Report Open Access
Zeyen, Elisabeth;
Riepin, Iegor;
Brown, Tom
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.7457441</identifier> <creators> <creator> <creatorName>Zeyen, Elisabeth</creatorName> <givenName>Elisabeth</givenName> <familyName>Zeyen</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-7262-3296</nameIdentifier> <affiliation>Technical University of Berlin (TUB)</affiliation> </creator> <creator> <creatorName>Riepin, Iegor</creatorName> <givenName>Iegor</givenName> <familyName>Riepin</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-6378-4904</nameIdentifier> <affiliation>Technical University of Berlin (TUB)</affiliation> </creator> <creator> <creatorName>Brown, Tom</creatorName> <givenName>Tom</givenName> <familyName>Brown</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5898-1911</nameIdentifier> <affiliation>Technical University of Berlin (TUB)</affiliation> </creator> </creators> <titles> <title>Hourly versus annually matched renewable supply for electrolytic hydrogen</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2022</publicationYear> <subjects> <subject>green hydrogen</subject> <subject>regulation</subject> <subject>electrolysis</subject> <subject>PPA</subject> <subject>decarbonisation</subject> </subjects> <dates> <date dateType="Issued">2022-12-19</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Report"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/7457441</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.7457440</relatedIdentifier> </relatedIdentifiers> <version>0.1</version> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Electrolytic hydrogen produced using renewable electricity can help lower carbon dioxide emissions in sectors where<br> feedstocks, reducing agents, dense fuels or high temperatures are required. Several standards are being discussed to<br> certify that the grid electricity used is renewable. The standards vary in how strictly they match the renewable generation<br> to the electrolyser demand in time and space. In this paper, we compare electricity procurement strategies to meet a<br> constant hydrogen demand in a computer model for selected European countries in 2025 and 2030. We compare a<br> case where no additional renewable generators are procured with cases where the electrolyser demand is matched to<br> additional supply either on an annual, monthly or an hourly basis. We show that local additionality is required to<br> guarantee low emissions. If no storage is available to buffer the hydrogen, the electrolyser must run at full capacity<br> at all times. For the annually matched case, constant operation means using fossil-fuelled generation from the grid<br> for some hours that results in higher emissions and increased electricity prices compared to the case without hydrogen<br> demand. In the hourly matched case, emissions and prices do not increase, but baseload operation results in high costs<br> for providing constant supply if only wind, solar and batteries are available. Buffering the hydrogen with storage, either<br> in steel tanks or underground caverns, reduces the cost penalty of hourly versus annual matching. Hydrogen production<br> with annual matching can reduce system emissions if the electrolysers operate flexibly or coal is phased out and the<br> renewable generation share is above 80%. The largest emission reduction is achieved with hourly matching when surplus<br> electricity generation can be sold to the grid.</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 3,430 | 3,430 |
Downloads | 1,988 | 1,988 |
Data volume | 19.2 GB | 19.2 GB |
Unique views | 3,181 | 3,181 |
Unique downloads | 1,805 | 1,805 |