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Analysis of a Three-Phase Twelve-Pulse Voltage
Output Type Rectifier

Predrag Pejović and Johann W. Kolar

Abstract—Exact solution of a circuit model for a three-phase
twelve-pulse rectifier with constant-voltage load and ac-side reac-
tance for the continuous conduction mode is presented. Obtained
results are compared to the results provided by sinusoidal
approximation. It is shown that the sinusoidal approximation
provides acceptable results at low output voltages, with the
accuracy being decreased for the output voltages approaching to
the discontinuous conduction mode boundary. In comparison to
the exact solution, the sinusoidal approximation always provides
slightly more optimistic prediction for the rectifier exploitation
parameters. Computational complexity of the exact solution is the
same as for the solution obtained applying sinusoidal approxi-
mation, having the same structure, but different parameters. In
comparison to the six-pulse rectifiers of the same type, analyzed in
previous publications, agreement between the solutions is better
due to the increased pulse number and reduced harmonic content
of the waveforms.

Index Terms—AC-DC power conversion, converters, harmonic
distortion, power conversion harmonics, power quality, rectifiers.

I. INTRODUCTION

IN this paper, the rectifier presented in Fig. 1 is analyzed
in order to obtain closed form analytical expressions for

its performance parameters, like the dependence of the output
voltage on the output current, dependence of the input current
THD on the output voltage, maximum of the output power
the rectifier might provide, etc. The rectifier is proposed in
[1], and it consists of two three-phase diode bridges, filtering
capacitor, three coupling inductors, and a line-side interphase
transformer. Construction of the rectifier is simple and robust,
without controlled switches, high frequency switching, and
related problems of electromagnetic interference, increased
losses, and reliability issues. This makes the design suitable
for application in harsh environments and in cases where low
maintenance and high reliability are required. Basic version
of the rectifier, proposed in [1] and shown in Fig. 1, provides
twelve-pulse voltage waveforms vTk, k ∈ {1, 2, 3}, at the
inputs of the line-side interphase transformer, that are coupled
to the mains by three inductors. In comparison to the current
output type rectifiers, the coupling inductors are used instead
of the filtering inductor at the dc side.

The basic structure of the rectifier is extended in [2], [3] to
provide 18–pulse operation and recuperation [2]. An analysis
of the rectifier operating principles is presented in [4], as
well as an extension of the structure to provide 24–pulse
operation. In [5], harmonic cancellation approach is applied
in the analysis of the line-side interphase transformer, and
controlled switches are applied to provide 24–pulse operation.
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Fig. 1. The rectifier.

Although three-phase voltage output type rectifiers have
simple structure, their analysis is not straightforward. In [6],
sinusoidal approximation is applied to analyze the six-pulse
version of the rectifier while it operates in the continuous
conduction mode. Performance parameters of the rectifier are
derived, as well as the output voltage range where the rectifier
operates in the continuous conduction mode. In the case the
rectifier losses are negligible, the exact solution for the contin-
uous conduction mode is presented in [7]. The exact solution
has the same computation complexity as the solution obtained
applying sinusoidal approximation, but provides additional
information about the performance parameters, like the input
current THD and the difference between the power factor and
the displacement power factor.

Aim of the research presented in this paper is to provide
a closed-form analytical solution for the rectifier of Fig. 1
while it operates in the continuous conduction mode. The
continuous conduction mode is characterized by absence of
the intervals when some of the input currents of the diode
bridges are equal to zero. In the continuous conduction mode,
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in each of the diode bridges, and in each time point, three
of the diodes are conducting. The first step in the analysis is
the sinusoidal approximation approach, which provides a good
starting point to obtain the exact solution and some directly
applicable intermediate results. Methods applied to obtain the
exact solution are somewhat more complex than in [7], due to
increased complexity of the structure caused by the line-side
interphase transformer.

The line-side interphase transformer is applied to split the
input currents and to provide equal load sharing between the
two diode bridges. Besides, it provides appropriate phase shift
to form twelve-pulse input voltages of the line-side interphase
transformer vT1, vT2, and vT3 on the basis of its output
voltages vA1, vA2, vA3, vB1, vB2, and vB3. The line-side
interphase transformer is assumed to be built using three
single-phase ferromagnetic cores, which results in negligible
magnetizing currents. Another option that provides low mag-
netizing currents is application of a shell type three-phase core
or a five-limb core, with a huge magnetizing inductance for the
zero-sequence component. Under these assumptions, assuming
perfect magnetic coupling further, the line-side interphase
transformer is characterized by
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1
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p
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vT1 =
1

p+ 2
vA1 +

p+ 1

p+ 2
vB1 −

p

p+ 2
(vA3 − vB3) (7)

vT2 =
1

p+ 2
vA2 +

p+ 1

p+ 2
vB2 −

p

p+ 2
(vA1 − vB1) (8)

and

vT3 =
1

p+ 2
vA3 +

p+ 1

p+ 2
vB3 −

p

p+ 2
(vA2 − vB2) . (9)

To provide proper phase shift and twelve-pulse waveforms of
vTk, k ∈ {1, 2, 3}, the turns ratio parameter should be set to

p =

√
3− 1

2
≈ 0.366 (10)

according to [1].
In the analyses that follow, the rectifier would be assumed

to be supplied by a symmetric undistorted three-phase voltage
system

vk = Vm sin

(
ωt− (k − 1)

2π

3

)
(11)

for k ∈ {1, 2, 3}, where Vm is the phase voltage amplitude.

To simplify the analysis and to generalize the results,
normalization of voltages, currents, and time are performed
in the same manner as in [7], replacing voltages with their
normalized equivalents according to

m =
1

Vm
v (12)

while the currents are normalized applying

j =
ωL

Vm
i. (13)

The time variable is replaced by the phase angle equivalent

φ = ωt. (14)

After the normalization is performed, governing equations for
the inductor currents are transformed from

L
dik
dt

= vk − vTk (15)

to
djk
dφ

= mk −mTk. (16)

Aim of the analysis is to obtain the steady-state response,
with all the voltages and currents periodic with the period of
2π in phase angle.

To determine waveforms of the rectifier voltages, it is
important to note that the input voltages are free from the
zero-sequence component, according to (11), thus

v1 + v2 + v3 = 0. (17)

Since the rectifier is connected as a three-wire system,

i1 + i2 + i3 = 0. (18)

Voltages at the line-side interphase transformer input terminals
are given by

vTk = vk − L
dik
dt

(19)

for k ∈ {1, 2, 3}. According to (17) and (18), this results in

vT1 + vT2 + vT3 = 0. (20)

In the analysis, the output capacitor is assumed to be large
enough to provide constant output voltage

VOUT = vOUTP − vOUTM . (21)

Equations (20) and (21) are essential in obtaining waveforms
of the rectifier voltages.

II. SINUSOIDAL APPROXIMATION

The sinusoidal approximation in the analysis of the rectifier
of Fig. 1 is based upon the assumption that the inductor
currents are sinusoidal, given by

ik = Im1 sin

(
ωt− ϕ− (k − 1)

2π

3

)
(22)

for k ∈ {1, 2, 3}, which takes normalized form

jk = Jm1 sin

(
φ− ϕ− (k − 1)

2π

3

)
. (23)
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The currents of the inductors are assumed to have the same
amplitude, being mutually shifted in phase for 2π/3, due to
symmetry. Each of the inductor currents is assumed to be
delayed in phase for ϕ in regard to the corresponding phase
voltage.

Assumed input currents specify the line-side interphase
transformer output currents according to (1)–(6) and (10),
resulting in their normalized waveforms

jAk =

√
3− 1√
2

Jm1 sin

(
φ− ϕ+

π

12
− (k − 1)

2π

3

)
(24)

and

jBk =

√
3− 1√
2

Jm1 sin

(
φ− ϕ− π

12
− (k − 1)

2π

3

)
. (25)

The line side interphase transformer output currents determine
states of the diodes in the diode bridges, such that

DA2k−1 =

{
1, iAk > 0
0, iAk < 0

(26)

DA2k = 1−DA2k−1 =

{
1, iAk < 0
0, iAk > 0

(27)

DB2k−1 =

{
1, iBk > 0
0, iBk < 0

(28)

and

DB2k = 1−DB2k−1 =

{
1, iBk < 0
0, iBk > 0

(29)

for k ∈ {1, 2, 3}. At this point, it is convenient to define
variables that contain numbers of conducting diodes

DAUP = DA1 +DA3 +DA5 (30)

DADN = DA2 +DA4 +DA6 (31)

DBUP = DB1 +DB3 +DB5 (32)

and
DBDN = DB2 +DB4 +DB6. (33)

In the continuous conduction mode, these variables can take
only two values, 1 or 2, and they are constrained by the fact
that in the continuous conduction mode in each time point
three diodes are conducting in each of the diode bridges

DAUP +DADN = 3 (34)

and
DBUP +DBDN = 3. (35)

States of the diodes determine voltages of the line-side
interphase transformer output terminals according to

mAk = DA2k−1mOUTP +DA2kmOUTM (36)

and
mBk = DB2k−1mOUTP +DB2kmOUTM (37)

TABLE I
VALUES OF THE RECTIFIER OUTPUT TERMINAL VOLTAGES

DAUP DADN mOUTP mOUTM

1 1 2
3
MOUT − 1

3
MOUT

1 2 3−
√
3

3
MOUT −

√
3

3
MOUT

2 1
√
3

3
MOUT − 3−

√
3

3
MOUT

2 2 1
3
MOUT − 2

3
MOUT
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Fig. 2. Waveforms of mOUTP and mOUTM normalized to MOUT for
ϕ = 45◦.

for k ∈ {1, 2, 3}. At this point, values of mOUTP and mOUTM

are not known. However, these values can be determined
solving the system derived from (20) and (21)

((
2−

√
3
)
DAUP +

(√
3− 1

)
DBUP

)
mOUTP+

+
((
2−

√
3
)
DADN +

(√
3− 1

)
DBDN

)
mOUTM = 0

(38)
and

mOUTP −mOUTM = MOUT . (39)

According to the constraints imposed to the values DAUP ,
DADN , DBUP , and DBDN can take, and their mutual depen-
dence given by (34) and (35), there are four distinct solutions
of the equation system (38) and (39), as given in Table I.
The waveforms of mOUTP and mOUTM corresponding to
the currents specified by (23) are shown in Fig. 2. After
mOUTP and mOUTM are obtained, waveforms of mAk and
mBk are determined by (36) and (37) for k ∈ {1, 2, 3}. Finally,
the waveforms of mTk are obtained applying (7)–(9). The
waveform of mT1 is shown in Fig. 3.

States of the diodes (26)–(29) are determined only by signs
of the currents iAk and iBk, k ∈ {1, 2, 3}. Thus, the results
(30)–(39) are applicable in all situations where the rectifier
operates in the continuous conduction mode, not only when
the sinusoidal approximation is applied.

The waveforms of the line-side interphase transformer input
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Fig. 3. Waveform of mT1 normalized to MOUT for ϕ = 45◦.

voltages are in the sinusoidal approximation represented by
their fundamental harmonic, mTk,1,

mTk,1 = MTm1 sin

(
φ− ϕ− (k − 1)

2π

3

)
(40)

for k ∈ {1, 2, 3}, where the amplitude of the fundamental
harmonic is

MTm1 =
2

π

(√
6−

√
2
)
MOUT . (41)

Complete expansion of mTk in Fourier series provides spec-
trum that has nonzero harmonic components of the order
12n± 1, for n ∈ N , with the amplitudes

MTm(12n±1) =
2

π

(√
6−

√
2
) (−1)

n

12n± 1
MOUT . (42)

According to (23) and (40), the fundamental harmonics of
vTk are in phase with the corresponding phase currents, and
they are mutually related by the emulated resistance, vTk,1 =
REik, i.e. mTk,1 = ρEjk in normalized form, where

ρE =
RE

ωL
=

MTm1

Jm1
=

24

π2

(
2−

√
3
)MOUT

JOUT
(43)

is normalized value of the emulated resistance. This results in
the phasor diagram shown in Fig. 4, which is used to determine
amplitude of the input current for a given value of the output
voltage. Since

∣∣∣M⃗k

∣∣∣ = 1,
∣∣∣M⃗Tk,1

∣∣∣ = MTm1, and
∣∣∣M⃗Lk

∣∣∣ =∣∣∣J⃗k∣∣∣ = Jm1 due to normalization, the amplitude of the input
current is obtained as

Jm1 =
√
1−M2

Tm1. (44)

After the input current amplitude is determined, application of
(1)–(6) provides amplitudes of the diode bridge input currents
as

JAm1 = JBm1 =

√
3− 1√
2

Jm1. (45)

Since there are two diode bridges, according to [6] the output
current is obtained as

JOUT =
6

π
JAm1 =

3

π

(√
6−

√
2
)
Jm1. (46)

ϕ

~Jk

~Mk

~MLk

~MTk,1

Fig. 4. The phasor diagram.

Applying (41) and (46) in (44), the output variables are related
as

JOUT =
3
(√

6−
√
2
)

π

√
1−

(
2−

√
3
)( 4

π
MOUT

)2

≈ 0.9886
√
1− 0.4344M2

OUT .

(47)
In practice, it is convenient to have this equation in its inverted
form

MOUT =
π
(√

6 +
√
2
)

8

√
1−

(
2 +

√
3
)(π

6
JOUT

)2
≈ 1.5173

√
1− 1.0232 J2

OUT .

(48)
Normalized output power is given by

POUT =

3
(√

6−
√
2
)

π
MOUT

√
1−

(
2−

√
3
) (

4
πMOUT

)2
.

(49)

The output power reaches maximum when

dPOUT

dMOUT
= 0 (50)

at
MOUT =

(√
3 + 1

) π

8
≈ 1.0729. (51)

The maximum of normalized output power is

POUTmax =
3

4
= 0.75 (52)

which is one half of the short circuit apparent power.
Since the input currents are assumed sinusoidal, the power

factor and the displacement power factor are the same, which
is according to the phasor diagram of Fig. 4 equal to the
normalized amplitude of the line-side interphase transformer
input voltage fundamental harmonic,

PF = DPF = MTm1 =
2

π

(√
6−

√
2
)
MOUT . (53)

The sinusoidal approximation excludes the discontinuous
conduction mode, since the input currents, and consequently
the input currents of the diode bridges, are assumed sinusoidal,
continuously flowing in time. However, occurrence of the
discontinuous conduction mode can be predicted applying
sinusoidal approximation, since the continuous conduction
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requires currents jAk and jBk to continue to flow after the
zero crossing and thus related commutation. In the case of
jA1 and jB1, this reduces to

djA1

dφ

∣∣∣∣
− π

12+ϕ+

> 0 (54)

and
djB1

dφ

∣∣∣∣
π
12+ϕ+

> 0. (55)

The derivatives of the line-side interphase transformer output
currents should be obtained from (1)–(6) and the inductor
equations (16). In the example of jAk currents, this reduces
to

djA1

dφ
=

1

p+ 2

dj1
dφ

− p

p+ 2

dj2
dφ

=

=
1

p+ 2
(m1 −mT1)−

p

p+ 2
(m2 −mT2) .

(56)
Appropriate voltage values according to the required phase
angle should be used. Twelve inequalities of this kind can be
written, and each of them provides the same condition for the
continuous conduction mode operation

MOUT < MOUTmax (57)

where

MOUTmax =
3π
(
1 +

√
3
)√

2 (π2 + 144)
≈ 1.4678. (58)

This condition bounds the output voltage region where previ-
ously derived results are valid.

III. THE EXACT SOLUTION

Essential step in obtaining the closed form solution is to
establish symmetry relations between the input currents of the
diode bridges. There are six of these currents, and each of them
exhibits two zero crossings during the line period. Each of the
zero crossings causes commutation in the corresponding leg of
the diode bridge, where conducting is switched from one diode
to another. There are twelve of these transitions during the line
period. Symmetry in the rectifier operation forces the intervals
between two adjacent zero crossings to be the same, resulting
in twelve intervals of the duration of π/6 in the phase angle
in which the rectifier is represented by an equivalent linear
circuit.

The symmetries are caused both by the rectifier construction
and by symmetry in the input voltage system. The first of the
symmetries expresses waveforms of two of the input currents
as phase shifted waveform of the third one

j1 (φ) = j2

(
φ+

2π

3

)
= j3

(
φ+

4π

3

)
. (59)

The second of the symmetries is an odd type symmetry of the
input current during its half-period

jk (φ) = −jk (φ− π) (60)

for k ∈ {1, 2, 3}. With these two symmetries, regarding signs
of the currents the line period is divided into six segments of
equal duration, π/3 in phase angle, as shown in [7].

Applying (59) in (1) expressed in the domain of complex
Fourier coefficients and applying the time shifting theorem,
the complex Fourier series coefficients of the expansion of
iA1 are obtained as

IA1n =
1− pe−j 2π

3 n

p+ 2
I1n (61)

while the coefficients for iB1 are obtained as

IB1n =
p+ 1 + pe−j 2π

3 n

p+ 2
I1n. (62)

Since

1− pe−j 2π
3 n

p+ 2
e−j π

6 n − p+ 1 + pe−j 2π
3 n

p+ 2
= 0 (63)

for 12n ± 1, where according to (42) the input currents
contain nonzero harmonic components, currents iA1 and iB1

are related such that

iB1 (t) = iA1

(
t− T

12

)
(64)

where T is the line period. This result can be generalized to
other output currents of the line-side interphase transformer,
and expressed in terms of normalized variables as

jBk (φ) = jAk

(
φ− π

6

)
. (65)

In this manner, the line period is divided in twelve segments of
π/6 in phase angle where the diode states remain unchanged,
and the rectifier may be represented by an equivalent linear
circuit. Besides, all of the line-side interphase transformer
output currents iAk and iBk have the same shape, being
different only in the phase displacement.

To obtain the exact solution, let us define θ as the phase
angle where current iAk exhibits rising zero crossing,

jA1 (θ) = 0, jA1

(
θ−
)
< 0, jA1

(
θ+
)
> 0. (66)

In sinusoidal approximation, the angle θ is related to the phase
lagging of the input currents ϕ as

θ = ϕ− π

12
. (67)

Next, let us define J0 as

J0 = j1 (θ) . (68)

Starting from the initial value J0, the waveform of j1 is
according to (16) given by

j1 (φ) = J0 +
∫ φ

θ
(m1 (φ)−mT1 (φ)) dφ =

= J0 + cos θ − cosφ−
∫ φ

θ
mT1 (φ) dφ.

(69)

The integral of mT1 is determined according to the staircase
waveform of Fig. 3.

Let us define values of j1 at state changing instants during
one half period as

Jl = j1

(
θ + l

π

6

)
(70)
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for l ∈ {0, 1, 2, 3, 4, 5}. The values of Jl for l > 0 are
determined as

J1 = J0 + cos θ − cos
(
θ +

π

6

)
(71)

J2 = J0 + cos θ − cos
(
θ +

π

3

)
− π

18
MOUT (72)

J3 = J0 +cos θ− cos
(
θ +

π

2

)
−
(
1 +

√
3
) π

18
MOUT (73)

J4 = J0+cos θ−cos

(
θ +

2π

3

)
−
(
3 +

√
3
) π

18
MOUT (74)

and

J5 = J0 + cos θ − cos

(
θ +

5π

6

)
−
(
3 + 2

√
3
) π

18
MOUT .

(75)
Remaining values of the input current at the state transition
points are determined applying symmetry (60). Besides, there
is linear dependence between the values (71)–(75), again due
to the symmetry.

At this point, values of θ and J0 are not determined. To
determine these parameters,

jA1 (θ) = 0 (76)

and
jB1

(
θ +

π

6

)
= 0 (77)

are used. Multiplying (1) and (4) with p + 2 and taking
appropriate values of j2 according to (59) and (60), the system
to determine θ and J0 is obtained as

J0 + pJ2 = 0 (78)

and
(p+ 1) J1 − pJ3 = 0. (79)

The system of (78) and (79) reduces to(√
3− 1

)
cos θ +

(
3−

√
3
)
sin θ + 2

(√
3 + 1

)
J0 =

=
π

9

(√
3− 1

)
MOUT

(80)

and(
1−

√
3
)
cos θ+

(
3−

√
3
)
sin θ+4J0 = −2π

9
MOUT . (81)

Solution of the system is

θ =
5π

12
− arcsin

(
π
(√

2 +
√
6
)

18
MOUT

)
(82)

and

J0 =

√
2−

√
6

4

√
1−

(
2 +

√
3
)(πMOUT

9

)2

(83)

which determines the rectifier input currents according to (69),
(59) and (60). The waveform of j1 (φ) during the half period
θ < φ < θ + π is obtained in a general form

j1 (φ) = MOUT (πa− b (φ+ α))− cosφ (84)

TABLE II
VALUES FOR PARAMETERS a AND b

interval a b

θ < φ < θ + π
6

2+
√
3

18
0

θ + π
6
< φ < θ + π

3
11+2

√
3

36
1
3

θ + π
3
< φ < θ + π

2
11

√
3+2

36

√
3

3

θ + π
2
< φ < θ + 2π

3
2
3

2
3

θ + 2π
3

< φ < θ + 5π
6

13
√
3−2

36

√
3

3

θ + 5π
6

< φ < θ + π 13−2
√
3

36
1
3

−0.4
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0
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0.3

0.4
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j 1
,
j A

1
,
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1

φ [◦]

j1
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Fig. 5. Waveforms of j1, jA1, and jB1 for MOUT = 1.4.

where

α = arcsin

(
π
(√

2 +
√
6
)

18
MOUT

)
(85)

and values for parameters a and b depend on the phase angle
segment, as given in Table II. Input currents of the diode
bridges are determined as the output currents of the line-side
interphase transformer according to (1)–(6). Waveforms of j1,
jA1, and jB1 obtained for MOUT = 1.4 are shown in Fig. 5.

After the waveforms of the input currents are determined,
their rms value is obtained as

JRMS =

√
3

54

√
486 +

((
6
√
3 + 11

)
π2 − 432

)
M2

OUT (86)

while the amplitude of the fundamental harmonic is obtained
as

Jm1 =

√
1−

(
8

9
− 16

π2

(
2−

√
3
))

M2
OUT (87)

which is close to the value obtained applying sinusoidal
approximation (44).

After the rms value and the fundamental harmonic of the
input current are determined, the total harmonic distortion of
the input current is obtained from

THD =

√
2J2

RMS − J2
m1

Jm1
(88)
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which reduces to

THD = MOUT

√ (
6
√
3 + 11

)
π4 + 7776

√
3− 15552

486π2 − 432
(
π2 + 18

√
3− 36

)
M2

OUT

.

(89)
This value cannot be predicted applying sinusoidal approxi-
mation.

To determine the output current, symmetry properties (59),
(60), and (65) are used, reducing the output current computa-
tion to

JOUT =
3

π

∫ θ+π

θ

jA1 (φ) dφ (90)

which provides

JOUT =
3
(√

6−
√
2
)

π

√
1−

(
2 +

√
3
)(πMOUT

9

)2

≈ 0.9886
√
1− 0.4547M2

OUT .

(91)
In practice, it is convenient to have the inverted form of (91)

MOUT =
9
(√

6−
√
2
)

2π

√
1−

(
2 +

√
3
)(π

6
JOUT

)2
≈ 1.4829

√
1− 1.0232 J2

OUT .

(92)
Relations (91) and (92) are close to the results (47) and
(48) obtained applying sinusoidal approximation, and have the
same computational complexity. Actually, both of the solutions
have the same form, while the parameters are slightly different.
Besides, both of the methods provide the same solution for
MOUT = 0, where the higher order harmonics are absent
from the system.

The output power of the rectifier in normalized form is given
by

POUT =
3
(√

6−
√
2
)

π
MOUT

√
1−

(
2 +

√
3
)(πMOUT

9

)2

(93)
which reaches maximum for

dPOUT

dMOUT
= 0 (94)

at
MOUT =

9

2π

(√
3− 1

)
≈ 1.0486. (95)

Normalized value of the maximum of the output power is

POUTmax =
27

π2

(
2−

√
3
)
≈ 0.7330 (96)

which is slightly lower than the value (52) predicted applying
sinusoidal approximation.

In the case of the exact solution, where the higher order
harmonics of the input currents are not neglected, the dis-
placement power factor and the power factor differ. The power
factor is obtained from

PF =

√
2

3

POUT

JRMS
(97)

which reduces to

PF =
4
(
3−

√
3
)

π
MOUT×

×
√

81−
(
2 +

√
3
)
π2M2

OUT(
π2
(
6
√
3 + 11

)
− 432

)
M2

OUT + 486
.

(98)
The displacement power factor is obtained from

DPF =
2

3

POUT

Jm1
(99)

which reduces to

DPF =
2
(√

6−
√
2
)

3
MOUT×

×
√

81−
(
2 +

√
3
)
π2M2

OUT

9π2 − 8
(
π2 − 18

(
2−

√
3
))

M2
OUT

.

(100)
Due to the low THD of the input currents, the difference
between (98) and (100) is small.

Boundary of the continuous conduction mode is determined
in the same manner as in the case when the sinusoidal
approximation was applied. When each of the diode bridge
input currents crosses zero, causing commutation in the bridge,
the current should keep its slope. Twelve such conditions may
be written, and due to symmetry all of them provide the
same result. In the case of the rising zero crossing of iA1

the condition is
djA1

dφ

∣∣∣∣
φ=θ+

> 0. (101)

Since
djA1

dφ
=

1

p+ 2

dj1
dφ

− p

p+ 2

dj2
dφ

(102)

according to (16) the slope of the normalized current is
expressed in terms of the normalized voltages as

djA1

dφ
=

1

p+ 2
(m1 −mT1)−

p

p+ 2
(m2 −mT2) . (103)

At the critical point of φ = θ+

djA1

dφ

∣∣∣∣
φ=θ+

=
1

p+ 2

(
m1 (θ)−mT1

(
θ+
))

−

− p

p+ 2

(
m2 (θ)−mT2

(
θ+
)) (104)

which reduces to

djA1

dφ

∣∣∣∣
φ=θ+

=
1

p+ 2
sin θ − p

p+ 2

(
sin

(
θ − 2π

3

)
+

√
3

3

)
.

(105)
Finally, from (105) the criterion is obtained as

MOUT < MOUTmax (106)

where

MOUTmax =
9√

π2
(
2 +

√
3
)
− 9

√
3 + 18

≈ 1.4366 (107)
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Fig. 6. Dependence of MOUT on JOUT .

which is close to the value (58) obtained applying the sinu-
soidal approximation, but somewhat lower. The same result is
obtained from the condition

djB1

dφ

∣∣∣∣
φ=π/6+θ+

> 0 (108)

as well as the remaining ten zero crossing cases during the
line period.

IV. COMPARISON OF THE SOLUTIONS

To compare the solutions, the diagrams that predict relevant
performance parameters of the rectifier are plotted. The first of
the diagrams relates the output voltage and the output current.
The diagram is plotted in Fig. 6 for the rectifier operating
in the continuous conduction mode. The curves indicate good
agreement between the solutions in the area of low output
voltages, where the input currents are less polluted by the
higher order harmonics. Sinusoidal approximation predicted
higher output current than the exact solution, which is the
effect also observed in [7]. However, due to the twelve-pulse
nature of mTk voltages containing lower amount of higher
order harmonics than corresponding six-pulse waveforms of
[7], agreement between the curves is better than in [7].

Dependence of the output power on the output voltage is
plotted in Fig. 7. Again, agreement between the curves is good
for low output voltages, with lower distortion of the input
currents. Both of the curves expose maxima predicted by (52)
and (96). Somewhat wider operation range for the continuous
conduction mode predicted by the sinusoidal approximation
can be observed. Sinusoidal approximation also predicted
somewhat larger maximum of the output power.

Dependence of the power factor on the output voltage is
presented in Fig. 8. The power factor and the displacement
power factor obtained applying the sinusoidal approximation
(53) are presented in dashed line, while the exact value of
the power factor is presented in solid line. The difference
between the curves can barely be noticed, except in the area
where predicted ranges of the continuous conduction mode
are different. To provide better illustration, difference between
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Fig. 7. Dependence of POUT on MOUT .
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the power factor obtained applying sinusoidal approximation
and the exact solution in the area where the exact solution
predicts the continuous conduction mode is presented in Fig. 9
in dashed line. The difference is lower than 0.5%, being the
highest at the boundary between the continuous and the dis-
continuous conduction mode. In the same figure the difference
between the displacement power factor and the power factor,
both resulting from the exact solution, is presented in solid
line. The difference between the displacement power factor
and the power factor is low, lower than 0.1%, due to the low
harmonic pollution of the input currents.

Sinusoidal approximation cannot predict distortion of the
input currents. Total harmonic distortion obtained by the exact
solution is plotted in Fig. 10. In the whole range of the
output voltage where the converter operates in the continuous
conduction mode, the input current THD is lower than 4.02%,
which is less than in the case of the six-pulse rectifier analyzed
in [7]. The same as in [7], the input current THD is smaller
for lower values of the output voltage.
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V. CONCLUSION

In this paper, analysis of a three-phase twelve-pulse output
voltage type rectifier is performed applying sinusoidal ap-
proximation and the exact analytical approach. The sinusoidal
approximation, besides providing the approximate solution,
proved to be useful in improving understanding of the rec-
tifier operation and preparing ground for the exact analysis,
providing directly applicable intermediate results regarding
the rectifier voltage waveforms. The exact solution is based
on symmetry properties of the input currents and the line-
side interphase transformer output currents. It is shown that
the three-phase voltages and currents, besides common phase
shifting symmetry over one third of the line period and the odd
type waveform symmetry over one half of the line period, has
another symmetry property that corresponding output currents
of the line-side interphase transformer are mutually shifted
for one twelfth of the line period. This causes the line-
side interphase transformer output currents to cross zero in
regular intervals of π/6 in phase angle causing diode state
changes. Except for the phase displacement, this causes shape
of the line-side interphase transformer input voltages to be

the same as in the analysis performed applying sinusoidal
approximation.

After the waveforms of the line-side interphase transformer
input voltages are known, waveforms of the input currents
are obtained integrating the inductor voltages for an assumed
value of the output voltage. Due to the symmetry properties,
it was sufficient to determine waveform of one of the phase
currents over one half of the line period. To completely
determine analytical description of the input current waveform,
two parameters remained to be determined: phase delay of
the line-side interphase transformer input voltage with regard
to the corresponding phase voltage and the value of the
corresponding input current at a diode state changing instant,
i.e. the constant of integration. These two parameters are
obtained from an equation system that imposes the line-side
interphase transformer output currents to have zero crossings
at appropriate phase angles.

When the analytical description of the input currents is
determined, closed form expressions for their rms value and
the fundamental harmonic amplitude are obtained. These two
parameters enable computation of the input current THD,
which is a parameter that cannot be predicted applying the
sinusoidal approximation. The exact solution provided a closed
form expression for the THD, indicating that in the whole
region of the output voltage where the rectifier operates in the
continuous conduction mode the input current THD is lower
than about 4%. Dependence of the output current on the output
voltage is determined next. Resulting expression is slightly
different from the expression obtained applying the sinusoidal
approximation, but both of them have the same computational
complexity. Value of the output current enables computation of
the output power, the power factor, and the displacement power
factor. In the output current and the output power, the sinu-
soidal approximation predicted somewhat higher values than
the exact solution. In the power factor and the displacement
power factor, the difference between the results is negligible.
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