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Abstract
We present Aesop, a proof search tactic for the Lean 4 inter-

active theorem prover. Aesop performs a tree-based search

over a user-specified set of proof rules. It supports safe and

unsafe rules and uses a best-first search strategy with cus-

tomisable prioritisation. Aesop also allows users to register

custom normalisation rules and integrates Lean’s simplifier

to support equational reasoning. Many details of Aesop’s

search procedure are designed to make it a white-box proof

automation tactic, meaning that users should be able to eas-

ily predict how their rules will be applied, and thus how

powerful and fast their Aesop invocations will be.

Since we use a best-first search strategy, it is not obvious

how to handle metavariables which appear in multiple goals.

The most common strategy for dealing with metavariables

relies on backtracking and is therefore not suitable for best-

first search. We give an algorithm which addresses this issue.

The algorithm works with any search strategy, is independ-

ent of the underlying logic andmakes few assumptions about

how rules interact with metavariables. We conjecture that

with a fair search strategy, the algorithm is as complete as

the given set of rules allows.

CCS Concepts: • Mathematics of computing → Mathem-
atical software; • Theory of computation→ Type theory;

Logic and verification; Automated reasoning.

Keywords: proof search, tactic, Lean, interactive theorem
proving, deductive verification, type theory
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1 Introduction
One of the biggest barriers to a more widespread adoption of

interactive theorem provers is the tedium of proving lemmas

which are entirely obvious to the human eye. The provers

force us to explicitly demonstrate that 𝑛 ∗ 2 is even, that

[𝑧,𝑦, 𝑥] is a permutation of [𝑥,𝑦, 𝑧] or that a homomorphism

of groups is also a homomorphism of the underlying semi-

groups. This adds substantially to the cost of using theorem

provers, which is still too high for many applications.

To help address this issue, we present Aesop (Automated

Extensible Search for Obvious Proofs), a new proof search tac-

tic for the upcoming version 4 of the Lean theorem prover [7].

In essence, Aesop is a tree-based search procedure which

operates on a user-specified set of rules. The rules are ar-

bitrary Lean tactics which, given a goal, either succeed —

generating zero or more subgoals — or fail. Aesop applies

these rules to the initial goal, then to the subgoals, etc., to

build a search tree. On top of this basic setup, we provide

the following features:

• Aesop uses a best-first search strategy, prioritising

more promising rules (and their subgoals) over less

promising ones. Which rules are considered promising

is specified by the users themselves, using a simple

prioritisation mechanism.

• Aesop distinguishes between safe rules, which are ap-

plied eagerly without backtracking, and unsafe rules,

whichmay be backtracked. Safe rules are efficient since

the goals to which they apply never need to be revis-

ited.

• Aesop introduces a normalisation phase in which spe-

cial normalisation rules are applied in a fixpoint loop to

normalise the goal, before any other rules are applied.

We use normalisation to establish invariants which

the subsequent rules can rely on. For example, we split

hypotheses of the form 𝑃1∧ . . .∧𝑃𝑛 into separate hypo-
theses 𝑃𝑖 , establishing the invariant that no hypothesis

is a conjunction.

• The normalisation phase includes an invocation of

Lean’s simplifier, which performs rewriting with user-

specified, possibly conditional equations. This allows

us to benefit from the large collection of simplification

rules which are typically defined by Lean projects.

• With best-first search, it is not obvious how to deal

with metavariables which appear in multiple goals.

In search procedures based on backtracking, such as
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depth-first search, if a metavariable assignment turns

out to be wrong, we can simply backtrack it and try

a different one (assuming that the theorem prover’s

data structures efficiently support this). By contrast,

a best-first algorithm must be able to consider mul-

tiple assignments in parallel. To address this issue, we

present a new algorithm which handles metavariables

and is independent of the search strategy.

Users of Isabelle’s auto [18, 20] will recognise some of

these features. More broadly, Aesop stands in the tradition of

white-box proof automation tools, which also include Coq’s

(e)auto, PVS’s grind [5] and ACL2’s waterfall [11]. White-

box tools require users to curate a set of rules which the

tool applies. In return, users gain control over the power-

performance tradeoff: many explosive rules make the auto-

mation stronger but slower; few conservative rules make it

weaker but faster. Due to their customisability, white-box

tools can also serve as a foundation for domain-specific auto-

mation, using domain-specific rule sets.

In contrast, black-box or push-button tools such as ham-

mers [3], which invoke external automated theorem provers

to find proofs, or machine learning systems which write a

tactic script [2, 8, 10, 13], aim to operate with little or no

user interaction. This makes them very convenient when

they succeed, but the complex algorithms which deliver high

success rates can be brittle. Sometimes a minor reformula-

tion makes the difference between finding or not finding

a proof. When a black-box tool does not find a proof or is

slow to find one, it is often unclear how to improve the tool’s

performance.

White-box and black-box tools thus have complementary

strengths and weaknesses, and so we believe it is worth-

while to explore both approaches. Aesop is an attempt to

move far to the white-box end of the spectrum while re-

taining some of the useful features of Isabelle’s auto and

other systems. This is why we choose tree-based search as a

base: it is easy to understand and close to interactive proof,

which helps users predict how their rules will affect the

search. We choose best-first search with customisable prior-

itisation (rather than some opaque heuristic) to give users

more control over Aesop’s performance. And we introduce

fixpoint-based normalisation as an intuitive and reliable way

to establish invariants. Taken together, these features should

enable users to design effective and reasonably efficient rule

sets for many domains.

Aesop is available as a Lean 4 library.
1
The specific version

described here is available as a supplement to this paper.
2

2 Best-First Proof Search
At its core, Aesop performs a tree-based, best-first proof

search. This approach is independent of the underlying logic,

1https://github.com/JLimperg/aesop
2https://doi.org/10.5281/zenodo.7424818

so it could also be used as a proof method for, say, first-order

or higher-order logic, though we will use the notation of

dependent type theory for examples. For now, we assume

that goals do not contain metavariables, which simplifies the

algorithm considerably.

2.1 Goals and Rules
We assume a set of goals given by the underlying logic. These
could, for example, be first-order sequents or higher-order

formulas. In Lean, they are structures of the form ®ℎ : ®𝑇 ⊢ 𝑈 ,

where ®ℎ is a list of hypotheses with types ®𝑇 and 𝑈 is a type.

Each hypothesis may depend on earlier hypotheses (so ®ℎ is

a telescope) and𝑈 may depend on all hypotheses. We call𝑈

the goal’s target.
We also assume a finite set of rules, which are partial

functions that map a goal to a finite set of goals. When a goal

is in the domain of a rule, we say that the rule is applicable
to the goal. In the Aesop implementation, rules are arbitrary

tactics.

When applied to a goal𝐺 , a rule produces a set of subgoals

𝐺1, . . . ,𝐺𝑛 . Rules should be provability-reflecting, meaning

that if the subgoals𝐺𝑖 are provable in the underlying logic,

then the initial goal 𝐺 is also provable. For instance, an ∧-
introduction rule would map the goal Γ ⊢ 𝑃 ∧𝑄 to the set

{Γ ⊢ 𝑃, Γ ⊢ 𝑄}. If a rule generates no subgoals, it proves the

goal outright.

2.2 Search Tree
Aesop’s central data structure is a search tree containing two

alternating kinds of nodes: goal nodes and rule application
(‘rapp’) nodes. The children of a goal node are rapp nodes

representing rules which have been applied to the goal. The

children of a rapp node are goal nodes representing the

subgoals generated by the rule. For example, the goal ⊢ 𝑃 ∧𝑄
could have a child rapp for ∧-introduction with two subgoals
⊢ 𝑃 and ⊢ 𝑄 .

At any point during the search, a node (goal or rapp) is in

one of three states:

• proved: the node is proved. For a goal node, this means

that at least one of its child rapps is proved. For a rapp

node, it means that all of its child goals are proved. So

sibling goal nodes are implicitly conjoined and sibling

rapp nodes are implicitly disjoint, making the tree an

AND/OR tree.

• stuck: the node cannot be proved with the given rules.

For a goal node, this means that (a) all rules which

can be applied to the goal have been applied and (b)

all resulting child rapps are stuck. For a rapp node, it

means that at least one of its child goals is stuck.

• unknown: the node is neither proved nor stuck.

The state of a node matters only insofar as it is necessary

to determine the state of its parent node, then the parent’s

parent, etc., until we ultimately learn whether the root goal is

2
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proved or stuck. This means that nodes can become irrelevant
during the search. For example, if a goal ⊢ 𝑃 ∨𝑄 has child

rapps for left or-introduction (with subgoal ⊢ 𝑃 ) and right or-
introduction (with subgoal ⊢ 𝑄), and ⊢ 𝑃 is already proved,

then ⊢ 𝑃 ∨𝑄 is also proved and there is no point in trying to

prove ⊢ 𝑄 . In general, we say that a node is irrelevant if at

least one of its ancestors, including the node itself, is already

proved or stuck. Incidentally, when the search terminates

successfully, the root goal becomes proved and therefore, by

our definition, irrelevant. So ‘irrelevant’ means ‘irrelevant

for the rest of the search’, not ‘irrelevant for the proof’.

2.3 Search Algorithm
The search procedure starts with a search tree containing

a single goal. It then enters a loop which, in each iteration,

picks a goal node 𝐺 with unknown state and a rule 𝑅 which

has not yet been applied to 𝐺 . We then apply 𝑅 to 𝐺 . If this

fails, we continue with the next rule and goal; if it succeeds,

we add a rapp node for 𝑅 with parent 𝐺 and subgoals 𝑅(𝐺)
to the tree. We call this operation the expansion of 𝐺 along

𝑅. We exit the loop when the root goal becomes proved or

stuck (or when one of several configurable limits, e.g. on the

depth of the search tree, is reached).

Which goal is expanded first, and along which rule, is

determined by a best-first search strategy. Usually, best-first

search is realised by a heuristic which ranks goals and rules

according to simple numeric properties, e.g. the size of a

goal or the number of subgoals of a rule. This goes against

Aesop’s white-box philosophy since the heuristics tend to be

fixed (so users cannot easily change them) and opaque (so

users cannot easily predict which goals will be prioritised).

Instead, we implement a scheme whereby the rules carry a

user-defined priority which is used to rank both goals and

rules.

Specifically, Aesop users give each rule a success prob-
ability between 0% and 100%. This probability is a rough

estimate of how useful a rule is, i.e. how likely it is to lead

to a proof. For example, left and right ∨-introduction could

each be given a success probability of 50%.

For rules whose success probability is less obvious, we

have found it sufficient in practice to pick probabilities from

a six-point scale: last resort (1%), low (25%), medium (50%),

high (75%) and almost always (99%). The probabilities could

also be determined by automated methods, for example by

determining the actual success probability of each rule in an

existing corpus of proofs. But while such automated tuning

would perhaps improve Aesop’s overall performance in a

larger library, it would also likely make some previously

successful proofs fail, leading to maintenance challenges.

From the rules’ success probabilities we derive, for each

goal in the search tree, a priority between 0% and 100%. The

root goal has priority 100%. Then, whenever we apply a rule

𝑅 to a goal𝐺 , the priority of the subgoals is the priority of𝐺

multiplied with the success probability of 𝑅. In each iteration

of the search loop, Aesop picks the highest-priority goal and

expands it along the rule with the highest success probability.

We could also allow rules to give different priorities to their

subgoals, e.g. to prioritise goals which are known to quickly

become unprovable if the initial goal is unprovable.

2.4 Safe and Unsafe Rules
So far, we have treated all rules as unsafe. An unsafe rule

is one that does not necessarily preserve provability: when

applied to a provable goal 𝐺 , it may generate unprovable

subgoals. For our search, this means that we must continue

to expand both 𝐺 and the subgoals.

However, in practice there are many rules which pre-

serve provability and are therefore safe. For instance, ∧-
introduction is safe: to prove Γ ⊢ 𝑃 ∧𝑄 , it suffices to prove

Γ ⊢ 𝑃 and Γ ⊢ 𝑄 . So after this rule has been applied, the

original goal Γ ⊢ 𝑃 ∧𝑄 does not need to be considered any

more, shrinking the search space.

To take advantage of this insight, Aesop, like Isabelle’s

auto, lets users mark rules as safe. To accommodate these

safe rules, we split the expansion of a goal𝐺 into two phases.

First, Aesop tries to apply all safe rules to 𝐺 . If one of them

succeeds, the resulting subgoals are added to the tree as

usual. An unsafe rule would then re-insert 𝐺 into the goal

queue which we maintain throughout the search, to give

other rules a chance to fire. For safe rules, we simply skip

this step, ensuring that𝐺 is never expanded again. If no safe

rules are applicable to 𝐺 , Aesop moves to the second phase,

in which unsafe rules are applied as explained above.

Safe rules are considered to have success probability 100%,

so the subgoals of a safe rule receive the same priority as the

parent goal. To control the order in which safe rules are tried,

users can give them an integer priority. This order does not

affect provability — assuming that rules marked as safe are

actually safe — but it does affect the search performance. For

instance, suppose we have, in addition to safe∧-introduction,
a safe rule 𝑅 that transforms a hypothesis ℎ : 𝐴 into ℎ : 𝐵.

Then for the goal ℎ : 𝐴 ⊢ 𝑃 ∧𝑄 , it is better to apply 𝑅 before

∧-introduction; otherwise we would have to apply 𝑅 twice.

In practice, the distinction between safe and unsafe rules

can be tricky since safe rules must preserve provability rel-

ative to the whole rule set. When we mark ∧-introduction
as safe, we require the rest of the rule set to maintain the

invariant that whenever we can prove Γ ⊢ 𝑃 ∧ 𝑄 , we can

also prove Γ ⊢ 𝑃 and Γ ⊢ 𝑄 . This invariant can be violated,

for example, by registering an unsafe rule 𝑅 which proves

𝑃 ∧𝑄 : the rule will never be applied since any goal Γ ⊢ 𝑃 ∧𝑄
gets split by “safe” ∧-introduction before 𝑅 can be tried. So

we must add more rules to ensure that Γ ⊢ 𝑃 and Γ ⊢ 𝑄 can

also be proved — or consider ∧-introduction unsafe after all.

2.5 Normalisation
Besides safe and unsafe rules, Aesop introduces a third cat-

egory of normalisation rules. These are rules which normalise
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and simplify a goal, preparing it for further rule applications.

Like safe rules, normalisation rules should preserve prov-

ability. Unlike safe rules, they must either prove the goal

outright or return a single subgoal. For example, Aesop’s

default normalisation rules introduce assumptions, unfold

certain definitions and prove trivial equations, reducing the

goal ⊢ ∀𝑓 , map f [] = [] first to 𝑓 ⊢ [] = [] and then to

𝑓 ⊢ True.
Normalisation rules are applied in yet another expansion

phase, before the safe and unsafe phases. Like safe rules, they

have a user-specified integer priority determining the order

in which they are applied. Let𝑅1, . . . , 𝑅𝑛 be the normalisation

rules in this order. During the normalisation phase, Aesop

then runs a loop which updates the goal. In each iteration,

this loop tries to apply first 𝑅1, then, if it fails, 𝑅2, and so

on. As soon as one of the 𝑅𝑖 succeeds, the goal is set to the

subgoal generated by 𝑅𝑖 and the loop restarts. (If 𝑅𝑖 produces

no subgoal, the goal is proved and we are done.) If all the 𝑅𝑖
fail, the loop ends. Compared with a simpler fixpoint loop

which executes 𝑅1, . . . , 𝑅𝑛 , 𝑅1, . . . until all the 𝑅𝑖 fail, this

method has the advantage that the order of rules is always

respected, so on each intermediate goal 𝑅1 is tried before 𝑅2.

Like safe rules, normalisation rules must be chosen care-

fully to ensure that they preserve provability relative to the

whole rule set. If we, for example, rewrite with the unfolding

rule [x] ++ xs = x :: xs during normalisation, rules

about concatenation no longer apply to the normalised goal.

If this is not desired, the unfolding is better performed as an

unsafe rule or added as a local rule when needed. A common

pattern is to register unfolding equations as normalisation

rules while we prove facts about the respective definition

(which almost always requires unfolding) and then remove

them again for the remainder of the library.

2.6 Safe Goals
When Aesop fails to prove a goal, it reports the safe goals.
These are the goals that would remain if we were to run

Aesop with only normalisation and safe rules. Since normali-

sation and safe rules are non-branching (meaning each goal

expanded by such a rule has exactly one child rapp), applying

them exhaustively results in a single set of safe goals.

The safe goals are interesting because they indicate how

much progress Aesop has made in the safe, non-branching

part of its search. A typical Aesop proof workflow looks like

this:

• Run Aesop on a goal 𝐺 . If this proves the goal, we are

done. Otherwise Aesop produces safe goals𝐺1, . . . ,𝐺𝑛 .

• Manually perform some proof steps on each safe goal

𝐺𝑖 , producing a goal 𝐺
′
𝑖 .

• For each 𝐺 ′
𝑖 , apply this workflow recursively.

Once the proof is complete, we collect the manual steps

and turn them into Aesop rules. This allows Aesop to prove

the initial goal 𝐺 fully automatically — and hopefully other,

similar goals as well.

To report the safe goals, we must address one minor com-

plication. It is possible for the search to terminate before all

safe goals have been generated. For example, suppose we

register ∧-introduction as a safe rule and search for a proof

of the goal ⊥ ∧ (𝑃 ∧ 𝑄). Then the safe goals are ⊥, 𝑃 and

𝑄 . But Aesop may terminate after the first ∧-introduction,
realising that the goal ⊥ cannot be proved, without ever

applying the second ∧-introduction to 𝑃 ∧ 𝑄 . So it would

wrongly report ⊥ and 𝑃 ∧𝑄 as safe goals. Hence we must

expand all relevant safe rules (here: ∧-introduction on 𝑃 ∧𝑄)

before computing the safe goals.

2.7 Multi-Rules
It is sometimes useful for a rule to add multiple rapps at

once. For example, we will shortly see a rule which tries to

apply the constructors of an inductive type. If more than one

constructor can be applied, it is more natural (and slightly

faster) to let the rule add one rapp per applicable constructor,

rather than making each constructor a separate rule. We call

such rules multi-rules.
Unsafe multi-rules are a straightforward generalisation

of unsafe regular rules and require almost no changes to

the search procedure. Safe and normalisation multi-rules

are trickier. Normalisation multi-rules are not allowed at all

since normalisation cannot branch. Safe multi-rules could be

allowed, but their behaviour would be unintuitive: the whole

raison d’être of safe rules is that they, too, do not branch. So

we also forbid safe multi-rules.

The prohibition of safe and normalisation multi-rules is

enforced dynamically, meaning that users may register safe

and normalisation multi-rules but they fail if they actually

generate multiple rapps. This is convenient because, for ex-

ample, a rule that applies the constructors of an inductive

family can be perfectly safe if for any given goal at most one

constructor is applicable, which is the case for many induc-

tive predicates and relations. Such multi-rules are effectively

non-branching, so we should not ban them outright.

3 Best-First Proof Search in Lean
We now instantiate our best-first search framework to obtain

a practical proof method for Lean.

3.1 Rule Builders
Aesop rules are arbitrary tactics, but it would be highly in-

convenient if users had to write a tactic whenever they want

to add, say, a lemma as a rule. We therefore provide several

rule builders which register theorems, definitions or types

as rules. Rules are registered either locally, i.e. for a single

Aesop invocation, or globally in a rule set. Rule sets are col-

lections of rules which can be activated or deactivated for

4
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each Aesop invocation. The distinguished default rule set
is activated by default.

3.1.1 apply. Given a term 𝑓 of type ∀®𝑥 : ®𝑇, 𝑃 ®𝑥 , the apply
builder creates a rule which applies 𝑓 to goals Γ ⊢ 𝑃 ®𝑦. The
arguments ®𝑥 are either inferred (by unification or type-class

search) or become subgoals.

When we write 𝑃 ®𝑥 , 𝑃 is an arbitrary type-valued func-

tion (e.g. _ 𝑥 𝑦, 𝑥 = 𝑦 + 1), so 𝑃 ®𝑥 is essentially an arbitrary

type-valued term involving the variables ®𝑥 . However, due
to the inherent limitations of higher-order unification, our

apply builder cannot support all functions 𝑃 ; it uses the

same heuristics as Lean’s apply tactic to support a useful

subset. Similar caveats also apply to some of the following

rule builders.

3.1.2 constructors. The constructors builder creates a
rule which applies the constructors of an inductive type 𝐼 .

The rule has the same effect as if each constructor of 𝐼 had

been added as an apply rule, except that these apply rules
are combined into one multi-rule.

3.1.3 forward. Given a term 𝑓 : ∀®𝑥 : ®𝑇, 𝑃 ®𝑥 , the forward
builder creates a rule which performs forward reasoningwith

𝑓 . This means that whenever a goal’s local context contains

hypotheses ®ℎ : ®𝑇 , the rule adds a new hypothesis ℎ′
: 𝑃 ®ℎ.

For example, the left ∧-elimination lemma ∀𝐴𝐵, 𝐴∧𝐵 → 𝐴,

when used as a forward rule, reduces the goalℎ : 𝐴∧𝐵 ⊢ 𝑇 to

ℎ : 𝐴 ∧ 𝐵, ℎ′
: 𝐴 ⊢ 𝑇 . If there are multiple sets of hypotheses

with types ®𝑇 , one new hypothesis is added for each set.

More generally, users can partition the arguments ®𝑥 into

immediate arguments ®𝑎 : ®𝐴 and non-immediate arguments

®𝑏 : ®𝐵. Then, Aesop searches only for hypotheses ®ℎ : ®𝐴 cor-

responding to the immediate arguments and, if successful,

adds a hypothesis of type ∀®𝑏 : ®𝐵, 𝑃 ®ℎ ®𝑏. (This notation sug-

gests that the immediate arguments must precede the non-

immediate ones, but in fact they can be interleaved freely.) So

the immediate arguments must be “immediately available” as

hypotheses while the non-immediate ones remain premises

to be proved later. By default — and in our example above

— all arguments which cannot be inferred are considered

immediate.

In the example, the left ∧-elimination rule is again applic-

able to the subgoals it generated. This is a general issue with

forward rules: when a rule applies to a set of hypotheses ®ℎ,
the subgoals still contain ®ℎ, so the rule is still applicable. To

prevent this sort of looping, whenever a forward rule tries
to add a hypothesis ℎ : 𝑇 , we check whether any forward
rule that was applied earlier on this branch of the search tree

already added a hypothesis ℎ′
: 𝑇 . If so, the new hypothesis

is not added and the rule fails.

There is also a variant of forward, destruct, which re-

moves any hypotheses that matched the immediate argu-

ments. If we use left ∧-elimination as a destruct rule, it

reduces the goal ℎ : 𝐴 ∧ 𝐵 ⊢ 𝑇 to ℎ : 𝐴 ⊢ 𝑇 . Since the

matched hypotheses are removed, destruct rules do not

generally apply to their own subgoals, so there is no need to

prevent cycles.

3.1.4 cases. Given an inductive family 𝐼 with arguments

(parameters and indices) ®𝑥 : ®𝑇 , the cases builder creates a
rule which performs case analysis on any hypothesis ℎ : 𝐼 ®𝑥 .
For example, the cases rule for Or, the inductive type behind
the notation 𝑃 ∨ 𝑄 , reduces the goal ℎ : 𝑃 ∨ 𝑄 ⊢ 𝑇 to two

subgoals ℎ : 𝑃 ⊢ 𝑇 and ℎ : 𝑄 ⊢ 𝑇 . To perform this case

analysis, we use Lean’s built-in cases tactic, which uses the

standard elimination principle for 𝐼 .

To perform case analysis according to a non-standard

elimination principle, we can use the view pattern [15]: define
a data type 𝐽 whose constructors correspond to the desired

cases, register a function 𝑓 : 𝐼 → 𝐽 as a destruct rule and
register a cases rule for 𝐽 . With this setup, the goal ℎ : 𝐼 ⊢ 𝑇
is first reduced to ℎ : 𝐽 ⊢ 𝑇 and then ℎ is split into the desired

cases.

Like forward rules, cases rules for recursive types, such

as lists or trees, can loop. If we register a cases rule for the

List type, the goal 𝑙 : List 𝛼 ⊢ 𝑃 𝑙 is split into two goals

⊢ 𝑃 [] and 𝑎 : 𝛼, 𝑙 : List 𝛼 ⊢ 𝑃 (𝑎 :: 𝑙) and the cases rule is
again applicable to the second goal.

One solution for this problem is to register the cases rule
as an unsafe rule with very low priority. Aesop then uses it

only as a last resort. This method is simple and effective, but

it is problematic if Aesop does not find a proof: once there

are no other rules left to apply, the cases rule is, as before,
applied ad infinitum. This sort of cases rule is therefore

only suitable as an ad hoc rule.

To support global cases rules as well, we provide a variant
of the cases builder which avoids looping in some common

cases. Consider the inductive predicate All P xs, which
encodes the proposition that all elements of the list xs satisfy
the predicate P:

inductive All (P : α → Prop) : List α → Prop
| nil : All P []
| cons : P x → All P xs → All P (x :: xs)

When a goal contains a hypothesis All P (x :: xs), we
almost alwayswant to perform a case split on this hypothesis,

leaving us with two simpler hypotheses P x and All P xs.
Crucially, neither of these hypotheses has the same form

as the initial one, so there is no infinite regress. To take

advantage of this insight, Aesop allows users to annotate a

cases rule with a pattern which restricts the hypotheses to

which the rule is applicable. In our example, we would use

the pattern All _ (_ :: _) to ensure that an All hypothesis
is only split if it refers to a non-empty list. Multiple patterns

can also be given; the rule is then applied if at least one of

the patterns matches a hypothesis.

5
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We also considered a third solution to the infinite regress

issue: we could stipulate that once a cases rule has been

applied to a hypothesis, it cannot be applied again to the

descendants of that hypothesis; or, more generally, that it can

only be applied to the first 𝑛 descendants. The vast majority

of proofs should still work for, say, 𝑛 = 3. Unfortunately

the restriction is somewhat tricky to implement since Lean

does not provide a reliable way to associate metadata with a

hypothesis, but we want to support this in the future.

3.1.5 tactic. The last and most fundamental rule builder,

tactic, allows users to register any tactic as a rule. The tactic
can generate arbitrary subgoals (justified by a proof term

that is later checked by Lean’s kernel). We only require that

tactic rules either change the goal or fail, so they cannot

be no-ops.

3.2 Simplifier Integration
Lean’s simplifier, which performs rewriting with a user-

provided set of conditional rewrite rules, is used heavily in

all big Lean projects. In particular, mathlib [4], a large library

of formalised mathematics which contains most Lean code

written to date, defines an extensive set of simplifier rules.

To make Aesop practical, we should leverage this existing

automation.

To that end, we integrate simplification into the normalisa-

tion process, adding a built-in normalisation rule which runs

the simplifier on the entire goal (target type and hypotheses).

This invocation of the simplifier uses the default global set of

rewrite rules, plus a separate Aesop-specific rule set. Aesop

users can add rules to this set by using a special simp rule
builder.

An important detail of the simplifier integration concerns

how we use local hypotheses. Lean’s simplifier can be con-

figured to use them in two ways. First, local equations can be

used as rewrite rules, transforming the goal ℎ : 𝑥 = 𝑦 ⊢ 𝑃 𝑥
into ℎ : 𝑥 = 𝑦 ⊢ 𝑃 𝑦. This can be dangerous since local equa-

tions are not necessarily oriented in a way that works well

with other rules. For example, a rule that proves 𝑃 𝑥 may not

fire any more. Worse, a rogue equation can easily make the

simplifier loop.

Second, local hypotheses which are propositions (but not

equations) can be rewritten to truth values, transforming the

goalℎ1 : 𝑃, ℎ2 : ¬𝑄 ⊢ 𝑃∨𝑄 first into . . . ⊢ ⊤∨⊥ and then, via

a global rewrite rule, into . . . ⊢ ⊤. This functionality allows

the simplifier to perform some propositional reasoning. In

particular, conditional rewrite rules such as 𝑃 → 𝑥 = 𝑦 are,

by default, used only if the antecedent 𝑃 simplifies to ⊤.
In practice we have found that, despite the danger of re-

writing with local equations, letting the simplifier use local

hypotheses substantially increases Aesop’s utility. We there-

fore enable this behaviour by default, but users can disable

it for specific Aesop invocations.

3.3 Rule Indexing
So far we have been pretending that when a goal is expan-

ded, we run all registered Aesop rules in order of priority.

But Aesop is intended to be used with a large rule set, so

this naive approach would be prohibitively slow. We there-

fore introduce a rule index which, given a goal 𝐺 , efficiently

determines a small subset of rules that may apply to 𝐺 .

The index offers several indexing schemes. An indexing

scheme determines, given a rule and a goal, whether the rule

is potentially applicable to the goal. We currently implement

three schemes:

• Target: the rule specifies a pattern expression𝑇 , which

may contain holes. It is considered potentially applic-

able when the goal has the form Γ ⊢ 𝑈 and 𝑈 unifies

with 𝑇 . We use this scheme for apply rules.
• Hypothesis: the rule again specifies a pattern expres-

sion𝑇 . It is considered potentially applicable when the

goal has the form Γ, ℎ : 𝑈 , Δ ⊢ 𝑉 and 𝑈 unifies with

𝑇 . We use this scheme for cases and forward rules.

For forward rules, we take as the pattern 𝑇 the last

immediate argument of the rule, since later arguments

are often more specific than earlier ones.

• Disjunction: the rule specifies a list of indexing schemes.

It is considered potentially applicable when any of the

schemes match the goal. We use disjunctive index-

ing for constructors rules (one by-target scheme for

each constructor) and for cases rules with multiple

patterns (one by-hypothesis scheme for each pattern).

The first two schemes are implemented by one discrim-

ination tree each. A discrimination tree is a trie-like data

structure that maps expressions 𝑇 to arbitrary data (here:

rules) and enables efficient retrieval of all values in the map

whose key 𝑇 may unify with a query expression 𝑈 [16]. (In

Lean 4, discrimination trees are also used to index typeclass

instances and simplifier lemmas.) For the by-target scheme,

we query the discrimination tree with the goal’s target. For

the by-hypothesis scheme, we query the discrimination tree

once per hypothesis. The disjunction scheme is implemented

by inserting the rule into the relevant discrimination trees

multiple times with different keys.

Most rule builders have a natural indexing scheme. The

exception is the tactic builder, which wraps arbitrary tac-

tics. For tactic rules, users can specify a suitable indexing

scheme themselves, if there is one.

When an indexed rule matches a goal, we communicate

to the rule the set of match locations. Each match location

is either the goal’s target or a specific hypothesis. Using the

match locations, a cases rule, for example, does not need

to scan the hypotheses of the goal to find those of the right

type. Instead, it can immediately focus on the hypotheses

that were matched by its indexing scheme.

Like other Lean proof methods, notably the simplifier,

our indexing schemes perform unification up to reducible
6
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computation. Each Lean definition is annotated with one

of several transparency modes, which govern how eagerly

the definition is unfolded during unification. Most defini-

tions have default transparency and are not unfolded by

the unification methods used by automation tactics; only

those with reducible transparency are. Aesop’s indexing

follows this scheme. This, along with a convention that only

non-recursive definitions are tagged as reducible, ensures
that discrimination tree indexing does not miss any possible

matches (with rare exceptions), but it also weakens certain

rules. For example, a rule which proves the goal a :: as =
b :: bs could also prove [a] ++ as = [b] ++ bs since

the two goals unify once we unfold the list concatenation

operator ++. But ++ has default transparency, so our index

does not unfold it and the rule is never tried on the second

goal. To compensate, we could register a simplification rule

which normalises [a] ++ as to a :: as.

3.4 Default Rules
Aesop’s default rules perform uncontroversial reasoning

steps, mostly pertaining to the logical connectives. Hypo-

theses ℎ : 𝑃 ∧𝑄 are eliminated during normalisation, yield-

ing separate hypotheses ℎ1 : 𝑃 and ℎ2 : 𝑄 , and similar for

products 𝑃 × 𝑄 . Goals of the form Γ ⊢ 𝑃 ∧ 𝑄 are reduced

to Γ ⊢ 𝑃 and Γ ⊢ 𝑄 by registering ∧-introduction as a low-

priority safe rule. For sum-like types such as disjunction, the

respective elimination rule, which splits the goal into two

subgoals, is safe with low priority. The respective introduc-

tion rules, which select one branch of the sum, are unsafe

with 50% success probability.

Universally quantified goals Γ ⊢ ∀®𝑥 : ®𝑇, 𝑃 ®𝑥 are normal-

ised to Γ, ®𝑥 : ®𝑇 ⊢ 𝑃 𝑥 . When a goal with target 𝑃 ®𝑥 contains

a hypothesis ℎ : ∀®𝑦, 𝑃 ®𝑦, ℎ is applied as an unsafe rule. We

give this rule 75% success probability, assuming that when

a local hypothesis can be applied, it is usually a good idea

to do so. In the special case where ℎ has no premises, it is

applied safely and proves the goal.

Existentially quantified hypotheses are split eagerly. For

goals with an existentially quantified target, we register ∃-
introduction, which creates a metavariable for the witness,

as an unsafe rule. (See the next section for details on how

we handle metavariables during the search.) It is important

that this rule is unsafe because the goal’s context determ-

ines which hypotheses can be used in the assignment of the

witness metavariable. Thus, if we create this metavariable

too eagerly, hypotheses which are added afterwards, e.g. by

an unsafe cases rule, cannot be used in the metavariable’s

assignment.

Goals whose target is an equation 𝑡 = 𝑢 are proved by re-

flexivity if 𝑡 and𝑢 are already definitionally equal. Equational

hypotheses ℎ : 𝑡 = 𝑢 are by default rewritten left-to-right

during normalisation, as described in Sec. 3.2. In the spe-

cial case where 𝑡 is a local hypothesis, we substitute 𝑢 for 𝑡

everywhere in the goal and remove both 𝑡 and the equation

ℎ. This is safe since 𝑡 , having been removed from the goal,

can never appear in a subgoal again, so the equation ℎ has

become superfluous. Symmetrically, if𝑢 is a local hypothesis,

we substitute 𝑡 for 𝑢 and remove 𝑢 and ℎ.

Goals of the form Γ ⊢ 𝑃 ↔ 𝑄 are split into subgoals

Γ ⊢ 𝑃 → 𝑄 and Γ ⊢ 𝑄 → 𝑃 . Hypotheses of type 𝑃 ↔ 𝑄 are

treated like equalities 𝑃 = 𝑄 by appealing to propositional

extensionality, an axiom which Lean uses pervasively.

The only default rule which does not pertain to logical

connectives (apart from some rules for technicalities) is a low-

priority safe case-splitting rule. If a goal’s target contains an

expression of the form if t then ... else ... or match t
with ..., then this rule performs a case split on 𝑡 , producing

a simpler goal for each possible case. A similar rule applies to

hypotheses containing if or match expressions, with even

lower priority.

Designating so many default rules as safe can lead to

unintuitive results. For example, as mentioned in Sec. 2.4,

splitting a goal with target 𝑃 ∧𝑄 into goals with targets 𝑃

and 𝑄 is unsafe if the rule set contains an unsafe rule which

proves 𝑃 ∧𝑄 , but not rules which prove 𝑃 and 𝑄 . However,

we believe it would be worse to make these rules unsafe,

both for performance and because the printing of safe goals,

which is an important debugging aid, becomes less useful if

our safe rules are overly conservative.

4 Best-First Proof Search with
Metavariables

Wenow extend the search algorithm to support goals contain-

ing metavariables. A metavariable (sometimes called schem-

atic variable, existential variable or just free variable) is an

expression which represents a typed term to be determined

later. For instance, the goal ?m > 0 ∧ ?m < 3, where ?m is a

metavariable of type N, can be proved if ?m is assigned the

value 1 (?m B 1) or if ?m is assigned the value 2.

In interactive proofs, metavariables are created when we

use a tactic without specifying all relevant information. A

typical example is ∃-introduction, which reduces a goal

∃𝑤, 𝑃 𝑤 to 𝑃 ?w, leaving the witness ?w to be determined

later. Of course, we can also specify the witness up front,

but using a metavariable can be convenient: perhaps we can

reduce 𝑃 ?w to ?w = 0, in which case we can appeal to the

reflexivity of equality to prove the goal, assigning ?w B 0

as a side-effect.

Mirroring the interactive use of metavariables, Aesop al-

lows rules like ∃-introduction to create and assign metava-

riables. This way of handling existential quantification is

obviously incomplete since only witness terms induced by

a subsequent rule application are considered. But it is also

cheap, reasonably effective and familiar to users from their

interactive proofs.

7
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Another important class of rules which create metavari-

ables are transitivity rules, which reduce a goal 𝑥 ≤ 𝑧 to

subgoals 𝑥 ≤ ?y and ?y ≤ 𝑧. These rules illustrate the main

challenge of dealing with metavariables: they couple goals.

A metavariable represents the same term everywhere it ap-

pears. So when we apply, say, reflexivity to the first subgoal

𝑥 ≤ ?y, we assign ?y B 𝑥 as a side-effect and the second

subgoal becomes 𝑥 ≤ 𝑧. How we prove the first subgoal

now determines how, and indeed whether, we can prove the

second.

This is a problem because our search procedure assumes

that goals are independent. When we apply the reflexivity

rule to 𝑥 ≤ ?y, we do not intend to commit to the resulting

assignment ?y B 𝑥 for the remainder of the search. We may,

after all, have an assumption 𝑥 ≤ 𝑎 in the context which

induces another instance of the second subgoal: 𝑎 ≤ 𝑧 with

?y B 𝑎. And since we are doing best-first search, we may

visit the second subgoal first and apply a rule which assigns

?y B 𝑏, changing the first subgoal to 𝑥 ≤ 𝑏. Our search

procedure should consider all these possibilities.

If we were to use a search strategy based on backtracking,

such as depth-first search, this would be easy. We would

merely have to ensure that when a rule application is back-

tracked, any metavariable assignments it has performed are

erased. But for best- or breadth-first search, all assignments

must be considered in parallel. So for the above example,

the search tree must reflect the fact that we may prove any

of the sets of goals {𝑥 ≤ 𝑥, 𝑥 ≤ 𝑧}, {𝑥 ≤ 𝑎, 𝑎 ≤ 𝑧} and

{𝑥 ≤ 𝑏, 𝑏 ≤ 𝑧}. In the remainder of this section, we present

an extension of our search algorithm which achieves just

that.

4.1 Overview
To see the core issue with metavariables, suppose we have

a rapp 𝑅 with subgoals 𝐺 [?x] and 𝐻 [?x] that depend on ?𝑥 .

We say that𝐺 and 𝐻 are m-coupled (‘metavariable-coupled’)

since they share a metavariable ?x such that if𝐺 is proved for

some assignment ?x B 𝑎, then we must also prove 𝐻 [?x B
𝑎] (i.e.𝐻 with 𝑎 substituted for ?x) to get a proof of the parent
rapp 𝑅. We can view 𝐻 [?x B 𝑎] as a “virtual subgoal” of the
rule which proves 𝐺 .

Our solution for this issue is simply to make the virtual

subgoal an actual subgoal: when a rule 𝑆 is applied to 𝐺 and

assigns ?x B 𝑎, then 𝐻 [?x B 𝑎] is added as an additional

subgoal of the 𝑆 rapp. We call this additional subgoal an m-
copy of 𝐻 . Symmetrically, when a rule 𝑇 is applied to 𝐻 and

assigns ?x B 𝑏, then 𝐺 [?x B 𝑏] is added as an additional

subgoal of 𝑇 .

More generally, it is not only the siblings of 𝐺 which may

need copying. Suppose we first apply a rule to𝐺 which does

not interact with ?x and produces a goal 𝐺 ′[?x]. We then

apply𝑅′
to𝐺 ′

, assigning ?x B 𝑎. Then𝐻 [?x B 𝑎] still needs
to be copied even though it is not a sibling of𝐺 ′

. Accordingly,

we expand our notion of m-coupled goals. Let 𝐺1, . . . ,𝐺𝑛 be

𝑅

𝐺 [?x]

𝑅1

𝐺 ′[?x]

𝑅′
: ?x B 𝑎

. . . 𝐻 [?x B 𝑎]

𝐻 [?x]

Figure 1. Copying of m-coupled nodes

the path from 𝐺 ′
(so 𝐺1 = 𝐺 ′

) towards the root of the tree

such that 𝐺𝑛 is the first goal in which ?x appears. Each goal

𝐼 which depends on ?x and which is a sibling of a goal𝐺𝑖 on

the path is m-coupled to 𝐺 ′
and is therefore copied.

Fig. 1 visualises this example, showing the incomplete

search tree with root 𝑅. Here and in the next figure, rapp

nodes are displayed as rectangles and are annotated with the

metavariables they assign. Goal nodes are annotated with the

metavariables they depend on, including the metavariables’

assignments. Dashed arrows point from each copied goal to

the goal it was copied from.

Oncewe perform copying, wemust alsomodify our notion

of when a goal is proved. Suppose we have three subgoals of

a rule 𝑅:𝐺1 [?x],𝐺2 [?x, ?y] and𝐺3 [?y]. If we prove𝐺3, then

?y must be assigned somewhere in this proof, say to ?y B 𝑎.

At this point, 𝐺2 is copied since it also depends on ?y, so
the proof of 𝐺3 contains a proof of the goal𝐺2 [?x, ?y B 𝑎].
This proof, in turn, must assign ?x, say to ?x B 𝑏, at which

point 𝐺1 is copied, so the proof of 𝐺3 also contains a proof

of 𝐺1 [?x B 𝑏]. In general, any goal that is m-coupled to

𝐺3 must already be included in a proof of 𝐺3. To prove 𝑅,

therefore, it suffices to prove 𝐺3 (plus any other subgoals of

𝑅 that are not m-coupled to 𝐺3).

Fig. 2 visualises this example. Proved nodes are underlined.

The dotted boxes around goals will become relevant shortly.

We have added an additional subgoal of 𝑅, 𝐺4, which is not

m-coupled to𝐺3 and therefore needs to be proved separately.

To keep the figure simple, each goal is proved by a single

rule application with one subgoal, but in general, there could

be an entire subtree between, say, 𝐺3 and 𝑅1. Moreover, the

figure shows a proof attempt in which we happen to apply

exactly those rules which lead to a proof. A less fortunate at-

tempt would explore subtrees below the various goals before

it finds the closing rapps 𝑅3 and 𝑅4.

Our modified definition of when a goal is proved relies on

a crucial assumption: when we apply a rule 𝑅 to a goal𝐺 [?x],
then either 𝑅 must assign ?x or at least one of the subgoals

8
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𝑅

𝐺1 [?x] 𝐺2 [?x, ?y] 𝐺3 [?y]

𝑅1 : ?y B 𝑎

𝐺2 [?x, ?y B 𝑎]

𝑅2 : ?x B 𝑏

𝐺1 [?x B 𝑏]

𝑅3

𝐺4 [?z]

𝑅4 : ?z B 𝑐

Figure 2. Proved nodes with copying

generated by 𝑅 must also contain ?x. Otherwise, we say that

?x has been dropped. If we were to allow dropped metavari-

ables, a proof of 𝐺 [?x] would not necessarily have to assign

?x and an m-coupled sibling 𝐻 [?x] would not necessarily

be proved. However, completely disallowing dropped meta-

variables turns out to be too strict for some applications, so

we revisit this restriction in Sec. 4.6.

4.2 Search Tree
To support metavariables, we first augment the search tree

to track some metavariable-related information. These data

could also be computed on demand; we only cache them for

efficiency.

In each goal node, we store the set of metavariables which

the goal depends on. These are the metavariables which oc-

cur in the goal’s hypotheses and in its target type.We assume

for simplicity that assigned metavariables are immediately

substituted everywhere, so only unassigned metavariables

can occur in a goal. Additionally, the metavariables which

occur in the goal may in turn depend on other metavariables

since the type or context of a metavariable may contain other

metavariables. We collect these recursively. The recursion

terminates since cyclic dependencies between metavariables

are not allowed. Obtaining the metavariables which occur in

an expression is cheap since Lean optimises the common case

in which an expression does not contain any metavariables.

In each rapp node, we store two additional pieces of in-

formation. First, we store the metavariables created by the

rule application, which are those metavariables which the

reported subgoals depend on and which the initial goal does

not depend on. Second, we store the metavariables assigned

by the rule application, which are those metavariables which

the initial goal depends on and which are assigned after the

rule has been run. We thus assume that rules do not assign

metavariables which are not reachable from the initial goal,

which is true for all (bug-free) Lean tactics.

We also need to keep track of which goals are m-coupled.

This requires a more substantial augmentation of the search

tree: we partition each rapp’s set of subgoals {𝐺1, . . . ,𝐺𝑛}
into metavariable clusters, which are, informally, sets of tran-

sitively m-coupled sibling goals. For example, suppose we

have subgoals 𝐺1 [?x], 𝐺2 [?x, ?y], 𝐺3 [?y] and 𝐺4 [?z] as in
Fig. 2. Then we partition these subgoals into metavariable

clusters {𝐺1,𝐺2,𝐺3} and {𝐺4}. Note that 𝐺1 and 𝐺3 do not

have a metavariable in common, but they are still transitively

m-coupled via 𝐺2. In the figure, metavariable clusters are in-

dicated by dotted boxes around sets of goals, but all clusters

except for one are trivial, containing only one goal each.

Formally, for two goals𝐺 and𝐻 we write𝐺 ∼ 𝐻 if there is

a metavariable on which both𝐺 and 𝐻 depend. We define ≈
as the transitive closure of ∼. Since ∼ is already reflexive and

symmetric, ≈ is an equivalence relation. The metavariable

clusters of a rapp are the equivalence classes of the rapp’s

subgoals with respect to ≈.
We can view metavariable clusters as a third type of node

in the tree. The children of a rapp are then metavariable

clusters; the children of a metavariable cluster are the goals

contained in it; and the children of a goal are (still) rapps.

This view leads to a natural generalisation of the node states:

• proved: as before, a goal node is proved if at least one
of its child rapps is proved; a rapp node is proved if all
its children are proved. But the children of a rapp are

now metavariable clusters, and a metavariable cluster

is proved if at least one of its goals is proved. This is
motivated by the observation we made above: if we

have a metavariable cluster with goals {𝐺1, . . . ,𝐺𝑛}
and we prove some𝐺𝑖 , then all the𝐺 𝑗 with 𝑗 ≠ 𝑖 must

have been proved as part of the proof of 𝐺𝑖 .

• stuck: as before, a goal node is stuck if all its child
rapps are stuck and there are no more rules which

could be applied to it; a rapp node is stuck if at least
one of its children is stuck. A metavariable cluster is

stuck if all its goals are stuck. This is because even

if a goal 𝐺 [?x] is stuck, as long as some other goal

𝐻 in the same metavariable cluster is non-stuck, it is

still possible that the proof of 𝐻 will discover a new

assignment ?x B 𝑎 and we can prove 𝐺 [?x B 𝑎].
• unknown: as before, a node is unknown if it is neither

proved nor stuck.

The definition of irrelevance also remains unchanged: a node

(which can now also be a metavariable cluster) is irrelevant

if any of its ancestors, including the node itself, is proved or

stuck.

When a search tree contains no metavariables, each goal is

only m-coupled to itself, so there is one metavariable cluster

per goal. The metavariable-free version of our algorithm

9
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from Sec. 2 then emerges as a special case of themetavariable-

encumbered one.

4.3 Copying
The search procedure with metavariables is largely the same

as without metavariables. The only change is that when we

add a rapp which assigns a metavariable, we must copy the

m-coupled goals.

To see how, suppose we are adding a rapp 𝑅 with parent

goal 𝐺 [?x1, . . . , ?x𝑛, ?®𝑦] such that 𝑅 assigns ?x𝑖 B 𝑎𝑖 for

1 ≤ 𝑖 ≤ 𝑛. Aesop then walks the path from 𝐺 up the tree

towards the root goal, stopping at the topmost rapp node

𝑅𝑚 that creates any of the metavariables ?x𝑖 . (Thus the ?x𝑖
can only appear in the subtree below 𝑅𝑚 .) Let this path be

𝐺1, 𝑅1,𝐺2, 𝑅2, . . . ,𝐺𝑚, 𝑅𝑚 , where 𝐺1 = 𝐺 and for each 𝑖 , 𝑅𝑖
is the parent rapp of 𝐺𝑖 and 𝐺𝑖+1 is the parent goal of 𝑅𝑖 .

Aesop then copies every sibling 𝐻 of the 𝐺𝑖 which depends

on any of the ?x 𝑗 , adding 𝐻 [?x1 B 𝑎1, . . . , ?x𝑛 B 𝑎𝑛] as an
additional subgoal of 𝑅.

However, there are two special cases in which it is not

useful to copy a sibling goal 𝐻 . First, 𝐻 may be a copy of

one of the 𝐺𝑖 on the path. This means we are already in the

subtree that will serve as a proof of𝐺𝑖 , so adding 𝐻 as a sub-

goal would be pointless. Second, we may discover multiple

goals 𝐻1, . . . , 𝐻𝑘 which are copies of the same original goal.

In this case, we only need to copy one of them.

Note that we copy only the sibling goals themselves and

not their subtrees. This means that any rules which were

applied to the sibling goals must be re-applied to their copies.

In general, this is necessary because the copied goals have

different types and hypotheses (on account of the metava-

riable substitution we applied to them), so re-applying the

rules may yield different results. But it is still somewhat

inefficient. We discuss a possible solution to this issue in

Sec. 4.7.

4.4 Interaction with Safe Rules
Most safe rules become unsafe if they assign metavariables.

This applies even to such unassuming rules as proof by as-

sumption. Suppose we have goals ℎ1 : 𝛼, ℎ2 : 𝛽 ⊢ ?x and

⊢ 𝛽 → ?x. If we prove the first goal via ℎ1, the second

goal may well become unprovable. If we use ℎ2 instead, the

second goal is trivial. So proof by assumption does not pre-

serve provability in the presence of metavariables.

Accordingly, Aesop treats any safe rule that assigns ameta-

variable as unsafe. This means that when we expand a goal𝐺 ,

we first run the safe rules applicable to𝐺 , as usual. Whenever

one of these rules assigns at least one metavariable, we do

not add the rule to the search tree. Instead, we treat the rule

as failed but store its result (subgoals and some metadata)

in a list of postponed safe rapps. We then continue to apply

the remaining safe rules. If one of them succeeds without

assigning metavariables, we apply it directly and throw away

the postponed rapps. Otherwise — if all safe rules either fail

or assign metavariables — we apply the unsafe rules as usual,

but we also add the postponed rapps as unsafe rules with

success probability 90%. When Aesop selects a postponed

rapp to be applied as an unsafe rule, it does not re-execute

the rule but simply adds its stored result to the search tree.

In principle, one could imagine situations in which a safe

rule assigns metavariables in a safe manner and thus does

not need to become unsafe. But in practice, we have yet to

encounter such a situation.

4.5 Interaction with Normalisation Rules
For normalisation rules, we need to restrict metavariable

assignments even more than for safe rules. Since normali-

sation rules must also be safe, we have the same issue as

with safe rules. Additionally, normalisation rules are applied

in a fixpoint loop, so there is no natural way to postpone a

normalisation rule. So we simply forbid normalisation rules

from creating or assigning metavariables.

This restriction is, for the most part, unobtrusive in prac-

tice, with one unfortunate exception. Our implementation of

cases rules uses Lean’s built-in cases tactic to perform case

analysis. When a goal contains a metavariable, cases may

replace this metavariable with a new one, which to Aesop

looks as if an existing metavariable had been assigned and a

new one created. We have not found a reliable way to detect

this situation, so we currently do not allow cases normali-

sation rules (which could otherwise be used to, for example,

split a hypothesis ℎ : 𝐴 ∧ 𝐵 into ℎ1 : 𝐴 and ℎ2 : 𝐵).

4.6 Synthesis of Dropped Metavariables
Recall that when a rule 𝑅 is applied to a goal 𝐺 [?x], there
must be at least one subgoal of 𝑅 which depends on ?x. If
this is not the case, we say that ?x has been dropped, and so

far we have disallowed dropped metavariables.

However, this restriction turns out to be too harsh. One

application — Jesse Vogel’s Duck tool
3
, which aims to use

Aesop to find examples of structures with certain properties

in algebraic geometry — provided this trivial test goal: under

the assumption that the integers form a ring and that every

ring 𝑅 has a ring automorphism id : ∀𝑅 : Ring, RingHom𝑅 𝑅,
show

∃𝑅 : Ring, RingHom𝑅 𝑅.

To prove this goal, Aesop first applies ∃-introduction, ob-
taining the goal RingHom ?R ?R. It then tries to apply id,
which proves the goal without assigning ?R, so ?R is dropped.

Since this is forbidden, the application of id fails and the

goal cannot be proved.

To address this obvious deficiency, we must allow dropped

metavariables. But at the same time, we must take care not

to violate the conditions that led us to disallow them in the

first place:

3https://github.com/jessetvogel/duck
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• Dropped metavariables must be assigned eventually.

This is necessary in dependent type theory since the

type of a metavariable could be uninhabited. An un-

assigned metavariable of type 𝑇 corresponds to an

assumption that we can inhabit 𝑇 . (The situation is

different for logics in which all types are inhabited,

such as the logic of Isabelle/HOL.)

• When we prove a goal𝐺 [?x] and drop ?x in the pro-

cess, we must ensure that related goals containing ?x
are proved as well.

To address the first requirement, when a rule 𝑅 is applied

to a goal 𝐺 [?x] and drops ?x, we add an additional subgoal

to 𝑅 which corresponds to ?x. In our ring example, applying

id proves the goal RingHom ?R ?R, but since ?R : Ring is

dropped, we add an additional subgoal of type Ring, which
is then proved by assumption.

To address the second requirement, we modify the pro-

cedure for copying metavariable-related goals such that it

treats dropped metavariables as assigned for the purposes

of copying. So if, in our example, we had an m-coupled goal,

say RingHom ?R Z, then the id application would copy this

goal as an additional subgoal. Thus, the proof of the original

goal, RingHom ?R ?R, again contains proofs for all m-coupled

goals.

Importantly, whether a dropped metavariable appears in

the subgoals of a rapp — and therefore whether a subgoal

for it is added — is determined after copying. This ensures

that a subgoal for a metavariable ?x is only created once we

can no longer obtain an assignment from the proof of any

goal in this branch of the search tree. If this were not the

case, we could end up with a solution 𝑎 for the subgoal ?x
which is different from an assignment ?x B 𝑏 performed by

a later rapp.

4.7 Discussion
Our algorithm is conceptually attractive for two reasons.

First, it is a strict and fairly simple generalisation of the al-

gorithm without metavariables. Second, it is very general: it

works for any search strategy and makes almost no assump-

tions about how rules interact with metavariables. We only

require that rules limit their assignments to metavariables

appearing in the goals to which the rules are applied.

The downside of this generality is some inefficiency. In

particular, as mentioned in Sec. 4.3, our algorithm treats goals

which are m-copies of each other as entirely independent,

so a rule applied to one has no effect on the others. For an

example of how this leads to inefficiency, suppose the goal

ℎ : 𝑛 < ?x ⊢ 𝐴 appears in the search tree. Then, during

the search, we likely create a number of m-copies of this

goal with different instantiations for ?x. Now suppose we

have a rule 𝑅 : 𝐵 → 𝐴. When this rule is applied to one

m-copy of the goal, we could recognise that 𝑅 is independent

of the instantiation of ?x and therefore applies to every m-

copy. As it stands, our algorithm does not take advantage

of this optimisation opportunity. However, the optimisation

is also valid only for certain rules. A rule which searches

for contradictory hypotheses 𝑛 < 0 (where 𝑛 is a natural

number) is not independent of the instantiation of ?x and

therefore cannot be shared between m-copies of the goal.

We believe that despite its generality, our algorithm is as

complete as possible, in the following sense. Suppose we use

a fair search strategy, i.e. one which guarantees that every

rule will eventually be applied to every goal. Now take a goal

𝐺 that can be proved by applying a sequence of rules from

the rule set, creating and assigning arbitrary metavariables

in the process. Then, we conjecture, our algorithm will also

find a proof of𝐺 . Intuitively, this is because our algorithm

only adds to the search tree, so it is not possible to apply a

rule in such a way that another rule cannot be applied any

more. Thus, since we assume a fair search strategy, each rule

in the proving sequence of rules is applied eventually (unless

the goal to which it would be applied is already proved). We

plan to prove this conjecture in future work.

5 Case Studies
As evidence that Aesop provides a reasonable level of auto-

mation, we present two case studies: one in which we prove

a variety of basic theorems about lists and one in which we

formalise a simple automated theorem prover for intuition-

istic propositional logic. Both case studies are available in

the supplement to this paper.
4

Ideally, we would evaluate Aesop on a standardised bench-

mark such as the TPTP problem set [21]. But this is concep-

tually difficult: without an extensive rule set, Aesop is not

expected to provemany theorems, and with an extensive rule

set, we could game many benchmark problems by providing

just the right rules. Perhaps as a result, there is currently no

standard benchmark for white-box proof search tools.

5.1 Lists
As a first test of Aesop, we port some lemmas about lists

from Lean 3 to Lean 4. We consider a file from mathlib,

data/list/basic.lean. This file contains a large number

of lemmas about basic list functions such as length, append
and reverse, and about predicates such as subset and mem-

bership. We take the first 200 of these lemmas and port them

to Lean 4.

Of the 200 lemmas, we exclude 16whichmerely state defin-

itional equations. (Such lemmas are used to register defini-

tional equations with the simplifier.) For lemmas which ref-

erence notations or concepts that are not available in Lean 4,

we either add the necessary definitions or, in 11 cases, ex-

clude the lemma from our case study. Some of the remaining

173 lemmas are already proved in Lean 4, in which case we

4https://doi.org/10.5281/zenodo.7424818

11

https://doi.org/10.5281/zenodo.7424818


CPP ’23, January 16–17, 2023, Boston, MA, USA Jannis Limperg and Asta Halkjær From

re-prove them. If these lemmas are registered as global sim-

plifier rules, we remove them first; otherwise Aesop’s job

would be a bit too easy.

Whenever we prove a lemma which makes a good global

Aesop rule, we add the lemma to the global Aesop rule set.We

also add a small number of lemmas about other concepts (in-

jective/surjective/involutive functions and the Option type)

which could sensibly be included in a library-wide Aesop

rule set.

With this setup, Aesop proves 109 (63%) of the list lemmas

outright. If we manually perform induction where necessary

(which Aesop by design does not do), Aesop proves 163 (94%)

of the lemmas. Specifically, for lemmas which require induc-

tion, we either add one or more calls to the induction tactic
(after possibly unfolding some definitions and introducing

hypotheses) or we write the lemma as a match statement,

use a recursive call to prove the induction hypotheses and

let Aesop do the rest. The latter is the most ergonomic way

to perform functional induction in Lean.

Of the 10 lemmas Aesop cannot prove, 4 involve exist-

entially quantified statements with non-trivial witnesses,

e.g.

∀ (a : α) (l : List α), a ∈ l →
∃ (s t : List α), l = s ++ a :: t

Aesop’s quantifier instantiation method, which relies solely

on unification, is too weak to determine the proper witnesses

for each case of the induction. The other 6 unsolved lemmas

fail either because a lemma is missing from the library (2) or

because Aesop’s rule set misfires in specific situations (4).

Of the 163 lemmas Aesop (plus induction) can prove, 48

(29%) require local rules; the rest are solved using only global

rules. By far themost common local rule, with 25 occurrences,

is a low-priority unsafe rule which performs a case split on

hypotheses of type List. Since each such case split produces

another hypothesis of type List, this rule can loop, so it is

not suitable as a global rule. But for lemmas which require

such a case split, we can add the rule and due to its low

priority, Aesop applies it only as a last resort. This makes

sure that if a proof is found, it is found quickly.

Another notable local adjustment involves Aesop’s simpli-

fier integration. As we discussed in Sec. 3.2, Aesop by default

rewrites with equations in the local context. This can be

dangerous because such equations are not necessarily prop-

erly oriented. For example, a hypothesis of type 𝑛 = 𝑛 + 0

would, together with the global rule 𝑛 + 0 = 𝑛, send the

simplifier into a loop. In our case study, this happens two

times; in both cases, Aesop succeeds once we disallow the

use of hypotheses during simplification.

To get a broad idea of how fast Aesop is, we also ran a small

benchmark involving this case study. For the benchmark, we

prepared a version of the case study in which all lemmas

are proved by hand. The proofs are written in the runtime-

efficient style of mathlib (most proofs are translated from

Lean 3), meaning they involve no expensive tactics except

the simplifier, which moreover is always given the exact set

of lemmas it should simplify with. Thus, we believe that this

hand-written version of the case study has close to optimal

performance. We then compared the total time Lean takes to

typecheck the hand-written version and the Aesop version of

the case study, averaging over 10 runs each. On one particular

machine, the hand-written version took on average 2.48

seconds to typecheck (min = 2.46, max = 2.50, σ = 0.015)

whereas the Aesop version took 6.25 seconds (min = 6.17,

max = 6.32, σ = 0.045). This means delegating all proofs to

Aesop resulted in a slowdown of 2.53x. When run on other

machines, the benchmark yielded slowdowns of 2.59x and

2.60x.

It is perhaps not surprising that Aesop is fairly successful

in this case study: most of the lemmas we consider are very

simple. But automating trivial goals about basic data struc-

tures is still an important part of making interactive theorem

provers less onerous to use. And many lemmas which are

straightforward consequences of facts known to Lean would

not have had to be written if Aesop had been available at the

time.

5.2 Propositional Sequent Calculus Prover
As a second test of Aesop, we have programmed a small

prover for propositional logic [22] in Lean 4 and used Aesop

to verify the soundness and completeness of both the prover

and the sequent calculus proof system it is based on.

To that end, we first define the type Form of propositional

formulas. Given an interpretation i of propositional vari-

ables Φ, the predicate Val : Form Φ → Prop gives the

truth value of a formula. Aesop proves, after manual induc-

tion over Form, that if i is decidable, then so is Val.
Satisfiability of formulas extends to satisfiability of se-

quents: a sequent with premises Γ and conclusionsΔ is valid

if, whenever all premises are true, at least one conclusion

is true. Formally, All (Val i) Γ implies Any (Val i) Δ.
We saw All earlier; Any is similar but encodes the fact that

some element in the list satisfies the predicate. The cases
rule for Any makes good use of patterns: case analysis on

a hypothesis which matches the pattern Any _ [] is safe

since the hypothesis is contradictory; case analysis on a hy-

pothesis which matches Any _ (_ :: _) is unsafe but often
useful.

With the help of this cases rule, we prove some funda-

mental lemmas about All and Any, such as a weakening

lemma for All:

(∀ x, P x → Q x) → All P xs → All Q xs

After induction on the All premise, Aesop finishes the proof.

We use this weakening lemma to prove that all elements

of a list are members of that list: All (• ∈ xs) xs. The
application of weakening requires support for metavariables
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since P is unconstrained and becomes a metavariable. Sim-

ilarly, metavariables are crucial when proving existentially

quantified lemmas, e.g.

Any P xs ↔ ∃ a : α, P a ∧ a ∈ xs

The prover itself, Cal, attempts to prove a sequent by

breaking down connectives according to the classical se-

quent calculus rules and collecting lists of positive and neg-

ative propositional variables when they appear on either

side of the sequent. A branch of the proof terminates suc-

cessfully when the same variable occurs both positively and

negatively, corresponding to the usual Axiom rule. We use

Any (• ∈ ys) xs to check if two lists xs and ys share a

common element. The computational behaviour of Cal thus

depends on the decidability of Any, which is proved using

Aesop. We verify soundness and completeness of the prover

simultaneously, using induction on the call structure of Cal.
The main theorem states that Cal proves a sequent if and

only if the sequent is valid for all decidable interpretations.

Since the prover rearranges formulas, the proof relies on

the fact that All and Any respect list permutations, as en-

coded by an inductive predicate taken from the Agda stand-

ard library.
5
Here, Aesop significantly reduces our workload:

that permutations are symmetric, that they are preserved

by map and that All and Any respect permutations can be

proven automatically after we perform induction.

As a consequence of the soundness and completeness of

Cal, we additionally obtain soundness and completeness

of its underlying proof system, formulated as an inductive

predicate Proof Γ Δ. A key ingredient of the proof is this

weakening lemma:

Proof Γ ∆ → Proof Γ (δ :: ∆)

After induction on the premise, Aesop proves the lemma

automatically, apart from one case which requires an expli-

cit application of the induction hypothesis. This is because

two of the constructors of Proof allow us to apply arbitrary

permutations to the sequents, which Aesop’s metavariable

handling is too weak to find. These constructors also apply

to every goal, so it is important that Aesop is not limited to

depth-first search, which might get lost in infinite permuta-

tions.

6 Related Work
The closest relative of Aesop is Isabelle’s auto [18, 20]. Like

Aesop, it performs a tree-based search with integrated sim-

plification and it distinguishes between safe and unsafe rules.

Aesop adds a best-first strategy (auto is depth-first) and nor-
malisation as a separate phase. It also adds a number of rule

builders apart from auto’s intro, elim and destruct rules,

5https://github.com/agda/agda-stdlib/blob/
ebfb8814b4330b314da8fb9cae527e6a6fab01aa/src/Data/List/Relation/
Binary/Permutation/Propositional.agda

though some of these can be emulated with auxiliary Isabelle

tools.

More fundamentally, auto is used as a semi-black-box tool

in practice. It is essentially undocumented, so it is difficult

to understand the details of its search procedure, e.g. how

exactly the simplifier is invoked, how it integrates blast [19]
(a tableau prover) and how metavariables interact with safe

rules. Indeed, our conversations with experienced Isabelle

users indicate that they are unaware of these details and that

as a result, their interactions with auto are partly based on

trial and error, adding and removing rules until auto is able

to prove a goal.

Other semi-black-box proof tools include PVS’s grind [5]
and the ‘waterfalls’ of ACL2 [11] and its descendants. While

these tools are based on simple search algorithms and are

extensively documented, they use, at least in their default

configurations, a large number of proof methods (e.g. sev-

eral forms of simplification; decision procedures for certain

fragments of the logic; several methods for quantifier in-

stantiation) in a fixpoint loop surrounded by pre- and post-

processing steps. As a result, it again becomes somewhat

difficult for users to predict and adjust their behaviour.

Aesop, by contrast, attempts to remain firmly white-box

by limiting itself to a small number of simple concepts (essen-

tially: normalisation, safe and unsafe rules) with no opaque

heuristics and no pre- or post-processing. This should make

it possible to design predictable special-purpose rule sets

for specific domains. With larger rule sets, Aesop may also

become somewhat unpredictable, but at least its transpar-

ency should make it easier to debug unexpected failures

or performance issues. Of course, the downside of Aesop’s

simplicity is that it is considerably less powerful than, say,

grind; for example, it does not currently have any support

for arithmetic beyond that provided by Lean’s simplifier.

Even farther towards the white-box end of the scale lie

Coq’s auto and eauto. These tactics perform backtracking

depth-first search (up to some configurable depth limit) with

arbitrary rules, so they are essentially Aesop without safe

or normalisation rules and with a different search strategy.

Matita’s auto [1] augments eauto with a superposition cal-

culus for equational reasoning and provides a GUI which

allows users to inspect the search tree.

A rare white-box tool not based on tree search is Isabelle’s

auto2 [23], which uses a saturation algorithm instead. This

means that rules can be applied without backtracking, but

the proof procedure is also farther removed from interactive

proof and therefore perhaps less easy to customise.

There are also black-box tools based on tree search, no-

tably Coq’s sauto [6] and the Agsy tool [14] for Agda [17].

These tools use fairly strong default rules, some of which

could also be interesting for Aesop. But since they are push-

button tools, their rules are also quite opaque.

For Lean 3, mathlib [4] already contains some search tac-

tics which are currently being ported to Lean 4: continuity,
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measurability, tidy, tautology and finish. These tac-

tics perform essentially depth-first search with various rule

sets, so Aesop should supersede them. However, finish uses
e-matching and so makes better use of unoriented equations.

Our handling of metavariables is most closely related to

that of TH∃OREM∀ [12], which, like Aesop, uses an AND/OR

search tree. Variations of the TH∃OREM∀ algorithm are

also used for tableaux with metavariables (‘free variable

tableaux’) [9]. However, these algorithms are specific to first-

order logic and do not obviously generalise to our setting.

In particular, they require that rules behave uniformly for

different metavariable assignments.

7 Conclusion
We have presented Aesop, a white-box proof search tactic for

Lean. Starting with a straightforward tree search framework,

we have added features that increase the power of the search

while keeping its semantics simple and transparent: best-

first search with customisable prioritisation, which lets us

effectively use rules that are only occasionally useful or that

may loop; safe rules, which are useful both for performance

and for debugging; normalisation, to establish invariants

which other rules can rely on; and simplification, which

enables equational reasoning. Taken together, these features

should allow users to design effective and predictable rule

sets.

To support goals with metavariables, we have developed a

generic algorithm for tree-based search with metavariables.

The algorithm is independent of the search strategy and of

the underlying logic and is, we believe, as complete as the

given rule set allows.
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