

EFFECT OF STAIR CLIMBING AND SAND DUNE **RUNNING ON SELECTED FITNESS VARIABLES** AMONG VOLLEYBALL PLAYERS

Dr. M. Anbalagan

Assistant Professor, Department of Physical Education, Meenakshi Physical Education College, Thathanur, Tamilnadu

Abstract:

The aim of this research is to find out the effect of stair climbing and sand dune running on selected physiological and endurance variables. For this purpose, randomly selected thirty volleyball players from various departments of Meenatchi Physical Education College were divided into three groups, stair climbing, sand dune running and control group. Stair climbing exercise group after a warm up for 5 minutes underwent climbing stairs having 18 steps with vertical height of 3 meters with variation of slow, medium, high, medium and slow speed walk and sprints alternatively and finished each session with cool down exercises. Sand Dune running group, after a warm up for 5 minutes underwent climbing sand dune with vertical height of 4 meters and elevation at 45° with variation of slow, medium, high, medium and slow speed running alternatively and finished each session with cool down exercises and the sessions lasted for 40 minutes in each day, on alternate days, forming three days a week. Statistical analysis of pre and post test means through ANCOVA and Scheffe's post hoc test proved that there was significant improvement in selected fitness variables due to stair climbing training and sand dune running.

Key Words: Stair Climbing, Sand Dune Running, Leg Strength, Back Strength, Strength Endurance, Cardiorespiratory Endurance, Vital Capacity, Tidal Volume.

Introduction:

"Fitness provides capacity for doing all types of activities" Willgoose(1991). Currently there is wide interest to identify the most effective methods of training for strength and endurance development and this is of special significance for physical education programmes in schools and colleges. Training is usually defined as systematic process of repetitive, progressive exercise or work involving the learning process and acclimatization. (Lawrence Gray Kumar, 2002). Evidences show the difference between the trained and untrained individuals that the former is able to increase the cardiac output and transport oxygen to the working muscles at a higher rate than the latter.(Clark and Albert, 1952). Stair climbing training is a suitable exercise to burn fat and improves the condition of heart and lungs. Lejeune TM, et.al. (1996) reported that walking or running on sand, has a profound effect on the mechanics and energetic of locomotion. Walking on sand requires 2.1-2.7 times more energy expenditure than does walking on a hard surface at the same speed; while running on sand requires 1.6 times more energy expenditure than does running on a hard surface. The purpose of this research is to find out the effect of stair climbing and sand dune running on selected fitness variables among volleyball players.

Methodology:

To achieve the purpose pre and post test random group research design was adapted and thirty volleyball players from various departments of Meenatchi Physical Education College, were randomly selected and their age group was between 18 to 23 years. The were divided into three groups (n = 10) as Group I, Group II and Group III, in which Group I underwent stair climbing and Group II underwent sand dune running for a period of six weeks and Group III acted as control group. Stair climbing exercise

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): 2455 - 5428

(www.rdmodernresearch.com) Volume I, Issue II, 2016

group after a warm up for 5 minutes underwent climbing stairs having 18 steps with vertical height of 3 meters with variation of slow, medium, high, medium and slow speed walk and sprints alternatively and finished each session with cool down exercises. Sand Dune running group, after a warm up for 5 minutes underwent climbing sand dune with vertical height of 4 meters and elevation at 45° with variation of slow, medium, high, medium and slow speed running alternatively and finished each session with cool down exercises and the sessions lasted for 40 minutes in each day, on alternate days, forming three days a week. The investigator selected strength endurance, assessed by Bent knee sit ups, and Cooper's 12 minutes run / walk test for measuring cardio respiratory endurance of the subjects were selected as fitness variables. The collected data prior to and after completion of the experimental period on selected variables were statistically examined by applying Analysis of Covariance (ANCOVA). In all the cases to test the significance, 0.05 level of confidence was fixed. Since three groups were involved, whenever significant results were found, Scheffe's post-hoc test was used to find out the significant difference between the paired means of groups. **Results**:

Calculation of Analysis of Covariance on Strength Endurance										
	Stair Climbing Group	Sand Dune Running Group	Control Group	Source of Variance	Sum of Squares	df	Mean Squares	Obtained F		
Pre Test Mean	3910	40 80	40 70	Between	18.2	2	9.10	0.60		
The rest mean	57.10	10.00	10.70	Within	412.6	27	15.28	0.00		
Doct Toot Moon	44.40	42.10	41 E0	Between	42.2	2	21.10	1 24		
Post Test Mean	44.40	45.10	41.50	Within	423.8	27	15.70	1.54		
Adjusted Post	45 40	42 55 41	41.04	Between	94.5	2	47.25	15.24*		
Test Mean	45.40	42.55		Within	80.6	26	3.10			
Mean Diff	5.30	2.30	0.80							
Calculation of Analysis of Covariance on Cardiorespiratory Endurance										
Pre Test Mean	1994	2059	2086	Between	44727	2	22363	1.28		
				Within	473370	27	17532			
Post Test Mean	2245	2185	2109	Between	92907	2	46453	2.75		
				Within	455390	27	16866			
Adjusted Post	ed Post 2285 2175 Mean	2175	2078	Between	196986	2	98493	14.85*		
Test Mean		21/5		Within	172391	26	6630			
Mean Diff	251	126	23							

Table 1

Required $F_{(0.05)(2,27)} = 3.354$, $F_{(0.05),(2,26)} = 3.369$ *Significant

Tab 2: Scheffe's Post Hoc Analysis Results

Post Hoc Analysis for Strength Endurance										
Stair Climbing	Sand Dune	Control	Mean	Reqd. C.I						
Group	Running Group	Group	Difference							
45.40	42.55		2.85*	2.04						
45.40		41.04	4.36*	2.04						
	42.55	41.04	1.51	2.04						
Post Hoc Analysis for Cardiorespiratory Endurance										
2285.46	2175.21		110.26*	94.53						
2285.46		2078.33	207.13*	94.53						
	2175.21	2078.33	96.88*	94.53						

* Significant

Discussions:

The results proved that stair climbing has significantly improved strength endurance, as measured by bent knee sit ups than sand dune running and control

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): 2455 - 5428

(www.rdmodernresearch.com) Volume I, Issue II, 2016

groups. It was also found that stair climbing and sand dune running trainings were significantly improved cardio respiratory endurance comparing to control group. While comparing between the treatment groups, it was found that stair climbing is better than sand dune running. Lejeune TM, et.al. (1996) reported sand running requires 1.6 times more energy expenditure than does running on a hard surface. Muramatsu S, et.al. (2006) investigated and found the energy expenditure of jumping on sand was less than in walking and close to in running. Moritz CT, and Farley CT. (2006) suggested runners may use surfaces such as sand, mud and snow for improved strength endurance. Gottschall JS et.al. (2010) recommend for double step stair climbing for improved metabolic and muscular strength. Koegelenberg CF, et.al. (2008) was of view that stair climbing may replace formal exercise testing at much lower costs. The findings of this study are in agreement with the theoretical knowledge cited in respect of stair climbing and sand dune running.

Conclusions:

It was concluded that stair climbing can be better utilized for improving fitness variables than sand dune running, especially among volleyball players. **References:**

- 1. Carl E. Willgoose, (1961) Evaluation in Health Education and Physical Education, New York: Mc Grow Hill Book Co, p. 16.
- 2. David H. Clarke, Hemingway, Albert, (1952) "Physiological Basis of Training ", Ergonomics, 2, 133-42.
- 3. Gottschall JS et.al. (2010), "The Metabolic and Muscular Differences Between Two Stair-Climbing Strategies of Young Adults.", J Strength Cond Res., 10.
- 4. Koegelenberg CF, et.al. (2008), "Stair climbing in the functional assessment of lung resection candidates.", Respiration., 75(4):374-9.
- 5. Lawrance Gray Kumar, V and Mamata Manjari Panda, (2002) Modern Principles of Athletic Training. India: Friends Publications, p. 22.
- 6. Lejeune TM, et.al. (1996), "Mechanics and energetics of human locomotion on sand.", J Exp Biol; 201(Pt 13):2071-80.
- 7. Muramatsu S, et. al. (2006), "Energy expenditure in maximal jumps on sand.", J Physiol Anthropol., 25(1):59-61.