
 

Capped Accumulated Return Call with Volatility 

Surface 

 

A pricing model for capped-accumulated-return-call (CARC) with volatility surface is presented.  

Proprietary approaches to interpreting volatility surface are employed during pricing.  To 

accelerate the convergence when low discrepancy sequences are used in Monte Carlo simulation 

(Quasi-Monte Carlo simulation), the Brownian Bridge Path Construction has been employed in 

some CARC transactions. 

 

Let )t(S  be a price process of a given underlying asset, }ttt{ n10    be a set of reset dates 

and ntT   be a payoff settlement date.  The capped-accumulated-return call (CARC) with the 

underlying S is a European type derivative security whose matured payoff at the settlement date 

is given by 
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where 
capR  is the capped-return-rate for each period, fR  is the global floor of the return rate, N 

is the notional principal, and 
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Let t be the current value date, then the current value of this CARC can be written as 
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where )T,t(df  is the discounting factor at the value date.  The above formula is in a world that is 

forward risk-neutral with respect to a specific currency 
pC .  As a result, the notional principal N 

is measured in the currency 
pC , and the discounting factor should be calculated by a 

pC  zero 

curve (ref. https://finpricing.com/lib/IrBasisCurve.html) given at the value date.  If the 

underlying asset is measured in another currency UC , the governing price dynamics of the 

underlying asset in the risk-neutral world of 
pC  should be written as 
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where Ur  is the short rate of UC , q is the dividend yield of the asset, s  is the volatility of the 

asset price,   is the correlation coefficient between the asset price and the cross-currency 

exchange rate, x  is the volatility of the exchange price, and tW  is the Wiener process.  All 

these parameters are assumed deterministic.  Monte Carlo simulation can be used to price 

CARC. 

 

As is known, quasi-Monte Carlo methods provides a way to improve the accuracy and reliability 

of Monte Carlo simulation by using deterministic sequences known as quasi-random sequences.  

This results in better convergence and deterministic error bounds (Joy, Boyle and Tan, 1996).  

There are a few techniques aimed at speeding up quasi-Monte Carlo, and the Brownian bridge 

path construction is one of them.  It attempts to use the best coordinates of each point to 

determine most of the structure of a path. 

 

Relying on properties of Gaussian Markov processes, particularly the following property 
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https://finpricing.com/lib/IrBasisCurve.html


 

where )t(W  is the Wiener process, it  and 
jt  are any two time-steps, for a quasi-Monte Carlo 

problem that involves 1N   time steps, the Brownian bridge path construction first generates 

TW , then using this value, and 0W0 = , it generates 2/TW .  It generates 4/TW  using 0W  and 

2/TW , and it generates 4/T3W  using 2/TW  and TW .  The construction proceeds recursively 

filling in the mid points of the subintervals.  Thus, the discretely sampled Brownian path is 

generated by determining its values at  1)T/d-(d ,3T/4, T/4, T/2, T,  according to 
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where iz , d,,1i =  are standard normal random numbers.  The Brownian bridge can be 

generalized to include unequal length intervals.  For 1d,,0j,ttt j1j −=+=+  , d/Tt = , we 

can simulate a future value jk,W
kt

 , (given the value )W
jt

 according to 
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We can simulate 
it

W  at any intermediate point 
kij ttt   (given values of 

jtW  and 
ktW ) 

according to the Brownian bridge formula 
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where )jk/()ji( −−= . 

 

A new representation of the volatility skew is provided.  To use this new representation, the user 

must input “STRIKE_REPRESENTATION   PERCENTAGE” in the token file.  Then, the ATM 

strike is always assumed to be 100.  The first quantity in the volatility skew still signifies the 

stock price when the volatility skew was built.   

 

The model will interpret this skew as follows.  At the time 1 year from the date when the 

volatility skew was built, the 10% ITM volatility is 0.4, with the strike level being 

90*1050/100=945.  The ATM volatility is 0.38 with the strike level being 1050*100/100=1050.  

The 10% OTM volatility is 0.36 with the strike level being 110*1050/100=1155.  At the time 2.0 

years, a similar interpretation can be obtained. 

 

As to the interpolation of the volatility surface in pricing CARC, for each reset period, the model 

needs vol_spot and vol_strike to determine the volatility to use for that period.  For the current 

period, the vol_spot = current_stock_price at the value date, vol_strike = (1.0+cap) *l 

ast_reset_price.  For all future periods, the vol_spo t= base_spot of the volatility skew, and the 

vol_strike = (1.0+cap) * base_spot.  The base_spot is the stock price when the volatility skew 

was built, such as 1050 in the above example.  Based on the value of vol_strike/vol_spot for each 

reset period, the volatility for that period is obtained by linear interpolating (or flat extrapolating) 

time in the volatility skew representation, followed by moneyness interpolation (or flat 

extrapolation).   

 

Beside the above conventional interpretation / interpolation, we also use a proprietary approach 

to interpreting volatility skew for instruments with capped returns, such as CARC. 

 

 

 


