Report Open Access

Hourly versus annually matched renewable supply for electrolytic hydrogen

Zeyen, Elisabeth; Riepin, Iegor; Brown, Tom


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">green hydrogen</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">regulation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">electrolysis</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">PPA</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">decarbonisation</subfield>
  </datafield>
  <controlfield tag="005">20221220142627.0</controlfield>
  <controlfield tag="001">7457441</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Technical University of Berlin (TUB)</subfield>
    <subfield code="0">(orcid)0000-0001-6378-4904</subfield>
    <subfield code="a">Riepin, Iegor</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Technical University of Berlin (TUB)</subfield>
    <subfield code="0">(orcid)0000-0001-5898-1911</subfield>
    <subfield code="a">Brown, Tom</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">354849635</subfield>
    <subfield code="z">md5:89ccf70096173fb7ce541a294ee570ca</subfield>
    <subfield code="u">https://zenodo.org/record/7457441/files/data-workflow-results.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1292966</subfield>
    <subfield code="z">md5:ba2a1b868f3912af957dc583bf5b60f2</subfield>
    <subfield code="u">https://zenodo.org/record/7457441/files/Report_TUB_hourlyvsannually.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2022-12-19</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:7457441</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Technical University of Berlin (TUB)</subfield>
    <subfield code="0">(orcid)0000-0002-7262-3296</subfield>
    <subfield code="a">Zeyen, Elisabeth</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Hourly versus annually matched renewable supply for electrolytic hydrogen</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Electrolytic hydrogen produced using renewable electricity can help lower carbon dioxide emissions in sectors where&lt;br&gt;
feedstocks, reducing agents, dense fuels or high temperatures are required. Several standards are being discussed to&lt;br&gt;
certify that the grid electricity used is renewable. The standards vary in how strictly they match the renewable generation&lt;br&gt;
to the electrolyser demand in time and space. In this paper, we compare electricity procurement strategies to meet a&lt;br&gt;
constant hydrogen demand in a computer model for selected European countries in 2025 and 2030. We compare a&lt;br&gt;
case where no additional renewable generators are procured with cases where the electrolyser demand is matched to&lt;br&gt;
additional supply either on an annual, monthly or an hourly basis. We show that local additionality is required to&lt;br&gt;
guarantee low emissions. If no storage is available to buffer the hydrogen, the electrolyser must run at full capacity&lt;br&gt;
at all times. For the annually matched case, constant operation means using fossil-fuelled generation from the grid&lt;br&gt;
for some hours that results in higher emissions and increased electricity prices compared to the case without hydrogen&lt;br&gt;
demand. In the hourly matched case, emissions and prices do not increase, but baseload operation results in high costs&lt;br&gt;
for providing constant supply if only wind, solar and batteries are available. Buffering the hydrogen with storage, either&lt;br&gt;
in steel tanks or underground caverns, reduces the cost penalty of hourly versus annual matching. Hydrogen production&lt;br&gt;
with annual matching can reduce system emissions if the electrolysers operate flexibly or coal is phased out and the&lt;br&gt;
renewable generation share is above 80%. The largest emission reduction is achieved with hourly matching when surplus&lt;br&gt;
electricity generation can be sold to the grid.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.7457440</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.7457441</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">report</subfield>
  </datafield>
</record>
3,419
1,978
views
downloads
All versions This version
Views 3,4193,419
Downloads 1,9781,978
Data volume 19.2 GB19.2 GB
Unique views 3,1703,170
Unique downloads 1,7961,796

Share

Cite as