolin. Microporous and Mesoporous Materials, 166, 185–194. doi: https://doi.org/10.1016/j.micromeso.2012.04.049
- Horpibulsuk, S., Yangsukkaseam, N., Chinkulkijniwat, A., Du, Y. J. (2011). Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite. Applied Clay Science, 52 (1–2), 150–159. doi: https://doi.org/10.1016/j.clay.2011.02.014
- Katariya, A., Rani, J. (2021). Review on two-dimensional organic semiconductors for thin film transistor application. Materials Today: Proceedings, 46, 2322–2325. doi: https://doi.org/10.1016/j.matpr.2021.04.401
- Kar, P., Shukla, K., Jain, P., Sathiyan, G., Gupta, R. K. (2021). Semiconductor based photocatalysts for detoxification of emerging pharmaceutical pollutants from aquatic systems: A critical review. Nano Materials Science, 3 (1), 25–46. doi: https://doi.org/10.1016/j.nanoms.2020.11.001
- Zhang, S. B., Wei, S.-H., Zunger, A., Katayama-Yoshida, H. (1998). Defect physics of the CuInSe2 chalcopyrite semiconductor. Physical Review B, 57 (16), 9642–9656. doi: https://doi.org/10.1103/physrevb.57.9642
- Rincón, C., Wasim, S. M., Marı́n, G. (2002). Scattering of the charge carriers by ordered arrays of defect pairs in ternary chalcopyrite semiconductors. Applied Physics Letters, 80 (6), 998–1000. doi: https://doi.org/10.1063/1.1447597
- Ando, Y., Khatri, I., Matsumori, H., Sugiyama, M., Nakada, T. (2019). Epitaxial Cu(In,Ga)Se2 Thin Films on Mo Back Contact for Solar Cells. Physica Status Solidi (a), 216 (16), 1900164. doi: https://doi.org/10.1002/pssa.201900164
- Raguse, J. M., Muzzillo, C. P., Sites, J. R., Mansfield, L. (2017). Effects of Sodium and Potassium on the Photovoltaic Performance of CIGS Solar Cells. IEEE Journal of Photovoltaics, 7 (1), 303–306. doi: https://doi.org/10.1109/jphotov.2016.2621343
- Heinemann, M. D., Mainz, R., Österle, F., Rodriguez-Alvarez, H., Greiner, D., Kaufmann, C. A., Unold, T. (2017). Evolution of opto-electronic properties during film formation of complex semiconductors. Scientific Reports, 7 (1). doi: https://doi.org/10.1038/srep45463
- Miliucci, M., Lucci, M., Colantoni, I., De Matteis, F., Micciulla, F., Clozza, A. et. al. (2020). Characterization of CdS sputtering deposition on low temperature pulsed electron deposition Cu(In,Ga)Se2 solar cells. Thin Solid Films, 697, 137833. doi: https://doi.org/10.1016/j.tsf.2020.137833
- Terna, A. D., Elemike, E. E., Mbonu, J. I., Osafile, O. E., Ezeani, R. O. (2021). The future of semiconductors nanoparticles: Synthesis, properties and applications. Materials Science and Engineering: B, 272, 115363. doi: https://doi.org/10.1016/j.mseb.2021.115363
- Kumar, A., Lingfa, P. (2020). Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD. Materials Today: Proceedings, 22, 737–742. doi: https://doi.org/10.1016/j.matpr.2019.10.037
- Babu, A. T., Antony, R. (2019). Clay semiconductor hetero-system of SnO2/bentonite nanocomposites for catalytic degradation of toxic organic wastes. Applied Clay Science, 183, 105312. doi: https://doi.org/10.1016/j.clay.2019.105312
- Dlamini, M. C., Maubane-Nkadimeng, M. S., Moma, J. A. (2021). The use of TiO2/clay heterostructures in the photocatalytic remediation of water containing organic pollutants: A review. Journal of Environmental Chemical Engineering, 9 (6), 106546. doi: https://doi.org/10.1016/j.jece.2021.106546
- El-Naggar, M. E., Wassel, A. R., Shoueir, K. (2021). Visible-light driven photocatalytic effectiveness for solid-state synthesis of ZnO/natural clay/TiO2 nanoarchitectures towards complete decolorization of methylene blue from aqueous solution. Environmental Nanotechnology, Monitoring & Management, 15, 100425. doi: https://doi.org/10.1016/j.enmm.2020.100425
- Bilkees, R., Khan, A. A., Javed, M., Kazmi, J., Mohamed, M. A., Khan, M. N. et. al. (2021). Dielectric relaxation and variable range hopping conduction in sol-gel auto combustion derived La0.7Bi0.3Fe0.5Mn0.5O3 manganite. Materials Science and Engineering: B, 269, 115153. doi: https://doi.org/10.1016/j.mseb.2021.115153
- Hsu, C.-C., Chou, C.-H., Jhang, W.-C., Chen, P.-T. (2019). A study of variable range hopping conduction of a sol-gel ZnSnO thin film transistor using low temperature measurements. Physica B: Condensed Matter, 569, 80–86. doi: https://doi.org/10.1016/j.physb.2019.05.036
- Ganaie, M., Zulfequar, M. (2021). Dielectric investigation of In4Se96-xSx semiconductor: Relaxation and conduction mechanism. Microelectronics Reliability, 116, 114018. doi: https://doi.org/10.1016/j.microrel.2020.114018
- Essaleh, L., Amhil, S., Wasim, S. M., Marín, G., Choukri, E., Hajji, L. (2018). Theoretical and experimental study of AC electrical conduction mechanism in the low temperature range of p-CuIn3Se5. Physica E: Low-Dimensional Systems and Nanostructures, 99, 37–42. doi: https://doi.org/10.1016/j.physe.2018.01.012
- Elliott, S. (1994). Frequency-dependent conductivity in ionically and electronically conducting amorphous solids. Solid State Ionics, 70–71, 27–40. doi: https://doi.org/10.1016/0167-2738(94)90284-4
- Chen, R. H., Wang, R.-J., Chen, T. M., Shern, C. S. (2000). Studies on the dielectric properties and structural phase transition of K2SO4 crystal. Journal of Physics and Chemistry of Solids, 61 (4), 519–527. doi: https://doi.org/10.1016/s0022-3697(99)00246-2
- El-Mallah, H. M. (2012). AC Electrical Conductivity and Dielectric Properties of Perovskite (Pb,Ca)TiO3Ceramic. Acta Physica Polonica A, 122 (1), 174–179. doi: https://doi.org/10.12693/aphyspola.122.174
- Mao, W., Xiong, B., Li, Q., Zhou, Y., Yin, C., Liu, Y., He, C. (2015). Influences of defects and Sb valence states on the temperature dependent conductivity of Sb doped SnO 2 thin films. Physics Letters A, 379 (36), 1946–1950. doi: https://doi.org/10.1016/j.physleta.2015.06.033
- Rincón, C., Wasim, S. M., Marı́n, G., Márquez, R., Nieves, L., Pérez, G. S., Medina, E. (2001). Temperature dependence of the optical energy gap and Urbach's energy of CuIn5Se8. Journal of Applied Physics, 90 (9), 4423–4428. doi: https://doi.org/10.1063/1.1405144
- Marín, G., Essaleh, L., Amhil, S., Wasim, S. M., Bouferra, R., Zoubir, A. et. al. (2020). Electrical impedance spectroscopy characterization of n type Cu5In9Se16 semiconductor compound. Physica B: Condensed Matter, 593, 412283. doi: https://doi.org/10.1016/j.physb.2020.412283
- Angar, Y., Djelali, N.-E., Kebbouche-Gana, S. (2016). Kinetic and thermodynamic studies of the ammonium ions adsorption onto natural Algerian bentonite. Desalination and Water Treatment, 57 (53), 25696–25704. doi: https://doi.org/10.1080/19443994.2016.1157046
- Sinclair, D. C., West, A. R. (1989). Impedance and modulus spectroscopy of semiconducting BaTiO3showing positive temperature coefficient of resistance. Journal of Applied Physics, 66 (8), 3850–3856. doi: https://doi.org/10.1063/1.344049
- Sen, S., Pramanik, P., Choudhary, R. N. P. (2005). Impedance spectroscopy study of the nanocrystalline ferroelectric (PbMg)(ZrTi)O3 system. Applied Physics A, 82 (3), 549–557. doi: https://doi.org/10.1007/s00339-005-3330-1
- Macedo, P. B., Moynihan, C. T., Bose, R. (1972). The Role of Ionic Diffusion in Polarization in Vitreous Ionic Conductors. Physics and Chemistry Glasses, 13, 171–179.
- Schneider, K., Dziubaniuk, M., Wyrwa, J. (2019). Impedance Spectroscopy of Vanadium Pentoxide Thin Films. Journal of Electronic Materials, 48 (6), 4085–4091. doi: https://doi.org/10.1007/s11664-019-07166-x
- Bhattacharya, G., Chaudhary, N. V. P., Adhikary, T., Aich, S., Venimadhav, A. (2021). Electron transport characteristics of FeGa, Ni/n-Si junctions by impedance spectroscopy. Superlattices and Microstructures, 156, 106958. doi: https://doi.org/10.1016/j.spmi.2021.106958
- Mančić, D., Paunović, V., Petrušić, Z., Radmanović, M., Živković, L. (2009). Application of Impedance Spectroscopy for Electrical Characterization of Ceramics Materials. Electronics, 13 (1), 11–17.
- Irvine, J. T. S., Sinclair, D. C., West, A. R. (1990). Electroceramics: Characterization by Impedance Spectroscopy. Advanced Materials, 2 (3), 132–138. doi: https://doi.org/10.1002/adma.19900020304
- Olmsted, D. L., Holm, E. A., Foiles, S. M. (2009). Survey of computed grain boundary properties in face-centered cubic metals – II: Grain boundary mobility. Acta Materialia, 57 (13), 3704–3713. doi: https://doi.org/10.1016/j.actamat.2009.04.015
- Bai, W., Chen, G., Zhu, J. Y., Yang, J., Lin, T., Meng, X. J. et. al. (2012). Dielectric responses and scaling behaviors in Aurivillius Bi6Ti3Fe2O18 multiferroic thin films. Applied Physics Letters, 100 (8), 082902. doi: https://doi.org/10.1063/1.3688033