
From MARCXML to Records in Contexts (RiC) –
a configurable mapping pipeline
Documentation of the SWITCH Innovation Lab “Linked Archival
Ontology and Pipeline”1

5.12.2022
Tobias Wildi, tobias.wildi@fhgr.ch
Fachhochschule Graubünden, Chur, Switzerland

Introduction
This paper documents the work in the context of a SWITCH Innovation Lab where
MARCXML-metadata from a library catalog has been mapped to the new Records in
Contexts (RiC) standard for archival metadata. The documentation will start describing
the mapping in a conceptual way and then go on to demonstrate the toolchain that has
been developed and applied to execute the mapping in an efficient and automated way.
The mapping project has been conducted to bring catalog metadata from the library
repository Patrinum as a data source to the Connectome platform. Patrinum, short for
PATRImoine NUMérique, is a platform provided by the Cantonal and University Library
Lausanne (BCUL) to secure the digital heritage and the digital legal deposit of the
canton de Vaud (Switzerland).2 It is based on software from Tind3 and provides an
OAI-interface for data harvesting in various formats, among others MARCXML.
Connectome is a platform for linked open research data (ORD) in Switzerland,
developed and run by SWITCH.4 The vision of the Research Data Connectome is to
connect and organize metadata for research sustainably across various disciplines to

4 https://www.switch.ch/connectome/

3 https://www.tind.io/

2 https://patrinum.ch/pages/?page=About&ln=en

1

https://www.switch.ch/about/innovation/overview/switch-innovation-lab-linked-archival-ontolo
gy-and-pipeline/

1

mailto:tobias.wildi@fhgr.ch
https://www.switch.ch/connectome/
https://www.tind.io/
https://patrinum.ch/pages/?page=About&ln=en
https://www.switch.ch/about/innovation/overview/switch-innovation-lab-linked-archival-ontology-and-pipeline/
https://www.switch.ch/about/innovation/overview/switch-innovation-lab-linked-archival-ontology-and-pipeline/

make it widely accessible, interoperable and valuable for the scientific community and
the broader public. The Connectome project is currently developing their
infrastructure for acquiring, storing and disseminating information about datasets,
publications and research data providers. The infrastructure should be able to acquire,
normalize, and store data from a wide variety of data providers. These providers
include libraries, archives and museums, among many others. Internally, Connectome
is based on its own ontology, called RESCS (Research Commons), which in turn is based
on schema.org.5 To avoid having to write separate data mappings to RESCS for each
individual data provider, it was decided to map the metadata of libraries and archives
to a domain-specific intermediate format as a first step and then in a second step to
RESCS. For this first step, a format had to be selected that the institutions could ideally
generate with the export functions of their catalog systems or that could be generated
with automated mapping tools.
Records in Contexts (RiC) as a flexible archival standard fulfills these requirements of
an exchange format in an ideal way. The standard is developed by the International
Council on Archives (ICA).6 It is described in a conceptual model (RiC-CM) (Experts
Group on Archival Description, 2021) as well as in the form of an OWL ontology
(RiC-O).7 RiC is able to model and accomodate complex metadata structures from
different source systems that are encountered in heritage institutions.
The project focused on the first mapping step from MARCXML to Records In Contexts,
where as the overall pipeline looks as follows:

Fig. Two step mapping pipeline: from data sources to RiC as domain-specific intermediary format
and from RiC to RESCS

7 https://www.ica.org/standards/RiC/ontology

6 https://www.ica.org/

5 https://rescs.org/

2

https://www.ica.org/standards/RiC/ontology
https://www.ica.org/
https://rescs.org/

Goal
The goal of this paper is to document three areas regarding the data mapping from
MARCXML to RiC in the context of the SWITCH Innovation Lab.

● First, the mapping has to be defined on a conceptual level. Two data models
need to be aligned and checked if and where they overlap or differ from each
other.

● Second, the mapping should be implemented in a flexible and versionable
manner. This raises the question of technologies and tools that are currently
available for this purpose.

● Third, the mapping will potentially be performed on large data sets with tools
that must be automated and scaled when needed. For this purpose a toolchain
and an appropriate approach for scaling has to be developed.

Mapping on a conceptual level
In the use case of Patrinum as data source, catalog metadata is internally managed in
the MARC format and can be exported in various formats such as MARCXML, Dublin
Core or specific formats for reference systems such as EndNote, RefWorks or BibTex.
MARCXML offers by far the richest dataset of all these formats and has thus been
chosen as source format for the mapping.
MARCXML is a XML encoding of the MARC standard. MARC (machine-readable
cataloging) is a format for encoding bibliographic data. The standard dates back to the
end of the 1960s and has been updated in many iterations ever since.8 In many
cataloging systems MARCXML is available as a rich export format. In the case of
Patrinum, a MARCXML file can be exported for every record either manually via the
web interface or in an automated manner via the OAI harvesting protocol. The
MARCXML files have a flat structure and are human readable. Simply put, MARC
database-fields are encoded with three digits, which are used for naming the tags in the
MARCXML files. The subfields are encoded with letters, which again are tags in
MARCXML. This leads us to the following structure of the XML file:

<?xml version="1.0" encoding="UTF-8"?>
<collection xmlns="http://www.loc.gov/MARC21/slim">
<record>

<controlfield tag="001">173427</controlfield>
<controlfield tag="005">20211007005827.0</controlfield>

8 https://www.loc.gov/marc/

3

https://www.loc.gov/marc/

<datafield tag="024" ind1="7" ind2=" ">
<subfield code="2">doi</subfield>
<subfield code="a">10.22005/bcu.173427</subfield>

</datafield>
<datafield tag="037" ind1=" " ind2=" ">

<subfield code="a">ISADG</subfield>
</datafield>
<datafield tag="041" ind1=" " ind2=" ">

<subfield code="a">fre</subfield>
</datafield>

…
</record>
</collection>

Fig. Example of a record in MARCXML-Format

To map such a serialized structure to RDF is much more straightforward than it would
be for example for EAD (Encoded Archival Description)9 with its nested hierarchical
structure that is needed for encoding archival metadata according to the ISAD(G)
standard.10

The target format for the mapping is RDF with the Records in Contexts (RiC)-ontology.
RiC is based on a semantic model with different entities, attributes and relations
between the entities. The main entities of RiC are:

Fig. Overview of the entities of RiC (Experts Group on Archival Description, 2021, p. 17)

10

https://www.ica.org/en/isadg-general-international-standard-archival-description-second-editi
on

9 https://www.loc.gov/ead/

4

https://www.ica.org/en/isadg-general-international-standard-archival-description-second-edition
https://www.ica.org/en/isadg-general-international-standard-archival-description-second-edition
https://www.loc.gov/ead/

These entities, together with some of the most important relations can be visualized as
follow:

Fig. Main Entities and relations of RiC (Experts Group on Archival Description, 2021, p. 18)

In a first step of the mapping, the main sections of MARCXML were assigned to classes
in the RiC-ontology. The following table doesn’t show the detailed mapping yet, but
gives a first overview of which sections and fields are mapped to what RiC-O-classes:

MARCXML-section RiC-O Class RiC-O Attribute

00X: Control Fields rico:Record rico:identifier

041: Language rico:Language rico:name

5

100, 110: Personal Name,
Corporate Name

rico:Group rico:name

111: Meeting, Conference rico:Activity rico:name

20X-24X: Title fields rico:Title rico:title

260: Publisher rico: Group rico:name

30X: Physical Description rico:Extent

336: Content Type rico:Record rico:physicalCharac
teristics

340: Physical Medium rico:PhysicalMedium

347: File Format rico:CarrierType rico:name

351c: Hierarchical Level rico:Record rico:type

Fig. Overview of Mappings of MARCXML-sections and fields to RiC-classes

The last entry regarding the MARC-field 351c needs some explanation. In Patrinum this
field is used to describe the hierarchical level of archival material, like eg. “fonds”,
“series” or “item”. Since the Patrinum repository holds a lot of archival material, this
MARC field is used to model the ISAD(G)-hierarchy within the library management
system.
A majority of fields in the MARCXML file can be mapped as attributes of the central
rico:Record class. The rico:Record class is then connected to other classes using the
following relations:

Subject Relation Object

rico:Record

rico:hasOrHadLanguage rico:Language

rico:hasAuthor rico:Group

rico:isAssociatedWithEvent rico:Event

rico:hasOrHadTitle rico:Title

rico:hasPublisher rico: Group

rico:hasExtent rico:Extent

6

rico:hasContentOfType rico:ContentType

rico:hasCategory rico:PhysicalMedium

dct:file rico:CarrierType

This leads to a different visualization of the mapping from non-RDF MARCXML as data
source to RDF based metadata in RiC-O:

Fig. Conceptual mapping from MARC to RiC Entities and Attributes

This figure illustrates that one MARCXML record is mapped to a whole interconnected
network of RiC Entities.

Implementation of the data mapping
The goal of the SWITCH Innovation Lab was to not only define the mapping on a
conceptual level, but implement it with adequate tools. The prerequisites for choosing
the tools were a) a certain flexibility for adapting the mapping and b) scalability if larger
datasets were to be imported into Connectome.

7

The flexibility in the mapping definition is one key aspect in the context of the
Connectome project. Data from various sources and in many different formats are
mapped to the national data aggregator. If new mappings are a matter of adapting
configurations and not of writing new scripts, additional data sources can much easier
be added to Connectome. Furthermore, the mappings can directly be written by
domain specialists without special programming knowledge. One observation in the
context of Connectome is that some data sources tend to change their export- and
API-formats over time. For example when CSV or Excel spreadsheets are used als
source formats, new columns get added or are deleted from one version of the data set
to the next version. This is a problem for data sets that are not only imported once but
new data is added periodically. It saves a lot of time if only the mapping definition has
to be updated and no hard coded mapping software has to be adapted, tested and
recompiled.
In the present project, the need for flexibility in the data mapping led to the decision to
work with a set of declarative mapping rules to define the RDF representation of the
MARCXML data sources. The goal was to have a separation between the mapping
definition and the conversion tool (or tools). For the mapping of heterogeneous source
data to RDF, a number of tools are available that fulfill these requirements, examples
are Ontop,11 Virtuoso12 or the RDFlib in Python.13 The decision was finally made in favor
of RML, the RDF Mapping Language (De Meester 2020). RML, as an extension of R2RML,
is a mapping language to bring heterogeneous structured data and serializations to
RDF (Dimou 2014) (Das 2012). To execute the conversion several processors are
available, which run either locally or server-based.
At the current state, RML can handle data sources in formats like relational databases,
CSV, TSV, XML and JSON.14 This covers a lot of potential use cases for Connectome. RML
definitions are written in Turtle syntax.15 Doing this by hand can be a tedious and error
prone task. As an alternative the Expressive RDF Mapper (XRM) by Zazuko can be used
to create RML.16 The XRM tool assists domain specialists and information architects to
create RML mappings, the tool is both available as an Eclipse and Visual Studio Code
Plugin.

16 https://zazuko.com/products/expressive-rdf-mapper/

15 https://www.w3.org/TR/turtle/

14 Databases are mapped with R2RML, https://www.w3.org/TR/r2rml/. R2RML is a predecessor of
RML, whereas the latter has been defined as a superset of R2RML.

13 https://rdflib.dev/

12 https://virtuoso.openlinksw.com/

11 https://ontop-vkg.org/

8

https://zazuko.com/products/expressive-rdf-mapper/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/r2rml/
https://rdflib.dev/
https://virtuoso.openlinksw.com/
https://ontop-vkg.org/

Fig. Overview of the mapping pipeline based on RML

To perform the mapping, an RML processor is required. This processor receives an
input file and executes the transformation based on the RML mapping. An overview of
different processors can be found in (Arenas-Guerrero et. al. 2021), where the authors
conduct a detailed survey to identify the strengths and weaknesses of different RML
processors. In the context of Connectome CARML17 is currently used for processing,
other tools like RMLMapper18 are tested.

Automating and scaling
To automate the process, a server based ETL (Extract, Transform, Load) pipeline was
implemented, orchestrated by a simple bash script. Further enhancements for
improved automation, coordination of acquisitions from multiple data sources, and
scheduling of acquisitions could be implemented with much more elaborate tools like
Apache Airflow, for example (Harenslak & Ruiter 2021) or Luigi.19 The present pipeline
consists of the following steps:

19 https://luigi.readthedocs.io/

18 https://github.com/RMLio/rmlmapper-java

17 https://github.com/carml/carml

9

https://luigi.readthedocs.io/
https://github.com/RMLio/rmlmapper-java
https://github.com/carml/carml

1. Extract: The source data are acquired from the end point
https://patrinum.ch/oai2d via OAI-PMH, the Open Archives Initiative Protocol for
Metadata Harvesting.20 These metadata are harvested incrementally in the
MARCXML-format and stored locally. The harvesting is done with a tool called
metha-harvester, developed by the Leipzig University Library.21

2. Transform: In a first preparatory step, metha creates a large XML-file
containing the metadata of all records. To perform the mapping, the large XML
is split into smaller chunks, one XML-file per record. The splitting is done with
the csplit-command.
After the preparation the transformation can be executed. With the small
XML-files the mapping can be streamed and hasn’t to be performed on one large
XML-file. For each MARCXML input file, CARML produces RDF data, in our case
in JSON-LD format. This process is based on the predefined mapping
configuration.

3. Load: The data are now in RiC format as a domain-specific intermediate format.
In the Connectome Linked Data Pipeline they are converted to RESCS, the
generic data model for Connectome. In the last step they are Ingested into
Connectome.

A generic and simplified version of the pipeline without the OAI harvester can be
downloaded from Github.22 This version has not only been tested with MARXML files
from Patrinum, but with other data sources as well.

Conclusion and Future Work
This paper shows how a knowledge graph can be created from structured XML data
using a configurable and modularized approach. "Configurable" means that the
mapping can be adapted at any time without having to intervene in the source code of
the mapping tools. This is useful and necessary because the structure of data sources
can and most probably will change over time, and in the present use case of Patrinum
the data is not acquired once, but at regular time intervals. And "modularized" means
that the individual building blocks developed for the pipeline can be reassembled for
the acquisition of other data sources.
Records in Contexts (RiC), developed as a domain ontology for archives, proves to be a
generic and flexible data model to accommodate catalog data from a library

22 https://github.com/wildit/marc2ric

21 https://github.com/miku/metha

20 http://www.openarchives.org/OAI/openarchivesprotocol.html

10

https://patrinum.ch/oai2d
https://github.com/wildit/marc2ric
https://github.com/miku/metha
http://www.openarchives.org/OAI/openarchivesprotocol.html

environment. However, whether it is useful and efficient to work with an intermediate
format such as RiC before data is then converted to the RESCS ontology of Connectome
needs to be verified using further use cases. The advantage of this intermediate step is
that data from libraries, archives and even museums can be mapped to the RiC format
with relatively little effort. Plus, in the future more and more archival information
systems will have direct export mechanisms to RiC. The step from RiC to the RESCS
data model can then be completely automated.
Further research and development will have to be done regarding the scaling,
monitoring and central control of the mapping process, especially when data mappings
for several data acquisition processes run in parallel. It must be possible to monitor
complex acquisition processes and in the event of errors, the processes should only be
interrupted but not be terminated. It is also important to have a wide range of test data
and quality control mechanisms at hand. Tests should run completely automated, both
with regard to the syntax and the content (semantics) of the data, because manual
testing is simply not possible at scale.

Acknowledgements
This project was supported by SWITCH in the context of a SWITCH Innovation Lab. The
author would like to thank the colleagues at SWITCH, namely Kurt Baumann, Andrea
Bertino, Tobias Schweizer and Sebastian Sigloch. The constructive and supportive
collaboration during the project was a key factor for success. Further thanks go to BCU
Lausanne, which made an important contribution by providing the Patrinum data and
explaining their implementation of the MARC standard.

References
Arenas-Guerrero, Julian, Mario Scrocca, Ana Iglesias-Molina, John Toledo, Luis

Pozo-Gilo, Daniel Dona, Oscar Corcho, and David Chaves-Fraga (2021).
Knowledge Graph Construction with R2RML and RML: An ETL System-Based
Overview. CEUR Workshop Proceedings (CEUR-WS.Org) Vol-2873.
http://ceur-ws.org/Vol-2873/paper11.pdf.

Delva, T., Oo, S. M. & Assche, D. V. (2021). RML2SHACL: RDF Generation Is Shaping Up,
8.

De Meester, Ben; Heyvaert, Pieter; Delva, Thomas (2020). RDF Mapping Language (RML)

11

https://www.zotero.org/google-docs/?B6RJAf
https://www.zotero.org/google-docs/?B6RJAf
https://www.zotero.org/google-docs/?B6RJAf
https://www.zotero.org/google-docs/?B6RJAf
http://ceur-ws.org/Vol-2873/paper11.pdf
https://www.zotero.org/google-docs/?B6RJAf

Unofficial Draft 06 October 2020.
https://rml.io/specs/rml/

Dimou, Anastasia; Sande, Miel Vander; Colpaert, Pieter (2014). RML: A Generic
Language for Integrated RDF Mappings of Heterogeneous Data. Proceedings of
the 7th Workshop on Linked Data on the Web, 1184.

Das, Souripriya; Sundara, Seema; Cyganiak, Richard (2012). R2RML: RDB to RDF
Mapping Language. W3C Recommendation 27 September 2012.
https://www.w3.org/TR/r2rml/

Experts Group on Archival Description. (2021). Records in Contexts, Conceptual Model.
Consultation Draft v0.2.
https://www.ica.org/sites/default/files/ric-cm-02_july2021_0.pdf

Harenslak, Bas; Ruiter, Julian de. (2021). Data pipelines with Apache Airflow. Manning
Publications Co.

12

https://rml.io/specs/rml/
https://www.w3.org/TR/r2rml/
https://www.ica.org/sites/default/files/ric-cm-02_july2021_0.pdf

