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Abstract

Understanding Riemann Hypothesis could be possible by in extension of understanding Fermat’s Last The-
orem.

1 Understanding

By continuing preceding discussion in Fermat’s Last Theorem [1]:
Assuming that, a™ + 0" = "
= (In matrix form of) ((1xp)-(px 1) "+ ((1x¢q)-(gx1)" = (1 x7)-(rx1)"

= n(maxp)+(maxq) =" (n c N-‘r) =n=1o0r?2

This equation implies if any 7 (r < ¢,7 € NT) is given, there is always solution that fits a and b. In extension:

(1xp) - (px )" +((1x ) (g x )" = (1 x7) - (r x 1)"
= Q(maxp)-l-(max q) _ r2

By giving condition of 1 < p < a, 1 < ¢ < b in extension to C:

A"+ =c"=3I(r<c) = 22 < (2(ma"p)+(max‘1) = r2) < 20tb
= a" +b" =" =27 < <20 = 22 < (a? +b7) < 20
2 4 2
— 92< # < 2a+b—1

And definition of Riemann zeta function follows:

Riemann hypothesis statement asserts all the 'non-obvious’ zeros of the zeta function are complex numbers with
real part 1/2 [2].
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By analytic approach, assuming sum in sequence of xy41 = =
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= As keeping symmetry in ¢ function = R(a + b) = 5
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