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Abstract

To mitigate issues related to the growth of variable smart loads and distributed generation, distribu-

tion system operators (DSO) now make it binding for prosumers with inverters to operate under pre-set

rules. In particular, the maximum active and reactive power set points for prosumers are based on local

voltage measurements to ensure that inverter output does not cause voltage violations. However, such

actions, as observed in this work, restrict the range available for local energy management, with more

adverse losses on arbitrage profits for prosumers located farther away from the substation. The goal of the

paper is three-fold: (a) to develop an optimal local energy optimization algorithm for activation of load

flexibility and inverter-interfaced solar PV and energy storage under time-varying electricity prices; (b)

to quantify the locational impact on prosumer arbitrage gains due to inverter injection rules prevalent

in different energy markets; (c) to propose a computationally efficient hybrid inverter control policy

which provides voltage regulation while substantially reducing locational disparity. Using numerical

simulations on three identical prosumers located at different parts of a radial feeder, we show that

our control policy is able to minimize locational disparity in arbitrage gains between customers at the

beginning and end of the feeder to 1.4%, while PV curtailment is reduced by 91.7% compared to the

base case with restrictive volt-Var and volt-watt policy.
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I. INTRODUCTION

The penetration of distributed generation (DG) and flexible loads in low voltage (LV) dis-

tribution networks (DN) is growing at an astounding pace, and near future projections point

towards a substantial share of total energy consumed being met. Along with DG, prosumers

with flexible loads such as water heaters, HVAC [1], pool pumps [2], and energy storage

can perform local energy optimization to minimize their electricity bill. Further, distribution

system operators (DSOs) motivate such LV prosumers to be responsive by introducing time-

varying electricity prices, net-energy metering, peak demand charge, etc. The authors in [3]–

[5] use thermostatically controlled load and energy storage for performing energy arbitrage,

while [6] uses energy storage for peak shaving and frequency control, and [7] studies power

factor correction along with arbitrage. The authors in [8]–[10] use energy storage for increasing

photovoltaic (PV) hosting capacity. The growth of DGs in a DN causes several problems for

DSO such as localized voltage rise beyond permissible limits, and reverse power flow causing

damage to electrical appliances [11]. In order to mitigate these issues, DSOs choose either or

a combination of four paths: (a) develop new inverter connection grid rules, (b) upgrade DN

with reinforcements, such as installing tap changing transformers, etc, (c) curtail renewable

generation or load in case of voltage rise/dip beyond thresholds, or (d) create a market for

procuring prosumer load flexibility directly or through an aggregator. Indeed, IEEE-1547-2018

standard makes it mandatory for incoming DGs to comply with voltage regulation capabilities

[12], [13] to minimize system violations, as summarized in Table I. The standard promotes

operation modes such as (a) constant power factor mode, (b) constant reactive power mode, (c)

volt-Var, (d) P-Q mode, and (f) volt-watt mode.

TABLE I: Desired capabilities according to IEEE-1547-2018 [12], [13]

Mandatory voltage regulation capability modes

Performance Cate-

gories

Constant

power

factor

(cosφ)

Constant

reactive

power

Voltage-

reactive power

(volt-Var)

Active

power-

reactive

power

Voltage-

active power

(volt-watt)

Category A: Mini-

mum performance

yes yes yes Not

required

Not required

Category B: for

smart inverters

yes yes yes yes yes
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In Europe, inverter control rules are also commonly used by the DSOs [14], [15]. This involves

controlling the active (P) and reactive (Q) power output of the inverter as a function of local

voltage measurements (U). This is also referred to as volt-watt and volt-Var control in literature

[16]. As an example, reactive power injection rules are shown in Table II for Mitnetz Strom, a

DSO in Eastern Germany [17]

TABLE II: Mitnetz Strom inverter operational modes [17]

Inverter ≤ 4.6 kVA Inverter ≥ 4.6 kVA

Desired cosφ 0.95 0.9

Generation

1) cosφ (P) characteristic 1) Volt-Var

2) Fixed cosφ
2) cosφ (P) characteristic

3) Fixed cosφ

Storage 1) Fixed cosφ
1) Volt-Var

2) Fixed cosφ

P(U) and Q(U) inverter control in standalone and/or in combination have been studied in [18]–

[21] for performing localized voltage regulation, ensuring DN voltage does not aggravate due to

additional injection or consumption of P and Q. The authors in [22]–[24] use Q(U) control with

active power curtailment as a last resort for mitigating overvoltages caused by PV injection. In

[25], the authors propose reactive power control envelopes based on the unused solar inverter

capacity for ensuring nodal voltages are within bounds. However, [22], [25] do not consider local

optimization of prosumers. Authors in [26], [27] propose centralized dispatch of PV inverters for

avoiding voltage issues and minimizing curtailment. However, centralized control for small-sized

inverters is not practical as it requires feedback from local measurements, which is ineffective in

DNs due to the incomplete spread of smart meters [28] and privacy concerns [29]. This motivates

us to focus on studying distributed inverter control with optimizing flexible prosumer’s energy

cost.

In recent years, many works have highlighted the disparity caused in inverter usage due to

prosumer location in a radial DN. [30] proposes a PV hosting capacity mechanism in presence

of inverter control policies such as volt-var and volt-watt, where they exemplify the locational

impact of prosumer PV connection. Authors in [31] underscore that the DN relay settings are

affected by the location of DN protection relay in a radial DN. They utilize relay settings as a

basis for DG placement. In [32], an assessment is performed to quantify the locational impact
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on the lifetime of PV inverters. The authors conclude that the operational life of the inverter is

significantly affected by the installation site along with ambient temperatures. In radial DN, the

voltage levels drop as one moves farther away from the feeder head or substation [33], [34],

leading to greater voltage fluctuations at farther locations. Hence, current local inverter rules

will lead to different operational regimes for prosumers at different locations and affect their

arbitrage opportunity. In this work, we will analyze locational impacts on load flexibility and

arbitrage due to volt-Var and volt-watt modes of inverter control in detail. To this end, we design

new hybrid modes for inverter control that remedy the locational disparity. It is worth noting that

our study is in line with the mandate that DSOs should broadly provide a level-playing field for

all prosumers consuming or injecting electrical energy, irrespective of prosumer location [35].

Contributions: The goal of the paper is to quantify the locational discrepancy for a prosumer

with DG, energy storage, and flexible load due to contemporary DSO rules which enforce active

and reactive power limits on inverter-interfaced generation. The prosumer considered in this

paper is shown in Fig. 1. The main contributions of the paper are:

Energy 

storage
Renewable

generation
Active

Power

Load

Reactive

Power

Load

Inelastic load

Energy management of prosumer

Energy 

management

Local Voltage measurement at PCC

PCC

Flexible 

load

+ +

Converter: 

Inverter + rectifier

Information flow

Control signal flow

Flow directions

Load PV+

storage

Energy 

meter

Distribution

network

Power flow

Fig. 1: Prosumer energy management with voltage regulation at the point of common coupling

(PCC) using local voltage measurement
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• To evaluate the economic value of energy storage and load flexibility, using an LP (linear

programming) based formulation for resource dispatch and further to quantify the locational

disparity of prosumers that perform local energy optimization while following inverter

control rules that ensure grid voltages are within the safe operational region.

• To propose a novel local hybrid inverter control policy that minimizes the locational disparity

and is computationally efficient. We compare our approach against two traditional inverter

policies: (a) positive reinforcement control (PRC) and (b) avoiding negative reinforcement

control (ANRC), which represent an optimistic and pessimistic interpretation of volt-Var

and volt-watt control policies.

Using the proposed framework, we observe the loss of consumer profit1 due to inverter control

and note that a prosumer at the end of the feeder may have to pay more than 43% in the

variable component of their electricity bill, compared to a similar prosumer located near the

distribution substation. Moreover, we observe that passive inverter rules may fail if a large

capacity energy storage device is connected at a node, as storage can reverse the mode of

operation, i.e. from charging to discharging and vice versa, which may cause voltage violation

in the opposite direction compared to the direction of correction. Crucially, we observe that a

hybrid inverter control policy where active power (P) is controlled using ANRC and reactive

power (Q) is controlled using PRC significantly reduces the prosumer excess cost of consumption

while ensuring the correction of nodal voltage.

This paper is structured as follows. In Section II, the mathematical formulation for scheduling

load flexibility and energy storage is performed using linear programming. This formulation is an

extension of prior work on storage performing arbitrage proposed in [36]. Section III translates

the inverter control rules into permissible ranges for an active and reactive generation. These

ranges are utilized to validate the energy optimization output at a faster timescale. Section IV

details the effect of the location of prosumer on DN and performance indices used, and directions

in which fairness can be incorporated. Section V presents the numerical results. Section VI

concludes this paper.

1Profit of a prosumer refers to the avoided cost due to energy optimization.
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II. PROSUMER ENERGY MANAGEMENT

We consider a prosumer with inelastic and flexible load components, local generation, and

energy storage (as shown in Fig. 1). It is connected to the DN, from where it can buy or to which

it can sell energy. Based on buying and selling price fluctuations, load, and generation variations,

the prosumer energy management system optimizes battery states and flexible loads at regular

intervals to minimize the cost of energy. Moreover, the prosumer is obliged to follow active

and reactive power injection rules as detailed in Section III. We now describe the optimization

problem for the prosumer in detail.

A. Notation and system model

The price of electricity at time instant i consists of pib (the buying price) and pis (the selling

price). The difference between buying and selling prices is common in DSOs [37], [38], and

their ratio is denoted as κi. The end user’s inelastic consumption is denoted as di ≥ 0, the

flexible load is denoted as yi ≥ 0, and renewable generation is given as ri ≥ 0. Net uncontrolled

power seen at the energy meter is denoted as zi = di − ri ∈ R.

1) Timescale and notation: Prosumer energy optimization is performed at a slower timescale

at every time instant i. The total time duration, T , of operation is divided into N equal steps,

indexed by {1, ..., N}. The time duration of each step 1 ≤ i ≤ N is denoted as h. Hence,

T = Nh.

The time period between i and i+ 1 can be divided into a faster timescale as shown in Fig. 2

and referred to using ki. The value of ki resets to 0 at i. At this faster timescale, local voltage

regulation is performed.

In this work, energy management is performed every 15 minutes, and the voltage is regulated

every minute based on the voltage measurement at PCC. The grid voltage at PCC is measured

every minute. Active and reactive power outputs are adjusted to satisfy the grid’s needs.

2) Flexibility model: The flexible component of the load can be controlled within a range

while ensuring the cumulative energy consumed is not decreased. This is given by

K − ε ≤ h

N∑
i=1

yi ≤ K + ε, and yi ∈ [yimin, y
i
max], ∀i, (1)

where K denotes targeted cumulative energy consumed by flexible loads (ensuring the quality

of service). The flexible loads can be operated with an upper and lower envelope denoted as

yimax and, yimin respectively. Note that the flexibility is derived from loads, therefore, yimin ≥ 0.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

150

i i + 1

Index ki  for voltage regulation

Index i  for energy optimization

Time t 
minutes

Time t + 15 
minutes

     h      

Fig. 2: Pictorial representation of timescale for optimization and voltage regulation

(1) will ensure arbitrage benefits are due to energy management and not because of a reduction

in total energy consumption. ε denotes a small number for ensuring total energy consumed by

flexible devices is approximately equal to K with a small slack. In the absence of slack, (1) is

an equality constraint.

3) Battery model: The battery model considers the ramping constraint, and the capacity con-

straint along with charging and discharging efficiencies denoted by ηch, ηdis ∈ (0, 1], respectively.

The energy optimization considers the change in energy levels of the battery at time i is denoted

as xi. Selection of xi as the decision variable ensures that the energy storage arbitrage problem is

convex, provided the ratio of selling and buying price of electricity denoted as κ satisfies κ ≤ 1

[4], [36], [38]. Change in battery energy level at i is defined as xi = hδi, where δi ∈ [δmin, δmax]

∀i denotes ramp rate of the battery. δi > 0 when the battery is charging and vice versa. Note,

δi is in units of power and xi is in units of energy. The battery charge level is denoted as

bi = bi−1 + xi, bi ∈ [bmin, bmax],∀i, (2)

where bmin, bmax are the minimum and maximum battery capacity. The power consumed by a

battery at time i is denoted as

f(xi) =
[xi]

+

hηch
− ηdis[xi]

−

h
=

1

hηch
max(0, xi)−

ηdis max(0,−xi)
h

, (3)

where xi must lie in the range from Xmin = δminh to Xmax = δmaxh. The total power consumed

between time step i and i+ 1 is given as Li = zi + yi + f(xi), where zi is the uncontrolled net

load, yi is the flexible load, and f(xi) is the battery consumption.

The battery model is denoted as xC-yC: the battery will require 1/x hours to fully charge

and 1/y hours to fully discharge.
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B. Price based energy arbitrage

The optimal arbitrage problem is defined as the minimization of the cost of consumption of

energy (sum of net inflexible load, flexible load, and storage) over a time horizon considering

battery constraints and load flexibility constraints.

min
x,y

h

N∑
i

[zi + yi + f(xi)]
+pib − [zi + yi + f(xi)]

−pis, (4a)

s.t. (1), (4b)

bmin − b0 ≤ h
N∑
i

f(xi) ≤ bmax − b0, ∀i, (4c)

xi ∈ [Xmin, Xmax], ∀i. (4d)

The first constraint relates to load flexibility, the second to battery capacity, and the third to

battery ramping. This formulation can be solved as a linear programming (LP) formulation,

denoted as (PLP ) in Appendix A. In the next section, we discuss the introduction of non-linear

inverter size constraints that will be updated at a finer timescale based on voltage measurement.
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III. INVERTER CONTROL AND OPERATION

A. Inverter model

The inverter, shared by PV and battery, has a maximum Smax rating in Volt-Ampere (VA).

Its output over each 15-minute slot, based on energy optimization in (4a), is denoted as P i
inv =

f(xi)−ri, where ri denotes the renewable generation. Within each time-slot i, the inverter active

power P ki
inv and the storage output P ki

B are modeled at a faster timescale of 1 minute (see Fig. 2),

related as

P ki
inv = P ki

B − ri + P ki
curt, (5)

where P ki
curt denotes curtailed active power. Note P ki

curt ∈ [0, ri]. The inverter power limits are

given as

P ki
inv ∈ [−Pmax, Pmax], where Pmax ≤ Smax, (6a)

Qki
inv ∈ [−Qmax, Qmax] whereQmax = P ki

inv tan(cos−1 pfwc), if Pmax ∈ [0.1, pfwcSmax],

Qmax =
√

(Smax)2 − (P ki
inv)

2, otherwise,

(6b)

Here, pfwc denotes the worst-case power factor set by the DSO. Fig. 3 denotes the feasible

Qinv /Smax

For the worst 

case power 

factor = 0.9

+0.436

- 0.436

-0.9 -0.1-1

Pinv /Smax

Fig. 3: P, Q feasible region of inverter based on power factor limit of 0.9



12

active and reactive power regions based on the worst-case power factor limit. The blue-shaded

and green regions are where the inverter is allowed to operate.

We next discuss the inverter rules for P(U) and Q(U) control, implemented at a faster timescale

of one minute. The DSO imposes such control based on local voltage U . Many recent works

such as [39]–[43] have explored similar volt-var (Q(U)) and volt-watt (P(U)) inverter control

policy design. As standard, we consider inverter control to operate with P-priority, i.e., priority

being given to active power output in case both P, Q set-points cannot be met.

Voltage (pu)

1.0Umin

Umax

Q(U)

Voltage (pu)

1.0Umin

Umax

P(U)

Capacitive

Inductive

Discharge or 

generate

Charge or 

consume

Voltage (pu)

1.0Umin

Umax

Q feasible

Voltage (pu)

1.0Umin

Umax

P feasible

Capacitive

Inductive

Discharge

Charge

Pmax

Pmin
Qmin

(a) Volt-Var Control (b) Volt-Watt Control

(c) (d)

Voltage (pu)

1.0Umin

Umax

Q feasible

Voltage (pu)

1.0Umin

Umax

P feasible

Capacitive

Inductive Discharge
Charge

Pmax

Pmin

Qmax = Pmax tan(cos-1(pf))

Qmin(e) (f)

Positive reinforcement P,Q

Avoiding negative reinforcement P,Q

Inverter rules

1-Δperm

1+Δperm

1-Δperm

1+Δperm

Qmax = Pmax tan(cos-1(pf))

Fig. 4: (a) Volt-var or Q(U) control and (b) volt-watt or P(U) translated into energy storage

inverter feasible operation region considering positive reinforcement towards voltage regulation

at the node denoted in the green region in (c) and (d). (e) and (f) denotes feasible region for

avoiding negative reinforcement towards voltage regulation at the node. The feasible region is

depicted as traffic-light control with green as no reduction in the feasible region, the yellow

region shrinks the feasible region, and the red region shrinks it even further.
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B. Voltage zones for inverter control

Consider the instantaneous local voltage magnitude Uki at PCC at time ki. As shown in Fig. 4

(a) and (b), the operational voltage can be divided into 5 zones:

• Zone 1: Uki < Umin,

• Zone 2: Uki ∈ [Umin, 1−∆perm),

• Zone 3: Uki ∈ [1−∆perm, 1 + ∆perm],

• Zone 4: Uki ∈ (1 + ∆perm, Umax],

• Zone 5: Uki > Umax,

where ∆perm denotes the permissible voltage deviation in the distribution network before any

voltage regulation is required. The values of Umin, Umax are defined by the DSO. The value of

∆perm will decide the droop slopes. For simplicity, we assume ∆perm to be symmetrical around

under and over-voltage.

The operating region for the inverter is defined based on the inverter’s characteristics and

instantaneous voltage U . For active power, we denote the region as RU
P , and for reactive power,

as RU
Q.

RU
P (Uki) ≡ [RU

Pmin
, RU

Pmax
],

RU
Q(Uki) ≡ [RU

Qmin
, RU

Qmax
],

(7)

where RU
Pmin

, RU
Qmin

denote the lower operating envelopes and RU
Pmax

and RU
Qmax

denote the upper

operating envelopes. Note that these ranges are modified based on the zone that the voltage exists

in and the kind of control. In the next sections III-C and III-D, we define three such control

designs.

C. PRC inverter operation

Under the Positive reinforcement control (PRC) model for P, Q, the inverter actively contributes

to rectifying voltage issues in the different nodal voltage zones described in Section III-B. The

ranges for P and Q under PRC are listed in Table III and depicted in Figs. 4 (c) and (d). For

extreme nodal voltage levels (zones Z1 or Z5), the operating region is just one point. For moderate

voltages (Z2 and Z4), the ranges for inverter output are restricted for voltage regulation using

a linear droop. Finally, for voltage in Z3, inverter control does not limit arbitrage optimization

opportunities.
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TABLE III: Positive reinforcement inverter mode of operation

Uki [RUPmin
, RUPmax

] [RUQmin
, RUQmax

]

Z1 [Pmin, Pmin] [Qmax, Qmax]

Z2 [Pmin, Pmin(Uki
−(1−∆perm))

Umin−(1−∆perm) ] [Qmax(Uki
−(1−∆perm))

Umin−(1−∆perm) , Qmax]

Z3 [Pmin, Pmax] [Qmin,Qmax]

Z4 [Pmax(Uki
−(1+∆perm))

Umax−(1+∆perm) , Pmax] [Qmin, Qmin(Uki
−(1+∆perm))

Umax−(1+∆perm) ]

Z5 [Pmax, Pmax] [Qmin, Qmin]

D. ANRC inverter operation

Unlike PRC, avoiding negative reinforcement control (ANRC) model does not make the

inverter actively contribute to mitigating voltage problems but prevents it from aggravating the

current condition. The ranges for P and Q under ANRC are provided in Table IV and Figs. 4

(e) and (f). Note that the RU for P, Q for ANRC is larger than or equal to the range generated

using PRC, therefore, ANRC is less restrictive for prosumer energy optimization compared to

PRC.

TABLE IV: ANRC inverter mode of operation

Uki [RUPmin
, RUPmax

] [RUQmin
, RUQmax

]

Z1 [Pmin, 0] [0, Qmax]

Z2 [Pmin, Pmax(Umin−Uki
)

Umin−(1−∆perm) ] [Qmin(Umin−Uki
)

Umin−(1−∆perm) , Qmax]

Z3 [Pmin, Pmax] [Qmin, Qmax]

Z4 [Pmin(Umax−Uki
)

Umax−(1+∆perm) , Pmax] [Qmin, Qmax(Umax−Uki
)

Umax−(1+∆perm) ]

Z5 [0, Pmax] [Qmin, 0]

E. Hybrid inverter operation

From Fig. 4, we observe that PRC is more restrictive for active and reactive power control

compared to ANRC. Typically, energy management in low voltage consumers deals with only

active power, therefore, PRC-based inverter P control can lead to a significant reduction in

benefits for prosumer energy optimization. We propose a hybrid inverter control policy that
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selects active power output based on ANRC and reactive power output based on PRC. The

lower and upper bound of ranges for this based on voltage magnitude is listed in Table V.

TABLE V: Hybrid inverter mode of operation

Uki [RUPmin
, RUPmax

] [RUQmin
, RUQmax

]

Z1 [Pmin, 0] [Qmax, Qmax]

Z2 [Pmin, Pmax(Umin−Uki
)

Umin−(1−∆perm) ] [Qmax(Uki
−(1−∆perm))

Umin−(1−∆perm) , Qmax]

Z3 [Pmin, Pmax] [Qmin, Qmax]

Z4 [Pmin(Umax−Uki
)

Umax−(1+∆perm) , Pmax] [Qmin, Qmin(Uki
−(1+∆perm))

Umax−(1+∆perm) ]

Z5 [0, Pmax] [Qmin, Qmin]

F. Minimizing Constraint validation

From (5), solving PLP (energy arbitrage) without any inverter control gives P ki
inv = P i

inv =

f(xi) − ri with P ki
curt = 0, and Qki

inv = Qdefault = 0 ∀ ki. Under the permissible active P(U) and

reactive limits Q(U) defined under PRC, ANRC, or hybrid control, the following three conditions

may emerge:

• P i
inv satisfies both the output constraints derived by P(U) and Q(U) curves,

• P i
inv satisfies only one of the output constraints derived by P(U) or Q(U),

• P i
inv does not satisfy both output constraints derived by P(U) and Q(U) curves.

For cases where the output P i
inv lies outside the feasible range [RU

Pmin
, RU

Pmax
] of voltage-based

operation, let the nearest boundary to P i
inv be PU

trgt. The controller solves the following linear

programming optimization problem (P curt
LP ) to determine minimum curtailment of ri to reach

PU
trgt:

(P curt
LP ) min

P
ki
B

P ki
curt (8a)

s.t. P ki
B − (ri − P ki

curt) = PU
trgt (8b)

0 ≤ P ki
curt ≤ ri, (8c)

P ki
B ∈

[
max

(
δmin,

(bmin − bk−1)ηdis

k

)
,

min
(
δmax,

(bmax − bk−1)

kηch

)]
. (8d)
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Here, PU
trgt is based on the corresponding zone in Tables III, IV, or V and voltage Uki . Note that

in some cases, (P curt
LP ) may not have a feasible solution due to too low or high state of charge

of the battery, high renewable generation, or limited feasible range of operation for the inverter.

In that case, P ki
curt and P ki

B are operated based on sign of PU
trgt, i.e., if PU

trgt > 0 then charge the

battery at Pmaxki
B , else discharge at Pminki

B . If PU
trgt > 0 then P ki

curt is set at ri, else it is set to 0.

The inverter’s remaining capacity is then utilized to set the reactive power. In case the remaining

capacity is not enough, the reactive power is set closest to the minimum or maximum bound

level based on Tables III, IV, or V. The inverter control procedure is detailed in Appendix B.

Algorithm 1 details the entire procedure, conducted in a receding horizon fashion. Here the

energy arbitrage is first solved using (PLP ) at Step 4 to give battery states at a slower timescale.

Then the voltage is regulated based on inverter rules at a faster timescale for each time slot.

First, the inverter rules for selected permissible P and Q ranges are identified in Step 10. Then

the curtailed active power and reactive injection are determined using the associated Algorithm

2, detailed in Appendix B. The battery’s initial state for the next 15 minutes is fixed based on

the battery charge level at the end of the faster timescale.

In the next section, we describe methods to understand the effect of location on the prosumer

operation, while imposing the inverter controls with arbitrage.
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Algorithm 1 Prosumer energy management with inverter rules
Inputs: Uki , ri, b0, Smax, battery parameters

1: Set Pmax = Smax, i = 1

2: while i <= N do

3: Based on battery parameters, price levels, inelastic load, flexible load, renewable generation, initial battery

level calculated matrices A, b,X, f, lb, ub, detailed in Appendix A,

4: Solve PLP using load, generation, electricity price values, and initial battery capacity,

5: Set k = 0

6: while k < 15 do

7: Increment k = k + 1,

8: Inverter output based on energy management ζi = f(xi)− ri,

9: Measure local voltage Uki ,

10: Based on Uki calculate RUPmin
, RUPmax

, RUQmin
, RUQmax

as global variables. Refer to Table III for PRC,

Table IV for ANRC and Table V for hybrid inverter control,

11: Calculate Qmax based on (6b) as a function of RUP

12: Execute Algorithm 2 with range derived from Tables III, IV, or V to find P kicurt, P
ki
inv, Q

ki
inv,

13: Update battery charge level bki = bk−1i
+ f−1(P kiB )

14: Concatenate results Pcurt, Pinv, Qinv, bk=15i .

15: end while

16: Update battery charge level bi = bk=15i

17: Increment i = i+ 1,

18: Calculate matrices A, b,X, f, lb, ub for time i till N

19: end while

20: Return Pcurt, Pinv, Qinv.

IV. EFFECT OF PROSUMER LOCATION ON DN FEEDER

In this section, we develop performance indices for understanding the effect of prosumer

location in a DN on its optimization for arbitrage, with rules for DN voltage correction, and the

effect of PRC, ANRC, or hybrid voltage control policies.

A. Performance indices

The proposed indices relate to (a) voltage violations (b) arbitrage gains (c) energy curtailment

[19], [44], all of which are very relevant to operational issues in the distribution grid as well as

understanding the extent of profitability and opportunity cost associated with inverter interfaced

resources in the distribution grids. In fact, the comparison of arbitrage profits versus issues of
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grid limits on voltage is the primary objective of study for several smart grid control/optimization

algorithms proposed in the literature as mentioned in [45].

We consider the following performance indices:

Prosumer energy bill: If inverter rules and associated control are imposed on prosumers, their

savings due to the operation of the battery will be reduced due to voltage fluctuations, with more

loss at nodes with greater fluctuation of voltage such as terminal nodes. Note that the cost of

consumption without inverter control at node j is denoted as

Cj
wic =

∑
i

(
pib(di + yi − ri + f(xi))

+ − pis(di + yi − ri + f(xi))
−
)
h. (9)

The cost of consumption with inverter control for a prosumer connected at node j is denoted as

Cj
inv =

N∑
i

pib
(
di + yi − ri +

1

15

15∑
k=1

(P ki
B + P ki

curt)
)+
h

−pis
(
di + yi − ri +

1

15

15∑
k=1

(P ki
B + P ki

curt)
)−
h. (10)

The loss of consumer gain (LCG) due to location is denoted as

LCGj = Cj
inv − C

j
wic. (11)

Prosumer energy curtailed: Nodes with greater voltage fluctuations result in a more restricted

range of inverter operation, thus leading to greater energy curtailment. The total curtailed energy

(TCE) for inverter at node j is denoted as

TCEj =
∑
k

P
(j,k)
curt . (12)

Prosumer voltage correction: The Voltage correction index (VCI) consists of four metrics

that shows

• cumulative instances where voltage is beyond Vmax,

• cumulative instances where voltage is beyond 1 + ∆perm,

• cumulative instances where voltage is below 1−∆perm,

• cumulative instances where voltage is below Vmin.

VCI for voltage time series U is given as

VCI(U) =
[∑

k

1(U > Umax),
∑
k

1(U > 1 + ∆perm),

∑
k

1(U < 1−∆perm),
∑
k

1(U < Umin)
]
,

(13)
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where 1(condition) returns 1 if the condition is true, else it returns 0. VCI provides the number

of samples where the voltage level is outside the permissible level. The cumulative voltage

correction can be identified by adding all voltage deviation outside [1−∆perm, 1+∆perm] denoted

as cumulative voltage correction (CVC). CVC for voltage U is given as

CVC(U) =
∑
k

1(U > 1 + ∆perm)(U − 1−∆perm) +

∑
k

1(U < 1−∆perm)(1−∆perm − U).
(14)

Next, we use the performance indices proposed to quantify the locational impact on prosumer

energy optimization in presence of inverter rules based on voltage measurement at PCC.
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V. NUMERICAL RESULTS

Three numerical simulations are presented in this section. In Section V-A, energy optimization

presented in Section II is implemented. The second numerical experiment in Section V-B com-

bines the energy optimization with inverter P(U) and Q(U) rules for a prosumer. The effect of two

controls PRC and ANRC with varying inverter sizes on performance indices are presented. Based

on historical voltage variation, this exercise can be used to select the best-suited inverter. The

DN locational dependency of prosumer inverter control is explored in Section V-C. A stylized

DN with 3 identical consumers at different positions in the distribution feeder is analyzed for

(a) their cost of energy consumption, (b) voltage correction ability, and (c) renewable energy

curtailment. Performance indices presented in Section IV are used to compare different cases.

A. Energy optimization of storage and load flexibility

The results for energy management with 5% load flexibility, 2 kWh 1C-1C battery2, 1.8 kWp

solar is presented in Fig. 5. Electricity price data is used from New York Independent System

Operator or NYISO wholesale real-time electricity price. The load flexibility bounds are from

0 to twice the available flexibility. The deadline constraint ensures that the energy consumption

of the flexible resources is respected. Fig. 5 (a) shows the battery ramp rate, (b) the operation

and bounds of load flexibility, (c) the total billable load, (d) buying price of electricity, and (e)

the battery charge level. The flexible load output shows that it is activated in a way to avoid

morning and evening peaks in electricity prices, thus reducing the cost of consumption. Since

κ = 0.5, self-consumption is prioritized which is evident from Fig. 5 (c) where the net load after

energy optimization saturates at zero, therefore, avoiding injection of active power in DN.

Fig. 6 shows the decrease in the cost of consumption with load flexibility without and with

battery. Prosumers can reduce their cost of consumption by more than 25% by selecting a

consumption profile without reducing energy consumption. Observe that load flexibility control

is immune to κ = ps/pb. However, for batteries, the "value of battery" is higher for a lower

value of κ.

21C-1C battery takes 1 hour to charge fully and 1 hour to discharge fully from completely discharged and charged state

respectively.
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Fig. 5: Numerical validation for activating load flexibility and energy storage arbitrage; 5% load

flexibility, ps/pb = 0.5

B. Inverter controls with(out) energy optimization

Residential bidirectional inverters interfacing solar PV and battery are expensive components.

Selecting the size of the inverter is crucial in limiting the solar curtailed energy. In this numerical

simulation, we perform a sensitivity analysis using (a) percentage solar energy, (b) percentage

cost of consumption with respect to nominal load profile, and (c) percentage of profit with

respect to only energy optimization without voltage control. Many DSOs motivate prosumers to

self-consume their PV generation, this is ensured by setting ps << pb. For this experiment, we

assume ps = 0. The size of the solar panel is 2kWp and the battery capacity is 2 kWh (0.5C-0.5C,

ηch = ηdis = 0.95) requires ≈1.25 kW inverter for PRC inverter control and close to ≈2 kW
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Fig. 6: Value of storage, flexibility with varying load flexibility levels and κ which is the ratio

of selling price and buying price of electricity

for ANRC inverter control. Note from Fig. 7 that the profit with ANRC approaches to energy

optimization profit for a large-sized inverter. Fig. 7 also shows that for PV and battery, sharing

an inverter will lead to a reduction in the required size of inverters compared to if individual

inverters are used for PV and battery. For the oversized inverter, the profit with ANRC reaches

82.4% and PRC reaches 25% compared to only energy optimization.

Clearly, PRC-based inverter control will drastically reduce the energy optimization opportu-

nities for a prosumer. Thus, it is anticipated that more volatile nodes at the end of a radial

distribution feeder may have to pay more for energy compared to the same amount of energy

consumed close to the substation, causing the locational disparity. In Section V-C we quantify

this locational disparity.

TABLE VI: Line parameters for the network considered

branch from & to node Resistance (Ω) Reactance (Ω)

node 1 to 2 0.0922 0.0470

node 2 to 3 0.1844 0.0940

node 3 to 4 0.3660 0.1864
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Fig. 7: Inverter size impact on DG curtailed and consumer bill with κ = 1

C. Effect of prosumer location in radial DN

DN feeders are predominantly radial. These feeders are exposed to different levels of volt-

age fluctuations depending on their location on the feeder. For nodes close to the feeder, the

fluctuation is small compared to node buses away from the feeder. We consider 4 bus simple

distribution feeders. The network diagram is shown in Fig. 8. The line parameters of the 4 bus

network considered in this work are listed in Table VI. The minimum and maximum voltage are

assumed to be Vmin = 0.92 and Vmax = 1.08. The permissible voltage level ∆perm = 0.04. For

this numerical example, the inverter is oversized so as to not curtail energy due to the capacity
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limitation of the inverter. The PV size at the prosumer end is 2.5 KWp and a 1 kW 0.5C-0.5C

battery is connected to the 3 kVA bidirectional inverter.

The loads at nodes 2, 3, and 4 consist of a residential prosumer with identical load and solar

generation. Energy optimization with/without voltage-based inverter control is implemented at

one node at a time. The nodal voltage in absence of inverter control is shown in Fig. 9. The

voltage at node 2 shows minimal fluctuations compared to node 4. The following controls are

evaluated and listed in Table VII:

• Prosumer with no energy optimization,

• Energy optimization without inverter rules,

• Energy optimization with P(U) and Q(U) for ANRC,

• Energy optimization with P(U) and Q(U) for PRC,

• Energy optimization with hybrid policy: P control using ANRC and Q based on PRC.

Node 1 Node 2 Node 3 Node 4

L1

L2 L3

House 1 House 2 House 3

MV 

side

LV 

side

Fig. 8: Stylized 4 bus radial DN with identical prosumers connected at bus 2,3,4

TABLE VII: Effect of inverter control on performance indices

Mode Nominal case With inverter control

(with energy opt.) PRC ANRC Hybrid

Node id 2 3 4 2 3 4 2 3 4 2 3 4

VCI

∑
1(V > Vmax) 0 0 4 0 0 0 0 0 0 0 0 0∑

1(V > 1 + ∆perm) 0 3 86 0 3 0 0 3 82 0 3 71∑
1(V < 1 − ∆perm) 0 0 39 0 0 48 0 0 35 0 0 35∑

1(V < Vmin) 0 0 1 0 0 0 0 0 1 0 0 0

CVC 0 0.006 1.71 0 0.006 0.637 0 0.006 1.345 0 0.006 0.329

Consumption cost (e cents) 37.78 37.78 37.78 37.78 38.14 54.16 37.78 37.78 38.27 37.78 37.78 38.27

LCG (%) - - - 0% 0.95% 43.35% 0% 0% 1.3% 0% 0% 1.3%

TCE (kWh) 0 0 0 0 0.102 2.275 0 0 0.188 0 0 0.188
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Fig. 9: Nodal voltage in 3 bus radial distribution feeder

Table VII summarizes the results. The nodal voltages are calculated using power flows per-

formed using MATPOWER [46]. Since the nodal voltage control is performed in an open

loop, therefore, we observe the voltage deterioration for some time instances due to energy

optimization, although the correction is performed for cases where voltage is outside its bound.

The prosumer connected at node 4 has LCG increases up to 43.35%, refer to Table VII, causing

increased consumption cost. For ANRC, the curtailed energy is significantly reduced compared

to PRC inverter control. ANRC does correct the node voltage, however, the correction is lower

compared to PRC. ANRC is more favorable for consumer optimization as LCG is reduced from

43.35% for PRC to a mere 1.3%. Using ANRC will be fairer for prosumers located away from

the feeder. Note that for only energy optimization at node 4, the voltage profile deteriorates
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the most. This implies prosumer energy optimization needs to consider the network state into

account.

For the prosumer located at node 2, the local voltage is always within bounds due to its

proximity to the DN substation. Therefore, the prosumer does not have to bear any loss in

energy optimization due to inverter rules and also does not have to provide any Q. This is also

observed in [47]. One could observe that a prosumer connected at node 4 is at a disadvantage

due to its location in the network and is obliged to supply Q and limit energy optimization gains

without receiving any additional benefits compared to a prosumer at node 2.

The hybrid inverter control uses ANRC for active power control and uses PRC for reactive

power control. For our network example, R/X = 2. The hybrid inverter control outperforms only

PRC in terms of CVC. For the hybrid model, CVC at node 4 is 0.3286 compared to 0.637 for

PRC. Fig. 10 compares the voltages with only prosumer energy optimization and with energy

optimization plus inverter voltage control.
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Fig. 10: Corrected voltage at node 4 for hybrid controller

For the simulations, the computation time is calculated using 10000 Monte Carlo simulation

runs. Simulations are performed on HP Intel(R) Core(TM) i7 CPU, 1.90GHz, 32 Gb RAM

personal computer on Matlab 2021a. The runtime evaluations for energy arbitrage based on LP

(see Fig. 11(a)) is done separately from run times for voltage regulation in the inner loop (see

Fig. 11(b)). Note that the mean runtime for energy arbitrage is higher than the meantime of the

inner loop with 1 iteration of energy arbitrage every 15 minutes because of the shrinking time
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horizon and because arbitrage is performed only once for the next 15 minutes. Key observations

for runtime are

• LP-based energy arbitrage takes on average 0.0168 seconds for running 96 times for the

entire day.

• The inner loop which performs voltage regulation includes (a) time taken to perform Power

flows that depend on the network size, (b) one iteration of energy arbitrage every 15 minutes,

and (c) voltage regulation performed every minute. For the test network, 1440 power flows

are performed for 1 day, each iteration on average takes 0.015 seconds.

• The total runtime for energy arbitrage, power flows, and voltage regulation takes on an

average of 20.55 seconds. Monte Carlo simulations for 1000 days were performed.

Thus, the proposed voltage regulation with local energy optimization is computationally efficient.
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Fig. 11: Computational time taken for energy arbitrage and voltage regulation for 10000 Monte

Carlo runs. (a) energy arbitrage based on LP for one entire day, (b) Inner loop runtime with

1 iteration of LP for energy arbitrage in receding horizon, (c) Total runtime for local energy

optimization with voltage regulation for the entire day. The blue star shows the mean value.
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VI. CONCLUSION AND DISCUSSION

We propose an LP formulation to control energy storage and load flexibility while considering

electricity price variation, load profile, and renewable generation over a time horizon. This

optimization is performed at a slower timescale. The output of local energy optimization is

taken as input to update inverter output based on grid rules for inverter output on the basis

of local voltage measurement. The P(U) and Q(U) inverter control is translated into positive

reinforcement control (PRC) and avoiding negative reinforcement control (ANRC). The inverter

control is performed at a finer timescale. Algorithms are presented to consider these different

time scales, inverter size, locally measured voltage, and myopic curtailment reduction.

We quantify the prosumer "loss of consumer gain" due to their location. A stylized network-

based analysis is performed for a radial distribution network. Numerical results for a DN feeder

indicate the prosumer connected at the end of the feeder may have to pay 43% more than

prosumers close to the feeder. DSOs and regulators should hence consider that prosumer location

could cause a disparity in their cost of consumption. Hybrid inverter control with P control

using ANRC and Q control using PRC along with P-priority significantly reduces the disparity

for prosumers located at more vulnerable nodes while significantly improving the nodal voltage.

This control methodology can be utilized to minimize the locational disparity caused by voltage-

based inverter control from a prosumer perspective.

Inverter sizing is crucial for ensuring the full use of local resources such as energy storage, PV

generation, and network connection rules. We observe through numerical results that bidirectional

inverter architecture where residential renewable generation and battery share a single inverter

could lead to a significant reduction in its size compared to dedicated solar and battery inverters.

The mapping of voltage into P, and Q feasible ranges can be utilized in active distribution

network design while using these ranges for cost optimization. Future work will utilize a

forecast of nodal voltages for real-time operation and analyze the impact of inverter control

on feeder hosting capacity. Further assessment is required to optimally set and numerically

verify convergence of the droop slopes for envelope generation while taking into account the

location of a prosumer in the DN. Finally, we will compare the centralized dispatch of resources

for voltage regulation with our proposed distributed framework developed in this work.
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volt-var control and pv curtailment,” Applied Energy, vol. 286, p. 116546, 2021.

[25] A. Cagnano, E. De Tuglie, M. Liserre, and R. A. Mastromauro, “Online optimal reactive power control strategy of pv

inverters,” IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp. 4549–4558, 2011.

[26] E. Dall’Anese, S. V. Dhople, and G. B. Giannakis, “Optimal dispatch of photovoltaic inverters in residential distribution

systems,” IEEE Transactions on Sustainable Energy, vol. 5, no. 2, pp. 487–497, 2014.

[27] H. Ji, C. Wang, P. Li, J. Zhao, G. Song, F. Ding, and J. Wu, “A centralized-based method to determine the local voltage

control strategies of distributed generator operation in active distribution networks,” Applied energy, vol. 228, pp. 2024–

2036, 2018.

[28] S. Bhela, V. Kekatos, and S. Veeramachaneni, “Enhancing observability in distribution grids using smart meter data,” IEEE

Transactions on Smart Grid, vol. 9, no. 6, pp. 5953–5961, 2017.

[29] R. Knyrim and G. Trieb, “Smart metering under eu data protection law,” International Data Privacy Law, vol. 1, no. 2,

pp. 121–128, 2011.

[30] J. F. Sousa, C. L. Borges, and J. Mitra, “Pv hosting capacity of lv distribution networks using smart inverters and storage

systems: A practical margin,” IET Renewable Power Generation, vol. 14, no. 8, pp. 1332–1339, 2020.

[31] H. Zhan, C. Wang, Y. Wang, X. Yang, X. Zhang, C. Wu, and Y. Chen, “Relay protection coordination integrated optimal

placement and sizing of distributed generation sources in distribution networks,” IEEE Transactions on Smart Grid, vol. 7,

no. 1, pp. 55–65, 2015.

[32] U.-M. Choi, “Study on effect of installation location on lifetime of pv inverter and dc-to-ac ratio,” IEEE Access, vol. 8,

pp. 86 003–86 011, 2020.

[33] R. Tonkoski, D. Turcotte, and T. H. El-Fouly, “Impact of high pv penetration on voltage profiles in residential

neighborhoods,” IEEE Transactions on Sustainable Energy, vol. 3, no. 3, pp. 518–527, 2012.

[34] M. N. Kabir, Y. Mishra, G. Ledwich, Z. Xu, and R. Bansal, “Improving voltage profile of residential distribution systems

using rooftop pvs and battery energy storage systems,” Applied energy, vol. 134, pp. 290–300, 2014.

[35] “Directive (eu) 2019/944 of the european parliament and of the council of 5 june 2019 on common rules for the internal

market for electricity and amending directive 2012/27/eu, vol. oj l.” 2019.
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APPENDIX

A. LP formulation for arbitrage with energy storage and price-based flexibility dispatch

In our earlier work [36], we used linear programming (LP) based formulation to solve the

optimal energy storage arbitrage problem. This LP formulation uses epigraph-based minimization

[48]. We extend the LP formulation in [36], [49] for including control of flexible load under

time-varying electricity price. The formulation in [36] uses the geometry of the cost function to

form 4 line segments over which the epigraph-based cost function is minimized. Since flexible

load yi ≥ 0, the operation of flexible loads does not lead to adding more line segments to the

geometry of the cost function in [36], [49]. The LP formulation for solving the arbitrage problem

is given as PLP . The objective function and associated linear constraints are given in (15).

(PLP ) min {t1 + t2 + ...+ tN}, (15a)

subject to,

Segment 1:
pib
ηch

xi + pibyi − ti ≤ −zipib, ∀ i, (15b)

Segment 2: pisηdisxi + pisyi − ti ≤ −zipis, ∀ i, (15c)

Segment 3: pibηdisxi + pibyi − ti ≤ −zipib, ∀ i, (15d)

Segment 4:
pis
ηch

xi + pisyi − ti ≤ −zipis, ∀ i, (15e)

Ramp constraint: xi ∈ [Xmin, Xmax], ∀ i, (15f)

Capacity constraint:
∑

xi ∈ [bmin − b0, bmax − b0], ∀ i, (15g)

Flexibility ramp constraint:
∑

yi ∈ [yimin, y
i
max], ∀ i, (15h)

Cumulative flexibility:
∑

yi ∈ [K − ε,K + ε], for i = N. (15i)

The matrix format for the optimization problem PLP is denoted as minimize fTX , subject to

AX ≤ b, and X ∈ [lb, ub]. The dimension of A is (6N+2)x3N, b is (6N+2)x1, X and f are of

size 3Nx1, and N denotes the number of samples in the horizon of optimization.
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f=



0

:

0

0

:

0

1

:

1



, X=



x1

:

xN

y1

:

yN

t1

:

tN



, (16)

lb=



Xmin

Xmin

:

Xmin

ymin(1)

ymin(2)

:

ymin(N)

Tmin

Tmin

:

Tmin



≤



x1

x2

:

xN

y1

y2

:

yN

t1

t2

:

tN



≤ ub=



Xmax

Xmax

:

Xmax

ymax(1)

ymax(2)

:

ymax(N)

Tmax

Tmax

:

Tmax



, b =



−zipb(1)

:

−zipb(N)

−zips(1)

:

−zips(N)

−zips(1)

:

−zips(N)

−zipb(1)

:

−zipb(N)

bmax − b0
:

bmax − b0
b0 − bmin

:

b0 − bmin

K + ε

−K + ε



. (17)

where Tmin and Tmax are bounds on ti. Since these bounds are not known to us, we choose Tmin

to be negative with a large magnitude and Tmax to be positive with a large magnitude.
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A =



pb(1)
ηch

0 0 ... 0 pb(1) 0 0 ... 0 −1 0 0 ... 0

0 pb(2)
ηch

0 ... 0 0 pb(2) 0 ... 0 0 −1 0 ... 0

: : : ... : : : : ... : : : : ... :

0 0 0 ... pb(N)
ηch

0 0 0 ... pb(N) 0 0 0 ... −1

ps(1)ηdis 0 0 ... 0 ps(1) 0 0 ... 0 −1 0 0 ... 0

0 ps(2)ηdis 0 ... 0 0 ps(2) 0 ... 0 0 −1 0 ... 0

: : : ... : : : : ... : : : : ... :

0 0 0 ... ps(N)ηdis 0 0 0 ... ps(N) 0 0 0 ... −1

ps(1)
ηch

0 0 ... 0 ps(1) 0 0 ... 0 −1 0 0 ... 0

0 ps(2)
ηch

0 ... 0 0 ps(2) 0 ... 0 0 −1 0 ... 0

: : : ... : : : : ... : : : : ... :

0 0 0 ... ps(N)
ηch

0 0 0 ... ps(N) 0 0 0 ... −1

pb(1)ηdis 0 0 ... 0 pb(1) 0 0 ... 0 −1 0 0 ... 0

0 pb(2)ηdis 0 ... 0 0 pb(2) 0 ... 0 0 −1 0 ... 0

: : : ... : : : : ... : : : : ... :

0 0 0 ... pb(N)ηdis 0 0 0 ... pb(N) 0 0 0 ... −1

1 0 0 ... 0 0 0 0 ... 0 0 0 0 ... 0

1 1 0 ... 0 0 0 0 ... 0 0 0 0 ... 0

: : : ... : : : : ... : : : : ... :

1 1 1 ... 1 0 0 0 ... 0 0 0 0 ... 0

−1 0 0 ... 0 0 0 0 ... 0 0 0 0 ... 0

−1 −1 0 ... 0 0 0 0 ... 0 0 0 0 ... 0

: : : ... : : : : ... : : : : ... :

−1 −1 −1 ... −1 0 0 0 ... 0 0 0 0 ... 0

0 0 0 ... 0 1 1 1 ... 1 0 0 0 ... 0

0 0 0 ... 0 −1 −1 −1 ... −1 0 0 0 ... 0



,

(18)
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B. LP formulation for arbitrage with energy storage and price-based flexibility dispatch

We provide here, the details of the algorithm to determine curtailment, inverter active and

reactive outputs over a faster timescale, discussed in Section III-F. Algorithm 2 used bounds

[RU
Pmin

, RU
Pmax

] and [RU
Qmin

, RU
Qmax

] from the respective Tables III, IV, and V for different control

policies (PRC, ANRC or Hybrid).
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Algorithm 2 Local Inverter Output Control

1: Use f(xi), ri as global variables,

2: if ζi ∈ [RU
Pmin

, RU
Pmax

] and Qdefault ∈ [RU
Qmin

, RU
Qmax

] then

3: Set P ki
inv = ζi, Q

ki
inv = 0, P ki

curt = 0

4: else if ζi /∈ [RU
Pmin

, RU
Pmax

] and Qdefault ∈ [RU
Qmin

, RU
Qmax

] then

5: if ζi < RU
Pmin

then Active_Point_Minimize(RU
Pmin

)

6: else if ζi > RU
Pmax

then Active_Point_Minimize(RU
Pmax

)

7: end if

8: Set Qki
inv = 0

9: else if ζi ∈ [RU
Pmin

, RU
Pmax

] & Qdefault /∈ [RU
Qmin

, RU
Qmax

] then

10: if Qdefault < RU
Qmin

then Qki
inv = RU

Qmin

11: else if Qdefault > RU
Qmax

then Qki
inv = RU

Qmax

12: end if

13: Set P ki
inv = ζi, P

ki
curt = 0

14: else if ζi /∈ [RU
Pmin

, RU
Pmax

] & Qdefault /∈ [RU
Qmin

, RU
Qmax

] then

15: if ζi < RU
Pmin

and Qdefault < RU
Qmin

then

16: Execute Active_Point_Minimize(RU
Pmin

) to find P ki
curt, P

ki
inv; Set Qki

inv = RU
Qmin

,

17: else if ζi < RU
Pmin

and Qdefault > RU
Qmax

then

18: Execute Active_Point_Minimize(RU
Pmin

) to find P ki
curt, P

ki
inv; Set Qki

inv = RU
Qmax

,

19: else if ζi > RU
Pmax

and Qdefault < RU
Qmin

then

20: Execute Active_Point_Minimize(RU
Pmax

) to find P ki
curt, P

ki
inv; Set Qki

inv = RU
Qmin

,

21: else if ζi > RU
Pmax

and Qdefault > RU
Qmax

then

22: Execute Active_Point_Minimize(RU
Pmax

) for P ki
curt, P

ki
inv, and Set Qki

inv = RU
Qmax

,

23: end if

24: end if

25: return P ki
curt, P

ki
inv, Q

ki
inv

26: function ACTIVE_POINT_MINIMIZE(PU
trgt)

27: minimize P ki
curt as described in (8), and Set P ki

inv = P ki
B − ri + P ki

curt,

28: if optimization (P curt
LP ) does not provide a solution then

29: if PU
trgt > 0 then P ki

curt = ri and P ki
B = max charge,

30: else if PU
trgt < 0 then P ki

curt = 0 and P ki
B = max discharge,

31: end if

32: end if

33: return P ki
curt, P

ki
inv

34: end function
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