Report Open Access
Zeyen, Elisabeth;
Riepin, Iegor;
Brown, Tom
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">green hydrogen</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">regulation</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">electrolysis</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">PPA</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">decarbonisation</subfield> </datafield> <controlfield tag="005">20221220142627.0</controlfield> <controlfield tag="001">7457441</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Technical University of Berlin (TUB)</subfield> <subfield code="0">(orcid)0000-0001-6378-4904</subfield> <subfield code="a">Riepin, Iegor</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Technical University of Berlin (TUB)</subfield> <subfield code="0">(orcid)0000-0001-5898-1911</subfield> <subfield code="a">Brown, Tom</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">354849635</subfield> <subfield code="z">md5:89ccf70096173fb7ce541a294ee570ca</subfield> <subfield code="u">https://zenodo.org/record/7457441/files/data-workflow-results.zip</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">1292966</subfield> <subfield code="z">md5:ba2a1b868f3912af957dc583bf5b60f2</subfield> <subfield code="u">https://zenodo.org/record/7457441/files/Report_TUB_hourlyvsannually.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2022-12-19</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="o">oai:zenodo.org:7457441</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Technical University of Berlin (TUB)</subfield> <subfield code="0">(orcid)0000-0002-7262-3296</subfield> <subfield code="a">Zeyen, Elisabeth</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Hourly versus annually matched renewable supply for electrolytic hydrogen</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Electrolytic hydrogen produced using renewable electricity can help lower carbon dioxide emissions in sectors where<br> feedstocks, reducing agents, dense fuels or high temperatures are required. Several standards are being discussed to<br> certify that the grid electricity used is renewable. The standards vary in how strictly they match the renewable generation<br> to the electrolyser demand in time and space. In this paper, we compare electricity procurement strategies to meet a<br> constant hydrogen demand in a computer model for selected European countries in 2025 and 2030. We compare a<br> case where no additional renewable generators are procured with cases where the electrolyser demand is matched to<br> additional supply either on an annual, monthly or an hourly basis. We show that local additionality is required to<br> guarantee low emissions. If no storage is available to buffer the hydrogen, the electrolyser must run at full capacity<br> at all times. For the annually matched case, constant operation means using fossil-fuelled generation from the grid<br> for some hours that results in higher emissions and increased electricity prices compared to the case without hydrogen<br> demand. In the hourly matched case, emissions and prices do not increase, but baseload operation results in high costs<br> for providing constant supply if only wind, solar and batteries are available. Buffering the hydrogen with storage, either<br> in steel tanks or underground caverns, reduces the cost penalty of hourly versus annual matching. Hydrogen production<br> with annual matching can reduce system emissions if the electrolysers operate flexibly or coal is phased out and the<br> renewable generation share is above 80%. The largest emission reduction is achieved with hourly matching when surplus<br> electricity generation can be sold to the grid.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.7457440</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.7457441</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">report</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 3,419 | 3,419 |
Downloads | 1,978 | 1,978 |
Data volume | 19.2 GB | 19.2 GB |
Unique views | 3,170 | 3,170 |
Unique downloads | 1,796 | 1,796 |