
Poster: User Sessions on Tor Onion Services:
Can Colluding ISPs Deanonymize Them at Scale?

Daniela Lopes
INESC-ID / Instituto Superior Técnico,

Universidade de Lisboa
daniela.lopes@tecnico.ulisboa.pt

Pedro Medeiros
INESC-ID / Instituto Superior Técnico,

Universidade de Lisboa
pedro.de.medeiros@tecnico.ulisboa.pt

Jin-Dong Dong
Carnegie Mellon University

jd0@cmu.edu

Diogo Barradas
University of Waterloo

diogo.barradas@uwaterloo.ca

Bernardo Portela
INESC TEC /

Universidade do Porto
bernardo.portela@fc.up.pt

João Vinagre
INESC TEC /

Universidade do Porto
jnsilva@inesctec.pt

Bernardo Ferreira
LASIGE, Faculdade de Ciências,

Universidade de Lisboa
blferreira@fc.ul.pt

Nicolas Christin
Carnegie Mellon University

nicolasc@cmu.edu

Nuno Santos
INESC-ID / Instituto Superior Técnico,

Universidade de Lisboa
nuno.m.santos@tecnico.ulisboa.pt

ABSTRACT
Tor is the most popular anonymity network in the world. It re-
lies on advanced security and obfuscation techniques to ensure
the privacy of its users and free access to the Internet. However,
the investigation of traffic correlation attacks against Tor Onion
Services (OSes) has been relatively overlooked in the literature. In
particular, determining whether it is possible to emulate a global
passive adversary capable of deanonymizing the IP addresses of
both the Tor OSes and of the clients accessing them has remained,
so far, an open question. In this paper, we present ongoing work
toward addressing this question and reveal some preliminary re-
sults on a scalable traffic correlation attack that can potentially be
used to deanonymize Tor OS sessions. Our attack is based on a
distributed architecture involving a group of colluding ISPs from
across the world. After collecting Tor traffic samples at multiple
vantage points, ISPs can run them through a pipeline where several
stages of traffic classifiers employ complementary techniques that
result in the deanonymization of OS sessions with high confidence
(i.e., low false positives). We have responsibly disclosed our early re-
sults with the Tor Project team and are currently working not only
on improving the effectiveness of our attack but also on developing
countermeasures to preserve Tor users’ privacy.

CCS CONCEPTS
• Security and privacy → Privacy-preserving protocols; Pseu-
donymity, anonymity and untraceability; • Networks → Net-
work privacy and anonymity; • Information systems→ Traf-
fic analysis.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3563520

KEYWORDS
Traffic Analysis; Tor; Onion Services; Flow Correlation Attacks;
Anonymous Communications

ACM Reference Format:
Daniela Lopes, Pedro Medeiros, Jin-Dong Dong, Diogo Barradas, Bernardo
Portela, João Vinagre, Bernardo Ferreira, Nicolas Christin, and Nuno San-
tos. 2022. Poster: User Sessions on Tor Onion Services: Can Colluding
ISPs Deanonymize Them at Scale?. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’22), Novem-
ber 7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3548606.3563520

1 INTRODUCTION
The Tor anonymity network is currently used by a large community
of Internet users. Many individuals such as journalists, activists, and
common citizens rely on Tor as a fundamental privacy-enhancing
tool to anonymously access the web and circumvent eavesdropping,
surveillance, and censorship. Moreover, Tor can also be used for
deploying Onion Services (OSes) to provide an infrastructure for
delivering anonymous, censorship-resistant online services such
as whistleblowing websites and news outlets. By hiding the IP ad-
dresses of the user accessing the service and of the OS itself, OSes
preserve both sender and receiver anonymity. Over the years, the
popularity of Tor has fueled extensive research aimed at securing
the user community against various attacks. However, important
questions remain understudied about the potential deanonymiza-
tion of Tor OS traffic.

First, is it possible to fully deanonymize OS user sessions through
traffic correlation attacks? OS website fingerprinting attacks [4, 6]
allow the tracking of clients accessing a given OS, but they cannot
deanonymize the IP address of the OS operator. Prior work on traffic
correlation attacks based on deep learning classifiers [5, 7] focused
primarily on deanonymizing regular Tor circuits (e.g., clients access-
ing the open web through Tor). However, by conducting extensive
experimentation in a controlled environment, we found that these
techniques alone are difficult to scale due to the high overhead

3399

https://doi.org/10.1145/3548606.3563520
https://doi.org/10.1145/3548606.3563520


CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Daniela Lopes et al.

Onion
ServiceClient

G2

M5 RP E6 M6

G1

X.onion

x.x.x.x y.y.y.y

M3

Tor Network

M4

E3 E2 M2

E4
 IP
 M1

Directory Server

4a

4b

3

5

1

2

Figure 1: OS session between a client and an OS: When starting up,
the OS recruits random Tor nodes as introduction points (IP) (1) and
publishes its onion address and IP identifier in the directory server
(2). The client can then perform an address lookup to learn the IP
identifier (3), choose any Tor relay as the rendezvous point (RP), and
establish a circuit with it (4b). It also establishes a circuit to the OS
IP to let the OS know it wants to connect to the RP (4a). The OS can
now establish a circuit to the RP chosen by the client (5).

introduced by convolutional neural networks. Moreover, their ac-
curacy is dramatically degraded in virtue of the higher complexity
of the circuits established between clients and OSes. As shown in
Figure 1, the circuits established between clients and OSes intro-
duce extra hops and higher latency, translating into different traffic
patterns, lowering the precision of the machine learning models.
Nonetheless, and even though limited, these techniques show that
full deanonymization attacks against OSes may be possible.

Second, can OS traffic deanonymization attacks be launched in
the real world at scale? If said attacks do exist and can plausibly
be launched globally, then the Tor OS users and providers face
a real danger of having their privacy compromised. An essential
question can then be posited on how many real-world ISPs would
need to collude and how geographically spread would they need to
be to intercept a sufficiently large fraction of the Tor OS traffic and
approximate the capabilities of a global passive adversary.

Third, are there any viable countermeasures to thwart these attacks
and to protect the Tor OS user community? Ideally, such defensive
techniques should be easy to deploy, preferably without requiring
any changes to Tor’s existing core protocols, software, or infras-
tructure.

In this paper, we present ongoing work toward addressing these
research questions. In particular, we give an overview of our tech-
nical approach to overcome the scalability and accuracy limitations
of existing traffic correlation techniques and provide a few pre-
liminary results that suggest that our attacking techniques can be
effective (albeit ensuring that no sufficient details are given before
fully devising proper countermeasures). We have responsibly dis-
closed the early results of our work with the Tor development team,
and we will continue to do so in the future as we keep improving
our attacking techniques and develop countermeasures.

2 TECHNICAL APPROACH
To investigate the feasibility of deanonymizing Tor OS sessions,
our approach is to devise a distributed attack involving a group of
colluding ISPs whose role is to intercept and monitor the network
traffic of Tor guard nodes (e.g., nodes G1 and G2 in Figure 1). By
performing a longitudinal measurement of the Tor guard probability

statistics taking a snapshot of Tor relays’ details using the Onionoo
service [8], we found that a relatively small number of instrumental
ISPs would suffice to monitor a large fraction of Tor traffic. From
our analysis, as few as six different ISPs are enough to observe
more than 50% of all traffic in the Tor network. This effect is due to
the skewed distribution of Tor guards towards certain geographic
regions, most notably within Europe.

The idea is then to rely on network monitoring nodes (aka fil-
tering nodes) deployed by colluding ISPs, which obtain and share
meta-data of Tor traffic samples collected at various vantage points.
ISPs can then submit deanonymization queries to a set of compu-
tation servers (matching nodes) collectively managed by the ISPs
themselves or by a third party (e.g., a cloud provider). Matching
nodes analyze the traffic collected by the ISPs and identify samples
that belong to the same OS sessions, reporting the deanonymized
IP addresses of the session endpoints, i.e., the IP addresses x.x.x.x
and y.y.y.y in the example of Figure 1.

Together, filtering nodes and matching nodes implement our
traffic correlation technique which consists of a 5-stage pipeline as
shown in Figure 2. The filtering phase will be applied by filtering
nodes to ignore irrelevant traffic samples and to organize them into
the features required by the matching nodes. It is composed of: i) the
origin checker receives the raw traffic captures and separates them
into OS traces and client traces; ii) the request separator splits the
captures into the multiple requests that compose them, and iii) the
OS request identifier filters client requests to OSes. The matching
phase, carried out by the matching nodes, correlates the requests
issued by a client to an OS and groups them into the whole session
performed. It is composed of: i) the request correlator, which finds
the OS request associated with a given client request; and ii) the
session assembler that groups correlated requests into sessions.

The main novelty in our pipeline lies in the request correlator
stage (i.e., stage four). In contrast to the state-of-the-art [5, 7], we
are exploring alternative approaches that are both more efficient
and accurate than deep learning classifiers for correlating requests
within Tor OS sessions. In one of our most promising attempts so
far, we start by fixing the initial and final absolute times of a client
request and split the received packets during this time interval into
buckets of 500 ms each. We do the same splitting for the packets
sent on the OS side and apply an adapted version of the known NP
decision problem Subset Sum [10]. Since we apply it on a bounded
time series, it is particularly effective at matching patterns between
the packets received by the clients and packets sent by the OS. For
now, our algorithm checks if there is a combination of packets sent
by the OS that approximately matches the total packets received
by the client. We then improve the request correlator precision
by grouping multiple requests into corresponding sessions in the
session assembler. For instance, we may require at least 3 requests
from the same session to be considered correlated by our request
correlator to assume we indeed found a correlated session between
a client and an OS.

3 PRELIMINARY RESULTS
We have built an initial prototype using Python. To implement the
origin checker and the OS request identifier filtering stages, we
draw inspiration from earlier encrypted traffic analysis tasks in

3400



Poster: User Sessions on Tor Onion Services:
Can Colluding ISPs Deanonymize Them at Scale? CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Origin
Checker

Request
Separator OS Request

Identifier

Request
Correlator

Session
Assembler

Traffic
samples

Client
traces

OS
traces

OS
individual
requests

Client
individual
requests

Client
requests
to OSes

Correlated
requests

Correlated
sessions

Filtering phase Matching phase

Figure 2: Traffic deanonymization pipeline.

related domains [1, 3] and make use of XGBoost [9]. To evaluate
our prototype, we generated a dataset containing the traces of traf-
fic that we emulated between several clients and OSes under our
control in a laboratory environment. We set up 7 virtual machines
(VMs) hosting OSes and 20 VMs acting as Tor clients, scattered in
different locations across the globe. To generate a set of OS inter-
actions that follows realistic popularity rates, we considered the
access rates to the top 7 most popular OSes [2] – excluding those
identified as botnet C&C servers. To make our selection of repre-
sentative webpages, we created 7 webpages by crawling ahmia.fi,
a clearnet search engine for Tor OSes. We emulated a set of con-
current browsing sessions on our OSes, in which each client placed
60 sessions, each session targeted to an OS chosen probabilistically
according to its popularity. Each session includes 5 requests to the
webpage hosted by the OS.

Figure 3 shows the variation of precision and recall when group-
ing the requests into sessions of at least 1, 2, 3, 4, or 5 requests for
a dataset with 268031 possible sessions, where only 1020 of those
are correlated. Our preliminary results of the matching phase using
ground truth are encouraging, showing that our solution is 3 orders
of magnitude faster than existing traffic correlation techniques on
Tor traffic [5] and it achieves 100% precision and 97.7% recall when
leveraging at least 4 requests of the same session. By requiring
that a higher number of requests to be correlated within a given
session, e.g., five requests rather than four, the number of false
negatives increases causing a reduction in the recall. On the other
hand, the number of false positives decreases making the results of
the obtained correlated sessions more reliable.

Our current implementation still has some drawbacks, such as
not accounting for situations with timing incoherences, where the
client may receive most of the packets before the OS sent them, or
much after, which do not occur in a significant number of cases for
our synthetic datasets but is bound to occur more often in the wild.
So, our next steps will consist of establishing a timing relationship
between the packets observed in each bucket at the client and the
OS side, for instance with frequency domain signal processing and
analysis. We will thoroughly evaluate our techniques using richer
datasets and develop countermeasures based on our findings. We
will also make a direct comparison of the performance and scalabil-
ity of our solution against the state-of-the-art DeepCoFFEA [7] at
deanonymizing OS traces, and provide further insight on why our
Subset Sum parameterization works so well for this kind of trace.

1 2 3 4 5

0.6

0.8

1.0

Pr
ec

isi
on

0.596

0.981 0.999 1.000 1.000

1 2 3 4 5
Number of minimum correlated requests to find a correlated session

0.6

0.8

1.0

Re
ca

ll

0.995 0.993 0.990 0.977

0.833

Figure 3: Precision and recall variation when grouping mul-
tiple requests into a session.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments and in-
sightful feedback. This work was supported by the Fundação para
a Ciência e Tecnologia (FCT) under grants UIDB/50021/2020 and
(DAnon) CMU/TIC/0044/2021.

REFERENCES
[1] Diogo Barradas, Nuno Santos and Luís Rodrigues. 2018. Effective Detection

of Multimedia Protocol Tunneling using Machine Learning. In Proc. of USENIX
Security’18.

[2] Gareth Owenson and Nicholas Savage. 2016. Empirical analysis of Tor hidden
services. IET Information Security (2016).

[3] Jamie Hayes and George Danezis. 2016. k-fingerprinting: A Robust Scalable
Website Fingerprinting Technique. In Proc. of USENIX Security’16.

[4] Jiajun Gong and Tao Wang. 2020. Zero-delay Lightweight Defenses against
Website Fingerprinting. In Proc. of USENIX Security’20.

[5] Milad Nasr, Alireza Bahramali and Amir Houmansadr. 2018. DeepCorr: Strong
Flow Correlation Attacks on Tor Using Deep Learning. In Proc. of CCS’18.

[6] Rebekah Overdorf, Marc Juarez, Gunes Acar, Rachel Greenstadt and Claudia Diaz.
2017. How Unique is Your .Onion? An Analysis of the Fingerprintability of Tor
Onion Services. In Proc. of CCS’17.

[7] Se Oh, Taiji Yang, Nate Mathews, James Holland, Mohammad Rahman, Nicholas
Hopper and Matthew Wright. 2022. DeepCoFFEA: Improved Flow Correlation
Attacks on Tor via Metric Learning and Amplification. In Proc. of S&P’22.

[8] The Tor Project. 2021. Onionoo. https://metrics.torproject.org/onionoo.html.
Accessed: 2022-08-14.

[9] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proc. of KDD’16.

[10] Vitor Curtis and Carlos Sanches. 2016. An Efficient Solution to the Subset-Sum
Problem on GPU. Concurrency and Computation: Practice and Experience (2016).

3401

https://metrics.torproject.org/onionoo.html

	Abstract
	1 Introduction
	2 Technical approach
	3 Preliminary Results
	Acknowledgments
	References



