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Abstract—The so-called block-term decomposition (BTD) ten-
sor model, especially in its rank-(Lr, Lr, 1) version, has been
recently receiving increasing attention due to its enhanced ability
of representing systems and signals that are composed of blocks
of rank higher than one, a scenario encountered in numerous and
diverse applications. Uniqueness conditions and fitting methods
have thus been thoroughly studied. Nevertheless, the challenging
problem of estimating the BTD model structure, namely the
number of block terms, R, and their individual ranks, Lr ,
has only recently started to attract significant attention, mainly
through regularization-based approaches which entail the need
to tune the regularization parameter(s). In this work, we build
on ideas of sparse Bayesian learning (SBL) and put forward a
fully automated Bayesian approach. Through a suitably crafted
multi-level hierarchical probabilistic model, which gives rise to
heavy-tailed prior distributions for the BTD factors, structured
sparsity is jointly imposed. Ranks are then estimated from the
numbers of blocks (R) and columns (Lr) of non-negligible
energy. Approximate posterior inference is implemented, within
the variational inference framework. The resulting iterative
algorithm completely avoids hyperparameter tuning, which is
a significant defect of regularization-based methods. Alternative
probabilistic models are also explored and the connections with
their regularization-based counterparts are brought to light with
the aid of the associated maximum a-posteriori (MAP) estimators.
We report simulation results with both synthetic and real-word
data, which demonstrate the merits of the proposed method in
terms of both rank estimation and model fitting as compared to
state-of-the-art relevant methods.

Index Terms—Automatic relevance determination (ARD),
Bayesian inference, block-term decomposition (BTD), hierarchi-
cal iterative reweighted least squares (HIRLS), rank, sparse
Bayesian learning (SBL), tensor, variational inference (VI)

I. INTRODUCTION

BLOCK-TERM DECOMPOSITION (BTD) was intro-
duced in [1] as a tensor model that combines the Canon-

ical Polyadic Decomposition (CPD) and the Tucker decompo-
sition (TD) [2], in the sense that it decomposes a tensor in a
sum of tensors (block terms) that have low multilinear rank
(not necessarily of rank one as in CPD). Hence a BTD can
be seen as a constrained TD, with its core tensor being block
diagonal (see [1, Fig. 2.3]). It can also be seen as a constrained
CPD having factors with (some) collinear columns [1]. In a
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Fig. 1. Rank-(Lr, Lr, 1) block-term decomposition.

way, BTD lies between the two extremes (in terms of core
tensor structure), CPD and TD, and it is useful to recall here
the related remark made in [1], namely that “the rank of
a higher-order tensor is actually a combination of the two
aspects: one should specify the number of blocks and their
size”. Accurately and efficiently estimating these numbers for
a given tensor, via a probabilistic approach that relaxes the
requirement for hyperparameters tuning, is the main subject
of this paper.

Although [1] introduced BTD as a sum of R rank-
(Lr,Mr, Nr) terms (r = 1, 2, . . . , R) in general, the special
case of rank-(Lr, Lr, 1) BTD has attracted a lot more of
attention, because of both its more frequent occurrence in a
wide range of applications and the existence of more concrete
and easier to check uniqueness conditions (cf. [3] for an
extensive review). This special yet very popular BTD model is
at the focus of the present work. Consider a 3rd-order tensor,
X ∈ CI×J×K . Then its rank-(Lr, Lr, 1) decomposition is
written as

X =

R∑
r=1

Er ◦ cr, (1)

where Er is an I × J matrix of rank Lr, cr is a nonzero
column K-vector and ◦ denotes outer product. Clearly, Er

can be written as a matrix product ArB
T
r with the matrices

Ar ∈ CI×Lr and Br ∈ CJ×Lr being of full column rank, Lr.
Eq. (1) can thus be re-written as

X =

R∑
r=1

(
ArB

T
r

)
◦ cr. (2)

A schematic representation of the rank-(Lr, Lr, 1) BTD is
given in Fig. 1. The rth term of this decomposition is a tensor
whose frontal slices are all scalar multiples (with the entries
of cr) of the low-rank matrix ArB

T
r . It should be apparent

from (2) and Fig. 1 that CPD results as a special case with all
Lr, r = 1, 2, . . . , R equal to 1.

In general, R and Lr, r = 1, 2, . . . , R are assumed a-priori
known (and it is commonly assumed that all Lr are all equal
to L, for simplicity). However, unless external information is
given (such as in a telecommunications [4] or a hyperspectral
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image unmixing application with given or estimated ground
truth [5]), there is no way to know these values beforehand.
Although overestimation of the ranks Lrs of the block terms
has been observed not to be harmful in some blind source
separation applications (e.g., [4]), this is not the case in gen-
eral [3]. Besides, in addition to increasing the computational
complexity, setting Lr too high may hinder interpretation of
the results through letting noise/artifact sources interfere with
the desired sources. This holds for R as well, whose choice
is known to be more crucial to the obtained performance as it
represents the number of “factors” that generate the data and
its over/under-estimation will lead to over/under-fitting, with
undesired consequences for the interpretability of the results
(cf. [3] for related references).

A. Prior art

It is known that computing the number of rank-1 terms in
a CPD model (i.e. the tensor rank) is NP-hard [6]. Model
selection for BTD is clearly even more challenging than in
CPD and TD models and has only recently started to be studied
(cf. [3] for an extensive review of heuristic approaches and
techniques). The most recent contribution of this kind can
be found in our work [3], where the latent factors of BTD
are recovered by solving a regularized minimization problem,
namely,

min
A,B,C

1

2

∥∥∥∥∥Y −
R∑
r=1

ArB
T
r ◦ cr

∥∥∥∥∥
2

F

+

λ

R∑
r=1

√√√√ L∑
l=1

√
‖ar,l‖22 + ‖br,l‖22 + η2 + ‖cr‖22 + η2, (3)

where R,L are over-estimates of the rank and block ranks of
the sought BTD model, ar,l,br,l, l = 1, 2, . . . , L are the lth
columns of Ar,Br, respectively and η2 is a small constant
used to ensure smoothness at zero. Note that (3) is composed
of the squared Frobenius norm of the error between the
data and its BTD representation and an appropriately chosen
regularization term whose minimization promotes structured
sparsity over the latent factors of the model. The rank, R, and
the block ranks, Lr, are then taken as the number of crs of
non-negligible magnitude and the numbers of non-negligible
columns of the corresponding blocks, respectively. Structured
sparsity is favored by the regularizer in a hierarchical, two-
level manner, which is tailored to the form of the BTD
model. Indeed, the inner sum of square roots is (excluding the
smoothing constant) the sum of the `2 norms of the columns
of
[

AT
r BT

r

]T
, for r = 1, 2, . . . , R. The well-known

column sparsity-promoting effect of this `1,2 norm leads the
superfluous columns of both matrices to be driven jointly to
zero, thus providing a “relaxed” way of penalizing the block
ranks of the BTD model. In an analogous manner, the outer
sum of the regularizer penalizes jointly the number of nonzero
columns of C along with the corresponding blocks ArB

>
r ,

which coincides with the number of block terms in the model.
The hierarchical alternating iterative reweighted least squares
algorithm, called BTD-HIRLS, proposed in [3] to solve the

above problem has demonstrated its competence in revealing
the true ranks and accurately computing the model parameters,
while enjoying computational efficiency and fast convergence.

Nevertheless, being a regularization-based method, BTD-
HIRLS faces the same challenge that all such methods have
to address, namely to appropriately tune the regularization
parameter so as to achieve the best possible performance.
Although a rough guideline for the parameter selection has
been given and utilized in [3] as a reference point for the
trial-and-error search, this is still only a rule of thumb, not
completely relieving the algorithm from the need to spend
resources on searching for the most appropriate regularization
parameter value.

B. The Bayesian way

One would thus prefer to be able to automatically (not
manually) select the value of the regularization parameter or,
more generally, discover the columns of the factor matrices
that should be kept, in an automatic, completely data-driven
manner. Such a possibility is provided by what is known as
sparse Bayesian leaning (SBL) [7], [8] following the automatic
relevance determination (ARD) approach, first conceived for
and applied in sparsifying the weights of a neural network [9].
Through this Bayesian perspective, the unknown parameters
of the problem are viewed as random quantities and are each
associated with a hyperparameter. Prior distributions suitably
assigned to each hyperparameter are conducive to automati-
cally determining the relevance of the associated parameters
at inference time.

In the so-called ARD prior, the parameters are independent
and zero-mean Gaussian if conditioned on the values of their
hyperparameters, which are represented by the corresponding
standard deviations. Hence if the hyperparameter is large
enough, the parameter is important whereas for a small
enough hyperparameter the corresponding parameter should
be suppressed, thus revealing the true complexity (rank) of
the model. As stated in [9], “the posterior distributions of
these hyperparameters will reflect which of these situations
is more probable, in light of the training data.” If a parameter
is relevant, this will influence the associated hyperparameter
distribution which in turn will make the parameter more im-
portant, in an alternating update cycle between the parameter
and hyperparameter posteriors.

ARD was first applied in automatic tensor rank learning on
multi-way data modeled via TD in [10]. The hyperparameters
(inverse powers of factor columns, also known as precisions)
were modeled with Gamma priors, giving rise to the so-called
Gauss-Gamma (GG) probabilistic model, where the marginal
posterior of the parameters turns out to be a Laplacian, with
its well-known sparsity-enforcing effect [8]. An analogous GG
model was adopted in [11] for addressing the corresponding
problem for incomplete tensors obeying a CPD model. A fully
Bayesian inference approach was taken, in contrast to the
maximum a-posteriori (MAP) estimation approach followed
in [10]. The method proposed in [11] performs approximate
variational inference (VI) [12], [13], in the sense that the poste-
rior densities are found as the closest (in the sense of minimum
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Kullback-Leibler (KL) divergence) to the true ones that meet
the mean-field assumption of statistical independence of all
parameters and hyperparameters. VI is known to be generally
faster converging than sampling techniques and better suited
to large datasets [13].

The method of [11] was later robustified to cope with
incomplete tensors with outliers [14]. An online version, for
tensors that may grow in time in all their modes and in
any order, was reported in [15]. Since [11], several works
on Bayesian tensor model selection and computation have
been reported for both CPD (cf. [16] and references therein)
and other tensor decomposition models including TD, tensor
trains (TT), tensor rings (TR), and t-SVD, among others (see,
e.g., [17]–[22]). In [23], a TT decomposition is employed to
compress a deep neural network (DNN) during its training.1

The TT ranks are automatically determined through a Bayesian
GG modeling approach which models the powers of the slices
of the TT cores by Gamma priors and couples consecutive
cores through the product of their associated hyperparameters.

The GG model is generalized in [17] for Bayesian TD
by replacing the Gamma hyperprior by an inverse Gamma
(IG). This results in a multivariate Laplace marginal prior
for the parameters, which also leads to a generalized inverse
Gaussian (GIG) for the posterior of the sparsity-inducing
precision hyperparameters. Similarly with [23], the core tensor
is indirectly coupled with the matrix factors by using the
product of these hyperparameters and the noise precision in the
core’s normal prior. A more recent generalization of the GG
model, this time for CPD rank learning, is developed in [16]
through a Gauss-GIG mixture that leads to a generalized
hyperbolic (GH) marginal prior for the CPD factors. GH is
known to be very flexible, including several other sparsity-
enforcing distributions as special cases [25, Table I]. The value
of this generalization is demonstrated by the fact that the
resulting VI method outperforms [11] for high-rank tensors
and/or low signal-to-noise ratio (SNR). It should be noted,
however, that the algorithm in [16] is developed on the basis
of a simplification of the GH distribution (cf. Section IV-
C), which effectively leads again to a (generalized) Laplacian
marginal prior.

C. Our contribution

In this paper, we also take a Bayesian approach, viewing the
unknowns as random variables and tackling the problem as one
of Bayesian modeling and inference [26]. The idea is again
(as in BTD-HIRLS) to impose column sparsity jointly on the
factors in a hierarchical, two-level manner. This is achieved
through a Bayesian hierarchy of priors with sparsity inducing
effect, that realize the coupling of the columns of C and the
Ar,Br blocks at the outer level and that between the columns
of corresponding blocks at the inner level. Our choices of

1In fact, the power of deep learning (in the form of a convolutional neural
network trained on (rank,tensor) pairs) was also exploited to learn to estimate
the rank of any given tensor in [24], with results that suggest an improvement
over Bayesian schemes like [11]. Of course, one should also consider, in
such a comparison, the well-known lack of interpretability of a trained deep
neural network vis-à-vis the relatively well-understood principles underlying
the purely Bayesian approach.

priors fall in the class of the so-called exponential power
distributions with GIG densities (EP-GIG) [27], which include
the GG of [11] and the Gauss-GIG and GH of [16], [17] as
special cases. Inspired by earlier work of ours [28] and in a
manner analogous with the way coupling is achieved in [17]
for TD, we realize the two-level coupling in the BTD model
via appropriately defined products of the associated hyperpa-
rameters and the noise precision in the conditional priors of the
factors. It is shown that, with our choices of priors, conjugacy
is maintained, which allows the development of a tractable
approximate inference, efficiently performed via VI [12], [13]
and leading to an iterative algorithm that comprises closed-
form updates and is fast converging. Overestimates of R and
the Lrs are decreased in the course of the algorithm. This is in
contrast to the rank incremental or greedy strategies followed
in, e.g., [20] and [29]. Thus, R is estimated as the number
of columns of C of non-negligible energy while the Lr’s are
found similarly from the columns of the Ar,Br blocks. The
Bayesian nature of our approach completely avoids the need
for parameter tuning. We also present alternative Bayesian
models that reflect simplified causal relationships among the
latent variables and thus can be used for lending an insight
into the incurred regularization effect through the lens of the
MAP-based optimization problems. Simulation results with
both synthetic and real data are reported, which demonstrate
the effectiveness of the proposed scheme in terms of both rank
estimation and model fitting and in comparison with BTD-
HIRLS. To the best of our knowledge, the present work is the
first of its kind for BTD model selection and computation.
A preliminary version can be found in [30]. In a shorter
version, this work was accepted for presentation in EUSIPCO-
2021 [31].

D. Organization of the paper

The rest of this paper is organized as follows. The adopted
notation is described in the following subsection. The prob-
lem is mathematically stated in Section II, where useful
expressions for the tensor unfoldings are also recalled. A
Bayesian model that implements the idea underlying BTD-
HIRLS is developed in Section III. The corresponding ap-
proximate inference method is presented and analyzed in
Section IV. Alternative probabilistic models, that are inspired
from deterministic criteria simpler than (3), are considered
in Section V along with the associated MAP estimators,
which clarify the connections with the regularization-based
approach. Section VI reports and discusses the simulation
results. Conclusions are drawn and future work plans are
outlined in Section VII.

E. Notation

Lower- and upper-case bold letters are used to denote
vectors and matrices, respectively. We denote matrix rows with
bold italic letters and we use roman letters for the matrix
columns. Higher-order tensors are denoted by upper-case bold
calligraphic letters. For a tensor X , X(n) stands for its mode-
n unfolding. ∗ stands for the Hadamard product and ⊗ for
the Kronecker product. The Khatri-Rao product is denoted
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by � in its general (partition-wise) version and by �c in
its column-wise version. ◦ denotes the outer product. The
superscript T stands for transposition. The identity matrix of
order N and the all ones M × N matrix are respectively
denoted by IN and 1M×N . 1N stands for 1N×1. diag(x) is
the diagonal matrix with the vector x on its main diagonal.
The Euclidean vector norm and the Frobenius tensor norm are
denoted by ‖ · ‖2 and ‖ · ‖F, respectively. tr{·} stands for
the trace operator. N (x|µ,Σ) denotes the normal probability
density function (pdf) for a random vector x with mean µ and
covariance Σ. x is omitted when it is easily understood from
the context. The generalized inverse Gaussian (GIG) pdf [32]

is given by GIG(x|p, a, b) =
(a/b)p/2exp[(p−1) log x−(ax+ b

x )/2]
2Kp(

√
ab)

,
where x > 0, p is real, and Kp(·) is the modified Bessel
function of the second kind with index p. The Gamma
pdf with shape ζ and rate τ results as a special case for
b → 0, p > 0 and is defined as G(x|ζ, τ) = τζ

Γ(ζ)x
ζ−1e−τx =

exp [(ζ − 1) log x− xτ − log Γ(ζ) + ζ log τ ], where Γ(·) is
the Gamma function, Γ(ζ) =

∫∞
0
xζ−1e−xdx. The in-

verse (or reciprocal) Gamma pdf also results from the
GIG one as a special case (for a → 0, p <
0) and, in its shape (ζ) and scale (τ ) parametrizar-
ion, is given by IG(x|ζ, τ) = τζ

Γ(ζ)x
−(ζ+1)e−τ/x =

exp
[
−(ζ + 1) log x− τ

x − log Γ(ζ) + ζ log τ
]
, for x > 0.

Sets are denoted by calligraphic letters. For a set M, |M|
is its cardinality. R and C are the fields of real and complex
numbers, respectively.

II. PROBLEM STATEMENT

Given the I × J ×K tensor

Y = X + σN , (4)

where X is given by (2) and N is a I × J × K noise
tensor of zero-mean unit variance i.i.d. Gaussian entries,
with σ being the noise standard deviation, we aim at es-
timating R, Lr, r = 1, 2, . . . , R and the factor matri-
ces Ar =

[
ar,1 ar,2 · · · ar,Lr

]
∈ CI×Lr , Br =[

br,1 br,2 · · · br,Lr
]
∈ CJ×Lr , C ∈ CK×R, subject

of course to the inherent ambiguity resulting from the fact that
only the product ArB

T
r can be uniquely identified modulo

a scaling (with a counter-scaling of cr) [1]. In terms of
its mode unfoldings X(1) ∈ CI×JK , X(2) ∈ CJ×IK and
X(3) ∈ CK×IJ , the tensor X can be written as [1]

XT
(1) = (B�C)AT , PAT, (5)

XT
(2) = (C�A)BT , QBT, (6)

XT
(3) =

[
(A1 �c B1)1L1

· · · (AR �c BR)1LR
]
CT

, SCT. (7)

In this paper, we follow a Bayesian approach to address
the above problem, starting from overestimates of R and Lr,
r = 1, 2, . . . , R.

III. THE PROPOSED BAYESIAN MODEL

Let R and the Lrs be overestimated to Rini and Lini, respec-
tively. We intend to place heavy-tailed distributions, known for

their sparsity-inducing effect, over the columns of Ars, Brs,
and C in a way that implicitly implements a regularization
analogous to that of the BTD-HIRLS method [3]. Namely,
the number of block terms and the ranks of Ars and Brs are
jointly penalized, while respecting the different role that these
matrices play in the BTD model. This results in the nulling of
all but R columns of C, and the nulling of all but Lr columns
of the corresponding “surviving” Ar,Br blocks. Following
the premise of the ARD framework and building upon ideas
of SBL [7], [26], the priors are assigned via a 3-level hierarchy
of conjugate prior distributions outlined next.

The likelihood function, which encodes the underlying
causal relation between the data and the latent variables, can
be written in three equivalent forms, with respect to (w.r.t.)
the three unfoldings of Y (cf. (5), (6), (7)), as follows:

p(YT
(1) | A,B,C, β) =

I∏
i=1

p(y(1)i | A,B,C, β)

=

I∏
i=1

N (y(1)i | Pai, β−1IJK), (8)

p(YT
(2) | A,B,C, β) =

J∏
j=1

p(y(2)i | A,B,C, β)

=

J∏
j=1

N (y(2)j | Qbj , β−1IIK), (9)

p(YT
(3) | A,B,C, β) =

K∏
k=1

p(y(3)k | A,B,C, β)

=

K∏
k=1

N (y(3)k | Sck, β−1IIJ), (10)

where β is the noise precision (i.e., the inverse of the noise
variance) and ai, bj , ck and y(1)i,y(2)j ,y(3)k are the ith,
jth, kth rows of A,B,C and Y(1), Y(2), Y(3), respectively,
in column form. The matrices A,B,C are considered as
unobserved variables and are assigned 3-level hierarchical
prior distributions. At the first level of the hierarchy, Gaussian
distributions are placed over A, B, and C, namely,

p(A | t, ζ, β) =

I∏
i=1

N (ai | 0, β−1T−1(Z−1 ⊗ ILini), (11)

p(B | t, ζ, β) =

J∏
j=1

N (bj | 0, β−1T−1(Z−1 ⊗ ILini
)), (12)

p(C | ζ, β) =

K∏
k=1

N (ck | 0, β−1Z−1), (13)

where T = diag(t) with t ∈ RLiniRini×1 and Z = diag(ζ),
ζ ∈ RRini×1. Note that the priors of A and B are zero-
mean with a common covariance matrix, which is essentially
formed by the product of the inverses of the diagonal precision
matrices Z and T. This particular selection is critical from an
implicit regularization perspective, since it induces identical
sparsity patterns over columns/sub-blocks of A and B. More
specifically, the use of products of precision hyperparameters
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in (11) and (12) serves our aim to impose at the same time
two types of sparsity (i.e., block and column sparsity) on
the factors A and B.2 In addition, by assigning the same
precision hyperparameters Z to the columns of C, we intend
to achieve simultaneous elimination of columns cr’s of C
and their corresponding blocks Ar’s and Br’s. In the next
section, we will see how the posterior covariance matrices
of the latent BTD factors will determine the redundant block
terms and columns of Ar,Brs after the inference process. We
can thus claim that, by combining Z and T as in the proposed
priors (11)–(13), we may realize the two components of the
regularizer in (3). Namely, sufficiently large values of ζr and
its respective tr,l’s will lead the rth column of C (cf. (13)) and
the entire set of the redundant Lini columns of sub-matrices
Ar,Br (cf. (11), (12)) to zero, acting like the outer sum of
square roots in (3). Moreover, the superfluous lth columns of
the “surviving” Ar,Br are jointly forced to be zero when the
value of tr,l becomes sufficiently large (cf. (11), (12)). Hence
T plays a role similar to that of the inner sum of square roots
of the regularizer in (3). Interestingly, Z and T are learned
from data, thus providing a compelling way to perform BTD
model selection.

At the second level of the hierarchy of priors, IG priors are
assigned over t and ζ,

p(t) =

Rini∏
r=1

Lini∏
l=1

IG
(
tr,l

∣∣∣∣I + J + 1

2
,
δr,l
2

)
, (14)

p(ζ) =

Rini∏
r=1

IG
(
ζr

∣∣∣∣ (I + J)Lini +K + 1

2
,
ρr
2

)
, (15)

leading to hierarchical Gaussian-IG priors for A,B and C.3

δr,l and ρr are the scale parameters of the distributions over tr,l
and ζr, respectively. To be able to also infer these parameters
from the data, we define a third hierarchical level that involves
Gamma prior distributions, namely,

p(δr,l) = G(δr,l | ψ, τ), (16)
p(ρr) = G(ρr | µ, ν), (17)

where ψ, τ, µ, ν take very small positive values rendering the
respective priors non-informative.

Note that these priors are conjugate w.r.t. the likelihood
functions and w.r.t. each other, which guarantees that the poste-
rior distributions will belong to the same class of distributions
as the priors [26]. Finally, we assign a Gamma distribution to
the noise precision β as follows:

p(β) = G(β | κ, θ). (18)

Similarly to the hyperparameters of the variables δ and ρ,
κ and θ are being set to small positive values rendering the
prior non-informative, in the sense that the influence of the

2An analogous idea, namely expressing the goal of sparsity enforcement
as product of precision hyperparameters, has also appeared independently in,
e.g., [17] in the context of low-rank Tucker decomposition, and in our earlier
work [28] on low-rank matrix factorization with one factor being sparse.

3Other members of the EP-GIG family (i.e., for other values of q in [27])
might be also considered to serve as the priors of the BTD factors. Such a
study, however, and the possible gains or losses from such choices, are beyond
the scope of this paper and can be included in future related work.

Fig. 2. The proposed Bayesian model.

prior upon conditioning on the data and the inference process
becomes negligible.

The adopted Bayesian model is depicted in Fig. 2 in the
form of a graphical model (with the meaning of δ,ρ being
obvious) that manifests the causal relationships of the involved
random variables. The proposed 3-level hierarchy of priors
leads to a heavy-tailed distribution over the columns A,B
and C, thus allowing for simultaneously learning the latent
factors of the BTD model and revealing their ranks. Note
that the joint marginal pdf of A,B,C resulting from the
hierarchical distributions assigned to the latent factors and
their hyperparameters cannot be analytically obtained due to
the complexity of the model. Namely, the interrelation of the
variables A,B,C with both t and ζ renders the derivation of
their joint pdf an infeasible task. In an effort to provide an
insight into the heavy-tailed properties of the distributions as-
signed over the columns of A,B and C, we give in Section V
the analytical expression of the joint marginal pdf for a similar
but slightly “relaxed” hierarchical Bayesian model. We would
like to stress again at this point that the model described in
this section allows us to follow a hyperparameter tuning-free
approach since all involved parameters are treated as random
variables. The way this is done is detailed next.

IV. APPROXIMATE POSTERIOR INFERENCE

Let Θ be the cell array which includes all unobserved
variables, that is, Θ , {A,B,C, t, ζ, β,ρ, δ}. The exact joint
posterior of the variables of the adopted Bayesian model is
given by

p(Θ | Y) =
p(Y ,Θ)∫
p(Y ,Θ)dΘ

. (19)

Due to the complexity of the model, the marginal distribu-
tion of Y in the denominator is computationally intractable.
Therefore, we follow a variational inference (VI) approach for
approximating (19). The idea is to approximate the posterior
by a distribution which is as close as possible to the exact
posterior in terms of the KL divergence [12]. VI allows
for an efficient approximate inference process even in vastly
complicated Bayesian models that involve high-dimensional
variables. It is usually coupled with mean-field approximation,
namely, the assumption that the posterior distribution can be
factorized w.r.t. the involved variables, implying statistical
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independence among them. In our case, the approximate
posterior q(Θ) of p(Θ | Y) is written in the form

q(Θ) = q(β)

I∏
i=1

q(ai)

J∏
j=1

q(bj)

K∏
k=1

q(ck)×

Rini∏
r=1

Lini∏
l=1

q(tr,l)q(δr,l)

Rini∏
r=1

q(ζr)q(ρr). (20)

Denoting the individual variables above by θi, the correspond-
ing VI-based posteriors are known to satisfy [12]

q(θi) =
exp(〈ln(p(Y ,Θ))〉i 6=j)∫
exp(〈ln(p(Y ,Θ))〉i6=jdθi

, (21)

where 〈·〉i 6=j denotes expectation w.r.t. all q(θj)s but q(θi).
To solve (21) a block coordinate ascent approach is taken,
employing the cyclic update rule, namely solving for q(θi)
given q(θj), j 6= i and continuing for all i in a cyclic manner.
More specifically, from (21) and using the expression for the
likelihood which is based on the mode-1 unfolding of Y
(cf. (8)) the posterior distribution of ai turns out to be

q(ai) = N (〈ai〉,Σa), (22)

with4

〈ai〉 = 〈β〉Σa〈P〉Ty(1)i, (23)

Σa = 〈β〉−1(〈PTP〉+ 〈T〉(〈Z〉 ⊗ ILini
))−1, (24)

where 〈·〉 denotes expectation w.r.t the posterior of the involved
variable. Now, by employing (9), the posterior of bj results in
an analogous manner as:

q(bj) = N (〈bj〉,Σb), (25)

with

〈bj〉 = 〈β〉Σb〈Q〉Ty(2)j (26)

Σb = 〈β〉−1(〈QTQ〉+ 〈T〉(〈Z〉 ⊗ ILini
))−1. (27)

Concluding the first level of the hierarchy, the posterior of ck
is

q(ck) = N (〈ck〉,Σc), (28)

with

〈ck〉 = 〈β〉Σc〈S〉Ty(3)k (29)

Σc = 〈β〉−1(〈STS〉+ 〈Z〉)−1. (30)

Next, the approximate posteriors of the variables belonging
to the second level of hierarchy are given. Following similar
arguments with [28], the posterior of tr,l turns out to be a GIG
pdf,

q(tr,l) = GIG
(
tr,l

∣∣∣∣−1

2
, 〈β〉〈ζr〉(〈aT

r,lar,l〉+ 〈bT
r,lbr,l〉), 〈δr,l〉

)
,

(31)

4All ai’s have the same covariance matrix, Σa, and similarly for the bj ’s
and the ck’s.

with mean

〈tr,l〉 =

√
〈δr,l〉

〈β〉〈ζr〉(〈aT
r,lar,l〉+ 〈bT

r,lbr,l〉)
, (32)

where 〈aT
r,lar,l〉 and 〈bT

r,lbr,l〉 are the ((r − 1)Lini + l, (r −
1)Lini + l) entries of

〈ATA〉 = 〈A〉T〈A〉+ IΣa (33)

and
〈BTB〉 = 〈B〉T〈B〉+ JΣb, (34)

respectively. Similarly, the approximate posterior of ζr is also
GIG, with 〈ζr〉 given by

〈ζr〉 =

√
〈ρr〉

〈β〉(
∑Lini

l=1 〈tr,l〉(〈aT
r,lar,l〉+ 〈bT

r,lbr,l〉) + 〈cT
r cr〉)

(35)

and 〈cT
r cr〉 denoting the (r, r) entry of

〈CTC〉 = 〈C〉T〈C〉+KΣc. (36)

In addition, by employing the pdfs of tr,l and ζr, the expec-
tations 〈 1

tr,l
〉 and

〈
1
ζr

〉
, required in the posteriors at the third

level of hierarchy, can be expressed as〈
1

tr,l

〉
=

1

〈δr,l〉
+

1

〈tr,l〉
,

〈
1

ζr

〉
=

1

〈ρr〉
+

1

〈ζr〉
. (37)

Finally, it can be shown (as in [28]) that, at the third level
of hierarchy, the approximate posteriors of δr,l, ρr and β
are Gamma distributions with 〈δr,l〉, 〈ρr〉 and 〈β〉 given in
Algorithm 1, where the resulting Bayesian-BTD (BBTD) al-
gorithm is summarized. The rest of the first- and second-order
statistics that are required in the algorithm implementation
are computed as in Table I, based on the assumption of
statistically independent A,B,C (cf. (20)) and making use
of the identities for the Grammians of Khatri-Rao products
proved in [3, Appendix C].
R is estimated as the number of columns of 〈C〉 of non-

negligible energy and similarly for the Lrs and the corre-
sponding blocks of 〈A〉, 〈B〉, as detailed in Algorithm 1.
The iterations stop when a convergence criterion is met (e.g.,
the relative difference of the tensor reconstruction errors in
two consecutive iterations becomes less than a user-defined
threshold) or the maximum number of iterations is reached.

The algorithm can be randomly initialized and, as empiri-
cally demonstrated in Section VI, it converges fast and is very
robust to initialization. Moreover, in view of its mean-field VI
nature, the method is guaranteed to converge to a stationary
point of the KL divergence function.

As far as the computational complexity of the algorithm
is concerned, the computational cost of a BBTD iteration
is similar to that of BTD-HIRLS (cf. [3, Appendix C]),
with O((I + J)L2 +K)R2) extra multiplications required to
compute 〈tr,l〉, 〈δr,l〉, 〈ζr〉 and 〈ρr〉. O(IJK + IJKLR +
I(LR)2 + (LR)3 + LR + R) additional multiplications are
needed in the computation of 〈β〉. Therefore, as in BTD-
HIRLS, and for the more realistic case of tensors with di-
mensions much larger than R and L, the number of multipli-
cations required per iteration of BBTD is O(IJKLR), i.e.,
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Algorithm 1: The BBTD algorithm
Data: Y , Rini, Lini

Result: R̂, L̂r, r = 1, 2, . . . , R̂, Â, B̂, Ĉ
Initialize 〈B〉, 〈C〉, 〈β〉, 〈T〉, 〈Z〉, 〈δ〉, 〈ρ〉;
repeat

Σa ← 〈β〉−1(〈PTP〉+ 〈T〉(〈Z〉 ⊗ ILini
))−1;

〈A〉 ← 〈β〉Y(1)〈P〉Σa;
Σb ← 〈β〉−1(〈QTQ〉+ 〈T〉(〈Z〉 ⊗ ILini))

−1;
〈B〉 ← 〈β〉Y(2)〈Q〉Σb;
Σc ← 〈β〉−1(〈STS〉+ 〈Z〉)−1;
〈C〉 ← 〈β〉Y(3)〈S〉Σc;
for r = 1, 2, . . . , Rini do

for l = 1, 2, . . . , Lini do

〈tr,l〉 ←
√

〈δr,l〉
〈β〉〈ζr〉(〈aT

r,lar,l〉+〈b
T
r,lbr,l〉)

;〈
1
tr,l

〉
← 1
〈δr,l〉 + 1

〈tr,l〉 ;

〈δr,l〉 ← 2ψ+I+J+1
2τ+〈 1

tr,l
〉 ;

end
end
for r = 1, 2, . . . , Rini do
〈ζr〉 ←√

〈ρr〉
〈β〉[

∑Lini
l=1 〈tr,l〉(〈a

T
r,lar,l〉+〈b

T
r,lbr,l〉)+〈cTr cr〉]

;〈
1
ζr

〉
← 1
〈ρr〉 + 1

〈ζr〉 ;

〈ρr〉 ← 2µ+(I+J)Lini+K+1

2ν+〈 1
ζr
〉 ;

end
〈β〉 ← (2κ+ (I + J)LiniRini +KRini +

IJK)/(2θ +

〈∥∥∥YT
(1) −PAT

∥∥∥2

F

〉
+∑Rini

r=1〈ζr〉[
∑Lini

l=1 〈tr,l〉(〈aT
r,lar,l〉+

〈bT
r,lbr,l〉) + 〈cT

r cr〉]);
until convergence;
I ← {i ∈ {1, 2, . . . , Rini} |
ith column of 〈C〉 is of non-negligible energy};
R̂← |I|;
Ĉ← 〈C〉(:, I);
Let the elements of I be sorted in increasing order as
i1, i2, . . . , iR̂;

for r = 1, 2, . . . , R̂ do
Ir ← {l ∈ {1, 2, . . . , Lini} |
lth column of 〈A〉r , 〈A〉(:, (ir − 1)Lini + 1 : irLini)
is of non-negligible energy}

= {l ∈ {1, 2, . . . , Lini} |
lth column of 〈B〉r , 〈B〉(:, (ir − 1)Lini + 1 : irLini)
is of non-negligible energy};

L̂r ← |Ir|;
Âr ← 〈A〉r(:, Ir), B̂r ← 〈B〉r(:, Ir);

end
Â←

[
Â1 Â2 · · · ÂR̂

]
;

B̂←
[

B̂1 B̂2 · · · B̂R̂

]
;

TABLE I
FIRST- AND SECOND-ORDER STATISTICS REQUIRED IN THE BBTD

ALGORITHM

〈P〉 = 〈B〉 � 〈C〉
〈Q〉 = 〈C〉 � 〈A〉
〈S〉 =

[
(〈A1〉 �c 〈B1〉)1Lini

· · · (〈ARini
〉 �c 〈BRini

〉)1Lini

]
〈PTP〉 = 〈BTB〉 ∗ (〈CTC〉 ⊗ 1Lini×Lini

)
〈QTQ〉 = 〈ATA〉 ∗ (〈CTC〉 ⊗ 1Lini×Lini

)
〈STS〉 = (IRini

⊗ 1T
Lini

)(〈ATA〉 ∗ 〈BTB〉)(IRini
⊗ 1Lini

)

〈‖YT
(1)
−PAT‖2F〉 = ‖Y(1)‖2F − 2tr{〈A〉TY(1)〈P〉}

+tr{〈ATA〉〈PTP〉}

of the same order as the computational cost of a BTD-HIRLS
iteration [3]. Clearly, R and L here refer to their overestimates,
Rini and Lini, respectively. The cost can be reduced if pruning
of the nulled columns of 〈C〉 and the corresponding blocks of
〈A〉 and 〈B〉 in the course of the algorithm is included. For the
sake of the simplicity of presentation, this is only performed
in Algorithm 1 at the end of the iterative inference.

V. ALTERNATIVE BAYESIAN MODELS AND THEIR
REGULARIZATION-BASED COUNTERPARTS

In this section, we present two alternative Bayesian models,
which can be viewed as simplified versions of the model intro-
duced in Section III. The main goal here is to manifest the role
that specific aspects of the adopted model (e.g., the number
of the levels in the hierarchy) play in the regularization that
is induced to the latent BTD factors at inference time. Both
models presented next assume the same likelihood function as
the more composite model presented previously. That being
said, the main difference between the two models lies in the
priors placed over A,B,C, as detailed next.

a) Model I: This model consists of a single level of
hierarchy, with Gaussian priors being assigned to the rows
of A,B and C:

p(A|t, β) =

I∏
i=1

N (ai | 0, β−1t−1ILiniRini
), (38)

p(B|t, β) =

J∏
j=1

N (bj | 0, β−1t−1ILiniRini), (39)

p(C|t, β) =

K∏
k=1

N (ck | 0, β−1t−1IRini
), (40)

where t is now a deterministic parameter, intended to play
the role of the regularization parameter in the associated
deterministic regularization-based problem. The corresponding
graphical model is given in Fig. 3-I. It is obviously a sim-
plified, single-level version of the 3-level hierarchical model
introduced in Section III.

To perform point estimation of A,B and C, the correspond-
ing MAP estimator is derived next. The joint posterior pdf of
A,B,C can be expressed as follows:

p(A,B,C|Y , β) ∝ p(Y |A,B,C, β)p(A,B,C|β). (41)
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Fig. 3. Alternative probabilistic models.

Due to the Gaussianity of the noise, the likelihood function
p(Y |A,B,C, β) can be written from (4) as

p(Y |A,B,C, β) ∝ exp

−β
2

∥∥∥∥∥Y −
Rini∑
r=1

ArB
T
r ◦ cr

∥∥∥∥∥
2

F

 .

(42)
In addition, from (38), (39), and (40), the prior distribution of
A,B and C takes the following form

p(A,B,C|β) ∝ exp

[
−βt

2

Rini∑
r=1

Lini∑
l=1

(‖ar,l‖22 + ‖br,l‖22)

]

× exp

(
−βt

2

Rini∑
r=1

‖cr‖22

)
. (43)

Combining (42) with (43) and taking the logarithm of their
product we end up with the following MAP-type optimization
problem:

min
A,B,C

∥∥∥∥∥Y −
Rini∑
r=1

ArB
T
r ◦ cr

∥∥∥∥∥
2

F

+ t
(
‖A‖2F + ‖B‖2F + ‖C‖2F

)
.

(44)
This implies that the regularizer induced by the single-level
Gaussian priors favors smooth solutions in terms of the latent
factors. This is deduced from the fact that A,B and C can
be updated using an alternating minimization strategy which
gives rise to ridge regression-type subproblems (as it is done
in, e.g., [5]). In the light of this feature, no distinction between
the columns of each of the factor matrices is being made and
hence Model I is expected to have a weaker rank revelation
effect than the one of the main model introduced in Section
III.

b) Model II: With the latter observation in mind, we
now introduce the second alternative Bayesian model whose

graphical model is depicted in Fig. 3-II. Model II places heavy-
tailed multi-parameter Laplace priors, known for their sparsity-
inducing effect, over the columns of the factor matrices. This is
implemented with the aid of a three-level hierarchy of priors.
At the first level, Gaussian distributions are assigned to the
factors, namely,

p(A|tA, β) =

I∏
i=1

N (ai | 0, β−1T−1
A ), (45)

p(B|tB , β) =

J∏
j=1

N (bj | 0, β−1T−1
B ), (46)

p(C|ζ, β) =

K∏
k=1

N (ck | 0, β−1Z−1), (47)

where TA = diag(tA) and TB = diag(tB) with tA, tB ∈
RLiniRini×1 and Z = diag(ζ), ζ ∈ RRini×1. Note that the key
difference of this model with the one introduced in Section III
and depicted in Fig. 2 is the use of different variables tA, tB
for enforcing column sparsity on A and B. This is in contrast
to the “coupling” of Ar,Br effected in BTD-HIRLS and the
model of Fig. 2. Moreover, the parameters ζ are now involved
only in the prior of C, which again “decouples” the third mode
factor from the rest.

At the second level of the hierarchy, IG priors are placed
over tA, tB and ζ, namely

p(tA) =

Rini∏
r=1

Lini∏
l=1

IG
(
tA;r,l

∣∣∣∣I + 1

2
,
δA;r,l

2

)
, (48)

p(tB) =

Rini∏
r=1

Lini∏
l=1

IG
(
tB;r,l

∣∣∣∣J + 1

2
,
δB;r,l

2

)
, (49)

p(ζ) =

Rini∏
r=1

IG
(
ζr

∣∣∣∣K + 1

2
,
ρr
2

)
, (50)

where δA;r,l, δB;r,l and ρr are the scale parameters of the
distributions over tA;r,l, tB;r,l and ζr, respectively. The third
level involves Gamma priors over these variables, namely,

p(δA;r,l) = G(δA;r,l | ψA, τA), (51)
p(ρA,r) = G(ρA,r | µA, νA), (52)

and similarly for δB;r,l, ρB,r.
This “decoupling” approach allows us to derive the MAP

estimator for A,B,C and thus gain a deeper insight as to
the regularization effect induced by the model. As explained
earlier, a MAP-type problem cannot be derived for the main
model presented in Section III due to the interrelation among
different variables. Yet, the increased complexity of that model
better captures the structure of BTD, as it is also empirically
demonstrated in the experimental results. For Model II, the
joint prior pdf of A,B,C can be computed from the following
multiple integral

p(A,B,C|β, δA, δB ,ρ) =∫
p(A,B,C|β, tA, tB , ζ)×

p(tA|δA)p(tB |δB)p(ζ|ρ)dtAdtBdζ, (53)
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where

p(A,B,C|β, tA, tB , ζ) =

Rini∏
r=1

Lini∏
l=1

p(ar,l,br,l|β, tr,l)

×
Rini∏
r=1

p(cr|β, ζr). (54)

After substituting (54) to (53) we get the expression for the
joint prior distribution shown in (55) at the top of the next
page. The integrals in (55) can be computed by working as
in [28, Appendix B] whereby the joint prior pdf of A,B,C
results as

p(A,B,C|β, δ,ρ) ∝

exp

[
−β 1

2

Rini∑
r=1

Lini∑
l=1

(δ
1
2

A;r,l‖ar,l‖2 + δ
1
2

B;r,l‖br,l‖2)

]

× exp

(
−β 1

2

Rini∑
r=1

ρ
1
2
r ‖cr‖2

)
, (56)

which is a heavy-tailed multi-parameter multivariate Laplace
distribution defined on the columns of A,B and C. From (42)
and (56), the MAP estimator of Model II is obtained from the
solution of the following minimization problem

min
A,B,C

β

2

∥∥∥∥∥Y −
Rini∑
r=1

ArB
T
r ◦ cr

∥∥∥∥∥
2

F

+

β
1
2

(
Rini∑
r=1

Lini∑
l=1

(δ
1
2

A;r,l‖ar,l‖2 + δ
1
2

B;r,l‖br,l‖2) +

Rini∑
r=1

ρ
1
2
r ‖cr‖2

)
.

(57)

Remark: It should be noted that (57) bears a close resemblance
to the deterministic criterion proposed in [33] and can thus be
seen to offer a Bayesian interpretation thereof and suggest the
corresponding Bayesian inference method as a probabilistic
counterpart of the Alternating Group Lasso (AGL) algorithm
developed in [33]. Given the correspondence of the main
model, in Section III, with BTD-HIRLS, the comparison of
these Bayesian methods presented in the next section com-
plements in a way the comparative study of BTD-HIRLS and
AGL previously reported [3].

VI. SIMULATION RESULTS

In this section, we evaluate the effectiveness of the proposed
Algorithm 1 in selecting and computing the appropriate BTD
model for a given tensor, via simulations with both synthetic
and real data. Its deterministic counterpart from [3] and
the corresponding Bayesian inference methods resulting from
Models I, II and referred to henceforth as BBTD model I and
BBTD model II are included, for comparison purposes. In
the last experiment, and in the hyperspectral image denoising
problem, BBTD is also compared with the Bayesian CPD
method that emanates from Model II as a special case with
Lr = 1, r = 1, 2, . . . , R.

A. Synthetic data experiments

In this part, we first test the BBTD method stated as
Algorithm 1 in comparison to its alternatives. We also demon-
strate its robustness to initialization and compare its ability to
recover the correct ranks of the BTD model against BTD-
HIRLS. The adopted figure of merit is the Normalized Mean
Squared Error (NMSE) over block terms, defined as NMSE =∑R
r=1

‖ArB
T
r ◦cr−ÂrB̂

T
r ◦ĉr‖

2
F

‖ArBT
r ◦cr‖2F

. As in [3], the Hungarian algo-

rithm is employed to match the R̂ estimated non-zero block
terms with the true ones.

a) Performance comparison between the main model and
Models I and II: In this experiment, we generate 18×18×10
tensors Y as in (4), with R = 3 and the Lrs set as
L1 = 8, L2 = 6 and L3 = 4. The entries of Ar,Br and
C are i.i.d., sampled from the standard Gaussian distribution.
The noise power is set so as to result in a signal-to-noise ratio
SNR = 10 log10 ‖X‖2F/(σ2‖N ‖2F) of 5 and 15 dB. Both R
and all Lrs are overestimated as Rini = Lini = 10. Fig. 4
illustrates the best run in terms of the NMSE, obtained out
of 10 random initializations of the algorithms. As it can be
observed, the main model described in Section III performs
comparably to Model II, which can be viewed as a relaxed
version thereof. Notably, Algorithm 1 converges somewhat
faster. It is worth noting that the algorithm associated with
Model I exhibits a poorer performance – especially at low
SNR – due to its inaptitude in dealing effectively with the
over-parameterized regime when it comes to the BTD ranks.
As opposed to Model I, both the main model and Model II,
which use heavy-tailed priors on the latent BTD factors, show
their efficacy in addressing the challenges incurred by the
unawareness of BTD ranks and successfully model the tensors
at both SNR values examined.

In the following, we focus on Algorithm 1, which better
captures the structure of the BTD model. At the same time
it makes use of fewer latent variables at the second and
third level of hierarchy than those in Model II and hence we
consider it as a more compact version of the latter.

b) Robustness to initialization: In an effort to see how
robust the proposed BBTD algorithm is to initialization, we set
SNR=15 dB and generate tensors as previously. We run 500 re-
alizations of the experiment. For each, we apply the proposed
BBTD and the BTD-HIRLS algorithms with 12 different
random initializations. Fig. 5 shows the Empirical Cumulative
Distribution Function (ECDF) of the obtained NMSE, where
the ith curve from bottom to top corresponds to selecting the
best out of i initializations, for i = 1, 2, . . . , 12. It can be
observed that BBTD is rather insensitive to initialization. Sur-
prisingly, its performance is affected by random initialization
even less than BTD-HIRLS, whose robustness has also been
verified [3]. We thus have empirical evidence that only a small
number of initializations suffices to estimate an accurate BTD
model with the proposed BBTD algorithm.

c) Rank recovery: Here we use the same generative
model described above for building data tensors Y of dimen-
sions 30 × 30 × 30. Our objective is to assess the ability
of BBTD to select the correct BTD model. For comparison
purposes, we also employ the BTD-HIRLS algorithm, which



10

p(A,B,C|β, δA, δB ,ρ) =

Rini∏
r=1

Lini∏
l=1

∫ ∞
0

p(ar,l,br,l|β, tA;r,l, tB;r,l)p(tA;r,l|δA;r,l)p(tB;r,l|δB;r,l)dtA;r,ldtB;r,l

×
Rini∏
r=1

∫ ∞
0

p(cr|β, ζr)p(ζr|ρr)dζr. (55)
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Fig. 4. NMSE vs. iterations for the proposed BBTD algorithm (‘BBTD main
model’) and its variants (‘BBTD model I’, ‘BBTD model II’) at two SNR
values.
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Fig. 5. Empirical Cumulative Distribution Function (ECDF) of NMSE
obtained by BBTD and BTD-HIRLS from 500 independent runs. The ith
curve from bottom to top corresponds to the result of selecting the best out
of i = 1, 2, . . . , 12 different initializations. SNR=15 dB.

has demonstrated high model selection ability in [3]. Two
different scenarios are considered, that differ in the validity of
the well-known sufficient BTD uniqueness condition of having
full column rank A,B matrices and a C matrix with non-
collinear columns [1].
Scenario A: In this scenario, we set R = 5 and the true
Lrs are set to L1 = 8, L2 = 6, L3 = 4, L4 = 5 and
L5 = 3. This setting is favorable w.r.t. the above condition
since min(I, J) >

∑R
r=1 Lr. Fig. 6(a) shows the success

rates of the recovery of R for SNR equal to 5, 10, and
15 dB. BBTD performs slightly better than BTD-HIRLS at 5
and 10 dB and has similar performance at 15 dB. Note
that BTD-HIRLS required its regularization parameter to be
finely tuned, whereas this is automatically performed in the
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Fig. 6. Success rates of recovering (a) R and (b)–(f) Lrs for SNR=10 dB with
the aid of the BBTD and BTD-HIRLS algorithms. Scenario A: min(I, J) >∑R

r=1 Lr .

BBTD algorithm, in a data-driven way. In Figs. 6(b)–(f), and
restricting attention to those realizations where both algorithms
have succeeded in recovering the true value of R, the success
rates of recovering the block ranks Lr are depicted, at an SNR
value of 10 dB. Observe that there is an almost 100% success
for all R terms. These results provide empirical evidence of
the competence of BBTD in this challenging, yet critical, task
of inferring the correct model structure.

Scenario B: We now choose the following values for the
block ranks, L1 = 8, L2 = 6, L3 = 8, L4 = 6 and L5 = 7,
for which min(I, J) <

∑R
r=1 Lr and hence the sufficient

uniqueness condition is no longer satisfied. This experimental
setting is therefore considered to be even more challenging
than Scenario A. As shown in Fig. 7(a), BBTD performs
comparably to the BTD-HIRLS in estimating R, with the latter
being somewhat better at SNR=5 dB. It should, however, be
reminded that this is the result of tuning the regularization
parameter, a task that can be far from being easy in real-
world applications. Moreover, a behavior similar to that in
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Fig. 7. Success rates of recovering (a) R and (b)–(f) Lrs for SNR=10 dB with
the aid of the BBTD and BTD-HIRLS algorithms. Scenario B: min(I, J) <∑R

r=1 Lr .

Scenario A is observed when it comes to the success rates
of recovering the Lrs at SNR=10 dB; see Figs. 7(b)–(f).
BBTD is again slightly superior to BTD-HIRLS in carrying
out this intricate task while enjoying the advantage of being
completely automatic. Additional cases, for varying SNR
values, ranks and tensor sizes, have been tested and the results
were similar to those obtained above, showing the applicability
of Algorithm 1 in a wide range of scenarios.

B. Real data experiment: Hyperspectral image denoising

Hyperspectral imagery (HSI) can be represented with the
aid of 3-way tensors whose first two modes correspond to the
spatial domain and the third one to the spectral domain. It is
known that there is inherent correlation in both domains, which
explains the fact that low-rank matrix and tensor representa-
tions have been widely adopted for numerous HSI processing
tasks such as unmixing [5], [34] and restoration [35]. It
should be emphasized that the very nature of HSI, accurately
described by a linear mixing model [5], points to BTD as the
most suitable choice of a decomposition model as compared
to classical CPD. Indeed, the model structure and parameters
are in a direct correspondence with the HSI constituents: the R
matrices Er can be interpreted as the abundance maps while
C contains the endmember spectral signatures in its columns.

As an example of the application of our method in this
context, we consider the problem of denoising hyperspectral
images, and compare with the results of BTD-HIRLS and
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Fig. 8. SSIM of the hyperspectral images recovered by BBTD, BTD-HIRLS
and BCPD.

a Bayesian CPD method resulting from BTD model II as
a special case and referred to here as BCPD. We carry out
denoising experiments on three different HSI datasets, namely
a) the Washington DC Mall AVIRIS, b) the Salinas Valley,
and c) the Indian Pines images.

1) Washington DC Mall AVIRIS: We generate a noisy
version of the Washington DC Mall AVIRIS image captured
at K = 191 contiguous spectral bands in the 0.4 to 2.4µm
region of the visible infrared spectrum [36]. In all three
HSIs we add i.i.d. Gaussian noise and choosing its power
so as to get SNR=5 dB. The size of the image at each
spectral band is 150 × 150 pixels and hence the HSI cube
can be seen as a 150 × 150 × 191 tensor. Our objective is
to suppress the noise by fitting a decomposition model to
this tensor. Of course, the correct R and Lrs must also be
estimated. To this end, they are overestimated as Rini = 50
and Lini = 10. Finally, we initialize the tensor rank of BCPD
to RBCPD

ini = RiniLini = 500.
We compare the performance of the three methods both

visually and in terms of the Structural Similarity Index Mea-
sure (SSIM), a popular perceptual metric of the degrada-
tion of an image as perceived change in structural infor-
mation. SSIM is defined for two image windows x, y as
SSIM(x, y) =

(2µxµy+c1)(2σxy+c2)
(µ2
x+µ2

y+c1)(σ2
x+σ2

y+c2) , where µx, µy, σ
2
x, σ

2
y

are their mean averages and variances, respectively and σxy
is their covariance. c1, c2 are small constants that are used
for averting division by zero. BTD-HIRLS is again used for
comparison purposes, with its regularization parameter being
finely tuned in accordance with SSIM. As it can be seen
in Fig. 8, the BBTD algorithm outperforms BTD-HIRLS,
exhibiting higher or similar SSIM values over a wide range
of spectral bands. The CPD model, resulting from the BCPD
method, does not capture the low-rank structure of the HSI
tensor equally well. The superior performance of the BTD-
based algorithms as compared to the CPD one can be ex-
plained by the estimated ranks in each case. Specifically, the
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(a) (b)

(c) (d)

(e)
Fig. 9. False color RGB images (made from bands 34, 64, and 135) of the
Washington DC Mall AVIRIS hyperspectral image. (a) Original; (b) Noisy;
Denoised with (c) BTD-HIRLS, (d) BCPD, and (e) the proposed BBTD
algorithm.

estimated R̂ by both BBTD and BTD-HIRLS is 9. Based
on the compelling interpretation that the BTD model offers
when it comes to HSI decomposition [5], R̂ corresponds to
the number of endmembers (distinct materials) that exist in
the depicted scene. That said, R̂ = 9 turns out to be in
a good agreement with what is known in the HSI literature
for the number of endmembers existing in the scene depicted
by the Washington DC Mall AVIRIS HSI [36]. On the other
hand, the BCPD estimate of the CPD rank is R̂ = 32, that
is, it largely overestimates the number of endmembers in the
scene. It should not be surprising that the CPD model is
not able to provide an accurate tensor representation of the
image, manifesting the limitations of the CPD representation
in capturing the inherent structure of HSI.

For a visual comparison of the results of the three algo-
rithms, Figs. 9(a) and (b) depict false color images of the
true and the noisy image, respectively, while the BTD-HIRLS,
BCPD and BBTD reconstruction results are respectively given
in parts (c), (d) and (e) of the figure. The comparable
performance of the two BTD methods observed in Fig. 8 is
confirmed here by visual inspection. Moreover, as expected,
BCPD provides clearly poorer results, with a blurring effect
being clearly visible in the corresponding false color image.

2) Salinas Valley and Indian Pines: In the second real
hyperspectral image denoising experiment, we use the Salinas
Valley and Indian Pines datasets [16].

.
(a) Band 1 (b) BBTD (c) BCPD
(orig. HSI)

.
(d) Band 190 (e) BBTD (f) BCPD
(orig. HSI)

Fig. 10. Reconstructed by BBTD and BCPD bands no. 1 and 190 of the
Indian Pines hyperspectral image.

Salinas Valley is captured at 224 spectral bands ranging and
its spatial resolution is 3.7 meters. The scene depicts an agri-
cultural area with different vegetation species. In Fig. 10(a),
we can see the noisy band 1 of the original HSI and the
reconstructed images from BBTD (Fig. 10(b)) and BCPD
(Fig. 10(c)). Clearly, BBTD is shown to be able to denoise
the first band of the HSI, outperforming the BCPD, which
is based on the CPD tensor decomposition. Moreover, both
BBTD and BCPD reconstruct quite reliably the 190th band
(Fig. 10(c)–(d)). It should be noted that the Salinas image
is highly structured. Thus, BBTD, though initialized with
Rini = 50 and Lini = 10, converges to a R̂ = 25. A low
tensor rank is also imposed by BCPD, which is initialized
with a CP rank RBCPD

ini = 500 but converges to a tensor of
CP rank equal to 84.

The Indian Pines HSI is captured at 145 × 145 pixels and
224 spectral reflectance bands in the wavelength range 0.4—
2.5 µm. The scene contains agriculture, forest, as well as
vegetation areas, highways, etc. Similarly to the Salinas Valley,
a few of its bands are noisy and are usually removed in a pre-
processing step before performing downstream tasks such as
classification, clustering, etc. In this experiment, BBTD and
BCPD are initialized as for the case of the Salinas Valley
HSI, i.e., for BBTD Rini = 50 and Lini = 10, and for BCPD
Rini = 500. Again, both algorithms eliminate redundant
components of the respective tensor models. Namely, BBTD
finds a BTD model of the HSI with rank R̂ = 20 block terms.
Moreover, BCPD converges to a CPD decomposition with



13

.
(a) Band 1 (b) BBTD (c) BCPD
(orig. HSI)

.
(d) Band 10 (e) BBTD (f) BCPD
(orig. HSI)

Fig. 11. Reconstructed by BBTD and BCPD bands 1 and 10 of the Indian
Pines HSI hyperspectral image.

R̂ = 80 rank-1 terms. As is shown in Fig. 11, the BBTD
reconstructs the 1st and 10th bands of the HSI providing a
reliable denoised image. At the same time, it is shown that
BBTD performs better that BCPD thus providing additional
evidence when it comes to the superiority of BTD over CPD
when it comes to modelling highly structured hyperspectral
images.

VII. CONCLUSIONS

As a follow-up to our earlier work on BTD model selection
and computation based on `1,2 norm-based regularization, we
developed for the first time in this paper a Bayesian method
for the same problem, which completely relieves its user
from having to tune a regularization parameter. The proposed
fully-automatic variational inference scheme originates from a
Bayesian probabilistic model designed to match perfectly with
the BTD model structure and promote model selection through
heavy-tailed prior distributions assigned to the BTD factors
in the spirit of ARD and SBL. Two alternative simplified
Bayesian models were also presented and their model selection
properties were investigated by way of their individual joint
posterior distribution maximization tasks. Extensive empirical
results showed that the proposed algorithm is extremely robust
to initialization, converges fast and its model selection ability
is comparable to that of its regularization-based counterpart,
which however requires parameter fine–tuning. Finally, the
appropriateness of the BTD model in approximating hyper-
spectral imaging data was demonstrated in a HSI denoising
experiment, where the proposed algorithm was favorably com-
pared to a Bayesian rank-revealing CPD algorithm emanating
from one of the simplified models mentioned above.

Future work will focus on the development of constrained
(e.g., to ensure nonnegativity) and online variants of the
proposed method.
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