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ABSTRACT

The relationship between perceptual loudness and phys-

ical attributes of sound is an important subject in both com-

puter music and psychoacoustics. Early studies of ªequal-

loudness contourº can trace back to the 1920s and the mea-

sured loudness with respect to intensity and frequency has

been revised many times since then. However, most stud-

ies merely focus on synthesized sound, and the induced

theories on natural tones with complex timbre have rarely

been justified. To this end, we investigate both theory and

applications of natural-tone loudness perception in this pa-

per via modeling piano tone. The theory part contains:

1) an accurate measurement of piano-tone equal-loudness

contour of pitches, and 2) a machine-learning model ca-

pable of inferring loudness purely based on spectral fea-

tures trained on human subject measurements. As for the

application, we apply our theory to piano control trans-

fer, in which we adjust the MIDI velocities on two dif-

ferent player pianos (in different acoustic environments)

to achieve the same perceptual effect. Experiments show

that both our theoretical loudness modeling and the cor-

responding performance control transfer algorithm signifi-

cantly outperform their baselines. 1

1. INTRODUCTION

Sound intensity and loudness are two relevant but very dif-

ferent terms. Intensity is the physical feature of sound de-

rived from sound pressure. Loudness, however, is the per-

ceptual measure dependent on our auditory systems, where

other physical factors also contribute to human percep-

tion. For example, a 1 kHz tone is measured louder than

a 100 Hz tone of equal intensity, but softer than an equal-

intensity white noise. Previous psychoacoustic studies pro-

vide knowledge of loudness perception via human subject

experiments and various computational models have been

proposed to account for loudness estimation [1±6].

However, existing theories mainly focus on synthesized
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tones and thus fall short of explaining natural tone loud-

ness such as the piano tone. The generation of piano tone

involves a complicated physical process [7] and the sound

contains rich timbral variations hard to be synthesized from

both frequency and time domain perspectives [8, 9]. On

the other hand, recently we see a growing number of mu-

sic information retrieval tasks involving feature extraction

of piano tone loudness, such as automatic music transcrip-

tion [10±12] and performance rendering [13, 14]. In most

of these studies, loudness is sometimes confused with in-

tensity or even the MIDI velocity. This motivates us to

investigate loudness perception specific to piano tone, ben-

eficial for various downstream applications.

In this paper, we investigate both theory and applica-

tions on loudness perception specific to piano tone. The

theory is studied in a hybrid method containing a psy-

choacoustic procedure and a machine-learning procedure.

In the psychoacoustic procedure, we measure the ªequal-

loudness contourº on piano based on a human subject ex-

periment similar to the pure-tone equal-loudness measure-

ment [1]. Since piano tones cannot be directly controlled

by frequency and intensity, we instead study pitch and ve-

locity, two corresponding discrete performance controls.

In our experiment, the controls are executed by (acoustic)

player pianos for accuracy and reproducibility. We show

that different pianos (in different acoustic environments)

have distinctive equal-loudness contour patterns, and ex-

isting methods have limited power to explain the measured

pattern.

In the machine-learning procedure, we extend the

piano-tone equal-loudness contour to a computational

model, capable of inferring loudness purely from spec-

tral features. Traditionally, loudness models are based

on mathematical approximation of our auditory systems

[3±6]. We argue such an approach is laborious and even

intractable for natural tones such as the piano tone to take

into account all contributing facets of sound. Instead, we

propose a machine-learning approach including a loudness

model trained on the human subject measurement in the

previous experiment. The model takes in the spectrogram

and outputs the estimated loudness, calibrated to standard

loudness unit sone in post-processing.

*The two authors have equal contribution.
1Code and models can be accessed via https://github.com/

yangqu2000/ModelingPerceptualLoudnessOfPianoTone

933



We show our theory of piano tone loudness provides

a more reasonable explanation of piano sounds in down-

stream applications. Specifically, we apply our loudness

model to performance control transfer [14], in which we

adjust the MIDI velocities on two different player pianos

(in different acoustic environments) to achieve the same

perceptual effect. The original intensity-based loudness es-

timator is replaced with the proposed method, and experi-

mental results show a significant improvement in terms of

transfer quality.

2. RELATED WORK

The study of the equal-loudness contour (ELC) of pure

tone is a serious subject in psychoacoustics, since it reveals

fundamental facts of human loudness perception with re-

spect to frequency spectrum and intensity. The experiment

settings have been modified throughout the century, includ-

ing the tuning of listening conditions [1, 15, 16], the im-

provement of experiment procedures [1,17,18], and the ex-

tension of measured frequency range [1,16,19,20]. Suzuki

et al. [2] provides a detailed literature review of the exist-

ing experiments. Our piano-tone ELC experiment is mod-

ified from the original one, including careful adjustment to

account for discrete frequency and intensity control.

The psychoacoustic listening tests of pure tone and

many others [1, 16±18, 21, 22] provide fundamental un-

derstanding of our auditory systems. In return, the study

of loudness models takes in the auditory system hypothe-

ses and yields loudness estimation of the different types

of tone, including [1, 16±18] for pure tone, [21] for com-

plex tone, and [22, 23] for complex tone with amplitude

modulations. So far, the state-of-the-art loudness model

ISO 532-3 [24, 25] has the theoretical power to estimate

the loudness of arbitrary waveforms. In our paper, we val-

idate and compare with this model particularly on piano

tone loudness estimation.

The majority of research on piano tone mainly focuses

on the relationship between instrument control and the

physical attributes of the generated sound, either statisti-

cally [26±28] or via physical modeling [7, 29, 30]. How-

ever, there is a lack of formal theory to cover the perception

of piano tone. In this paper, we provide the first approach

to study the relationship between instrument control and

piano tone loudness in a psychoacoustic approach.

3. PIANO TONE EQUAL-LOUDNESS CONTOUR

Unlike pure tone which is determined by frequency and in-

tensity, piano tone is largely dependent on the environment

including the instrument itself that generates the sound

(e.g., upright or grand piano) and the surrounding acous-

tic environment (e.g., concert hall or small room). Given a

fixed environment, a piano tone can be controlled by four

factors, namely pitch, velocity, duration and pedal [31].

Simple as they are, the four control parameters interact

with the acoustic environment and produce a wide spec-

trum of piano timbre, resulting in an unexplored loudness

perception pattern. In this paper, we study how percep-

tual loudness is affected by the first two factors, i.e., pitch

and velocity, which can be roughly understood as the ªfre-

quencyº and ªintensityº of piano tone, respectively. We

leave the others for future study.

The piano tones in our experiment are produced by

player pianos, which can execute the control parameter in

a more accurate manner than human pianists. Pitch is con-

trolled by 88 MIDI pitches in [21..108] and velocity is con-

trolled by 128 velocity levels in [0..127].

3.1 Method of Measurement

The goal of this experiment is to measure the equal-

loudness contours (ELC) of piano tone on a specific piano

and acoustic environment, that is, a sequence of piano keys

under possibly different velocities that have equal percep-

tual loudness.

The experiment is modified from the original pure-tone

ELC experiments [1]. Specifically, we first select a refer-

ence tone, denoted by (pref, vref), where pref is a reference

pitch and vref is the velocity level that we are interested in.

Then, we enumerate piano pitches and for each pitch pvar,

we ask subjects to listen to (pvar, vvar), vvar ∈ [0..127] and

choose the louder note until they find a velocity v∗var such

that (pvar, v
∗

var) and (pref, vref) have equal loudness.

In psychoacoustic terms, the reference tone (pref, vref)
is called a reference stimulus, and given the pitch, the

candidate tones under multiple velocities to compare (i.e.,

(pvar, vvar)) are called variable stimuli. The solution

(pvar, v
∗

var) is called the point of subjective equality (PSE).

The curve that connects the PSEs at multiple pitches is the

equal-loudness contour at reference velocity v0.

To adjust the velocity of reference stimuli and search

for the PSE of each pitch, we adopt randomized maximum

likelihood sequential procedure (RMLSP) [1], a common

procedure used in pure-tone ELC experiments consisting

of a series of test rounds. At each test round, the subject

is asked to compare the loudness of a pair of piano tones,

including the reference stimulus and a variable stimulus.

Then we fit an online logistic regression model to predict

the PSE according to the subject’s response so far. The

velocity of the variable stimulus in the next test round is

randomly selected within a velocity range centered at this

PSE velocity. The algorithm ensures the procedure will

converge to the correct PSE.

3.2 Experiment Setting

In our experiment, we use A4 in the middle of the key-

board as the reference pitch (i.e., pref = 69). We mea-

sure equal loudness contours at four velocity levels: vref ∈
{32, 44, 60, 80}. The four velocities lie in the common

range of velocity usage and are evenly distributed with re-

spect to the statistical distribution [11].

We measure equal-loudness contours on 9 variable

pitches: pvar ∈ {21, 33, 45, 57, 69, 81, 93, 105, 108}. The

pitches are the A’s in all octaves together with the highest

note C8. The measurement on all 88 keys is ideal though

not affordable, since RMLSP normally takes 20 minutes

to find the PSE with respect to one single variable pitch.
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ID
Environment Number of subjects assigned to each velocity level

Instrument Acoustic environment vref = 32 vref = 44 vref = 60 vref = 80 Total

Env. I Grand Disklavier Anechoic chamber 6 6 6 5 23

Env. II Upright Disklavier Non-anechoic chamber 7 7 7 7 28

Table 1: Experiment settings and subjects assignment in two environments.

We address the loudness modeling on the other pitches in

section 4.

We set the number of RMLSP test round to be 32. In

the first two test rounds, the subject always listens to two

piano tones of constant variable velocities vvar = 90 and

vvar = 30, respectively. After that, the model yields the

next variable velocity uniformly sampled from a [−6..+6]
interval centered at the current-step estimation of the PSE.

The order of the piano tone pairs between the reference

stimulus and the variable stimulus is random at each test

round.

The experiment is conducted on two player pianos

located in different acoustic environments (as shown in

Table 1). Environment I contains a grand YAMAHA

Disklavier piano in an anechoic chamber, and Environ-

ment II contains an upright YAMAHA Disklavier piano in

a non-anechoic chamber. Subjects are seated half a meter

in front of the pianos where the pianists usually sit and use

a laptop to respond.

The subjects are 15 adults (18±35 years), 10 male and

5 female. All subjects have normal hearing sensitivity. 11

subjects participate in the experiment in Environment I and

9 subjects participate in the experiment in Environment II.

Each subject is tested in a separate section.

The subject is tested at two or three of the four velocity

levels randomly assigned (as shown in Table 1). For En-

vironment I, 23 measurement results were collected. Each

velocity level has a sample number of 6 except for veloc-

ity 80 with a sample number of 5. For Environment II, 28

measurement results were collected. Each velocity level

has a sample number of 7.

3.3 Result

Figure 1 shows our experiment results in Environment I

and Environment II, respectively. Since MIDI velocity is

an ordinal variable, it is improper to average the subjects’

PSEs and show the mean equal-loudness curves. Instead,

we present equal-loudness ribbons, where we replace the

mean with the range of subjects’ PSEs between the first

and third quartiles among all data. Here, we use four differ-

ent colors to indicate four reference velocities, and the di-

amond markers indicate the four reference stimuli on each

graph. Note that in the lowest (vref = 32) ribbons, some of

the variable pitches have PSEs equal to one, meaning that

the variable pitches at the least audible velocity are still

louder than or equal to the reference tone.

We see the patterns of equal-loudness ribbons are very

different across the two environments. In Environment I,

we see a gradual growth trend in all velocity levels, mean-

ing higher pitches of the same velocity tend to be softer.

(a) Environment I.

(b) Environment II.

Figure 1: Measurement of equal-loudness ribbons of pi-

ano tone in two environments compared with ISO 532-3

[24,25] and intensity-based loudness computation [14,26].

In Environment II, the trend is less evident, and we see a

valley at A3 (i.e., pvar = 57) at all reference velocity lev-

els. Moreover, the range of equal-loudness ribbons varies,

indicating the just noticeable difference in velocity change

is uneven on different pianos, pitches and velocities.

3.4 Comparison with Existing Methods

We use the experiment result to validate two common loud-

ness computation methods. The first method is ISO 532-3

by Moore et al. [24,25], the state-of-the-art loudness model

based on the modeling of human auditory systems. The

loudness value is computed as the maximum value of the

predicted long-term loudness curve. The other method is

used in [14,26] by naively computing the average intensity

of the first 10 ms after the peak. For the two methods, we

use the recordings of all the piano tones (discussed in sec-

tion 4.3) and compute their corresponding loudness. The

induced equal-loudness contours are shown in Figure 1 in

solid lines with circles and dashed lines with crosses, re-

spectively. Other popular methods such as applying A-
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weighting is not considered since such methods are proved

not generalizable to natural tone [32].

As shown in Figure 1(a) and Figure 1(b), in both envi-

ronments, the results induced from ISO 532-3 are in gen-

eral consistent with the equal-loudness measurement ex-

cept for the pitch in the higher registers. The results in-

duced from the intensity-based method fluctuate around

the equal-loudness ribbons, failing to describe the percep-

tual effect.

4. LOUDNESS MODEL

In the previous section, we measure the equal-loudness

contours (ELC) in two environments on 9 variable pitches

and 4 reference velocities. In this section, we extend our

findings to learn loudness models to account for loudness

estimation of the remaining tones via a non-parametric ap-

proach as baseline (discussed in section 4.1) and a para-

metric approach (discussed in section 4.2). The paramet-

ric model is also capable of predicting loudness given the

waveform of an arbitrary piano tone. We compare the

prediction result with ISO 532-3 and the intensity-based

method in section 4.3.

4.1 Non-parametric Method

We first propose a naive approach to predict the loudness

of arbitrary piano tones in each environment via linear

interpolation of the measured ELCs in section 3. First,

we assign the loudness in sone to the tones of the refer-

ence pitch A4 under all the velocities using the calibration

method discussed in section 4.2.3. Then, we linearly in-

terpolate the ELCs measured on 9 variable pitches to all

88 pitches, and assign the same loudness level along each

contour. Finally, for each pitch, we linearly interpolate be-

tween the ELCs. In section 5, we see such a simple method

already yields satisfactory performance in downstream ap-

plications.

4.2 Parametric Method

Moreover, a parametric model is proposed to estimate the

loudness using machine learning.

4.2.1 Model

We use x = (p, v) to denote a piano tone, where p is the

pitch and v is the velocity levels. We learn a parametric

loudness model ℓ = fθ(x) to compute the loudness of a

given piano tone x.

The loudness model is learned as a supervised classi-

fication problem (as shown in Figure 2). The input is a

pair of piano tones (x1, x2), where x1 = (p1, v1) and

x2 = (p2, v2). The target is the ground-truth label y,

which is the indicator of whether x1 is the louder one in-

ferred from the ELCs. The difference between the esti-

mated loudness ℓ1 and ℓ2 is used to predict the y. Specifi-

cally, the loss function is:

L(θ;x1, x2, y) = BCE(fθ(x1)− fθ(x2), y), (1)

where BCE(·) is the binary cross entropy function.

Figure 2: Illustration of the objective function.

The pairs (x1, x2) are sampled from all the tone pairs in

each environment whose loudness comparisons are deriv-

able based on the human subject results. Specifically, a

pair must satisfy either of the two conditions:

(C.1) The two tones have the same pitch and thus can be

compared based on velocity. The one with the larger

velocity is assumed to be louder.

(C.2) The two tones have different variable pitches and the

loudness comparison can be inferred from the equal-

loudness ribbons in Figure 1.

4.2.2 Implementation

We define our loudness model ℓ = fθ(x) as the linear com-

bination of the values on the mel-spectrogram of x (with-

out an intercept term). The mel-spectrogram has 8 mel-

frequency bins, a 2048 window size, and a 512 hop size

under the sample rate of 22050 Hz. We select the 5 time

frames (approx. 0.1s) right after the onset of the tone de-

tected by [33]. In all, we have 80 input features of a pair of

piano tones and the model can be optimized using logistic

regression.

The small mel-frequency bin number in the current

model can be understood as a constant convolution ker-

nel to achieve better generalization on other non-variable

pitches. In the future, the model can also be extended to

neural networks given a larger amount of human subject

results.

4.2.3 Calibration

The parametric method learns an unstandardized estima-

tion of piano tone loudness based on classification, which

needs to be further calibrated to the standard loudness unit

in sone. We address the problem by matching the piano

tones under reference pitch A4 to the corresponding equal-

loudness pure tones and compute the corresponding pure

tone loudness using ISO 532-3. The matching procedure

follows from the method of adjustment [32].

4.3 Evaluation

4.3.1 Data Preparation

We record the piano tones of two Disklavier pianos in both

environments for all pitches and velocities. The recorder

is placed 0.5 meters in front of the piano (similar to the

subjects’ ear position) and is kept still during the recording

procedure. For all piano tones, the MIDI duration is 0.3

seconds and each recording clip lasts 1.3 seconds.

To train the parametric model, we select all the piano

tone pairs that satisfy the two conditions (defined in 4.2.1),
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Figure 3: Visualization of calculated loudness value in Environment I and Environment II using our proposed loudness

models, ISO 532-3 [24,25], and intensity-based method [14,26]. Points with a rectangular mask indicate mechanical failure

of the player piano.

including 673,035 pairs satisfying the C.1 and 427,633

pairs satisfying the C.2 in Environment I, and 695,860

pairs satisfying the C.1 and 422,386 pairs satisfying the

C.2 in Environment II. The dataset is randomly split into

train set (80%) and test set (20%).

4.3.2 Results

Figure 3 shows the heatmaps of the predicted loudness of

all piano tones in both environments by four methods: 1)

our non-parametric method, 2) our parametric method, 3)

ISO 532-3, and 4) intensity-based method. We show the

ELCs derived from the heatmaps in dashed lines for better

readability.

We see the non-parametric method presents a smooth

interpolation of the measured ELCs. The result of the para-

metric method demonstrates a similar trend as ISO 532-3

except in the higher pitch range, which is more consistent

with human subject measurement in Figure 1. Moreover,

both parametric method and ISO 532-3 show more discon-

tinuity than Figure 1, suggesting the MIDI velocity is not

assigned in a uniform manner for different pitches. Finally,

the result of intensity-based method are noisy and inconsis-

tent with the human perception.

Table 2 shows the model accuracy on the test set of

two conditions defined in 4.2.1 separately. The results

demonstrate that our proposed method outperforms the

two baselines in both environments, especially in the ac-

curacy of C.2. We show the generalization ability in two

ways. First, we apply the model trained in one environ-

ment to the other environment and achieves satisfactory

accuracy (as indicated by the underlined numbers). Sec-

ond, we combine the training data in both environments

and train a hybrid model. The model outperforms the base-

lines and even achieves the best performance in environ-

ment II in both conditions. The evaluation result shows our

proposed model capture certain features in the piano-tone

mel-spectogram contributing to the perceptual loudness.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

937



Methods
Acc. in Env. I Acc. in Env. II

C.1 C.2 C.1 C.2

ISO 532-3 0.9689 0.9631 0.9037 0.9455

Intensity-based 0.9658 0.9290 0.8377 0.8555

PM - Env. I 0.9689 0.9893 0.8976 0.9614

PM - Env. II 0.9528 0.9607 0.9121 0.9793

Hybrid PM 0.9401 0.9785 0.9370 0.9881

Table 2: Evaluation of loudness comparison accuracy in

Environment I and Environment II. The methods to com-

pare are: 1) ISO 532-3: [24,25], 2) Intensity-based [14,26],

3) PM - Env. I: Parametric model trained on the data

recorded in Environment I, 4) PM - Env. II: Paramet-

ric model trained on the data recorded in Environment II,

and 5) Hybrid PM: Parametric model trained on the data

recorded in both environments. Underlined data are tested

by the parametric model training in the other environment.

5. PERFORMANCE CONTROL TRANSFER

In this section, we apply our theory of piano tone loud-

ness to the downstream application of performance con-

trol transfer, in which we adjust the MIDI velocities on

two different player pianos to achieve the same perceptual

effect. An example scenario of the application is to repro-

duce a pianist’s performance in the concert hall to one’s

living room.

5.1 Modification

Performance control transfer is originally proposed in [14],

in which piano tone loudness is treated as a fundamental

invariant property between the original performance and

the transferred version. However, the study mistakenly

uses the physical intensity as the loudness measure. Our

approach replace the loudness estimator by the proposed

loudness models (discussed in section 4) and keep the re-

maining algorithm the same. We also use ISO 532-3 as the

loudness estimator as a baseline method.

5.2 Listening Test

We conduct a listening test to invite participants to eval-

uate the performance transferred by different algorithms,

similar to the one conducted in [14]. Specifically, we pre-

pare four pieces, including two monophonic pieces and

two polyphonic pieces. The pieces are selected to cover

classical and popular genres.

We invite two pianists to play the four pieces in En-

vironment I and record both pianists’ MIDI control and

the performance audio. Then, we transfer the MIDI files

recorded in Environment I to Environment II using differ-

ent performance transfer methods, including 1) our non-

parametric method, 2) our parametric method, 3) ISO

532-3, 4) intensity-based model (i.e., the original transfer

method [14]), and 5) a raw transfer without any MIDI ve-

locity editing. We play the transferred MIDI in Environ-

ment II and record them from the same microphone posi-

tion discussed in section 4.3.

We invite people to subjectively rate the transfer quality

through a double-blind online survey. During the survey,

Figure 4: The subjective evaluation results of the five

transfer methods.

the subjects listen to four groups of samples. In each group,

the original performance in Environment I is played, fol-

lowed by the five transferred versions. Both the order of

groups and the sample order within each group are ran-

domized. After listening to each sample, the subjects rate

them based on a 5-point scale from 1 (very low) to 5 (very

high) according to three criteria: faithfulness (to the origi-

nal performance), naturalness and overall musicality.

5.3 Results

A total of 21 participants (14 male, 7 female) with different

musical backgrounds have completed the survey. Figure 4

shows the result where the heights of the bars represent

the means of the ratings and the error bars represent the

confidence intervals computed via within-subject ANOVA

[34].

The results show that all the loudness-based methods

significantly outperforms the original intensity-based im-

plementation and raw transfer (with p-value < 0.005).

Moreover, our parametric method is marginally better than

ISO 532-3 in terms of naturalness and overall musical-

ity, and comparable with ISO 532-3 in faithfulness. Both

our parametric and non-parametric methods demonstrate

with only sparse human subject measurement data, we can

achieve promising performance transfer results.

6. CONCLUSION

In this paper, we have contributed the first study to model

the perceptual loudness of piano tones in a hybrid approach

combining psychoacoustic experiments, and data-driven

methods. Our theory include: 1) measurements of piano-

tone equal-loudness contours on two player pianos, and 2)

data-driven loudness models to estimate piano-tone loud-

ness based on the measured contours. Experiments show

our model provides more satisfactory estimation than ex-

isting loudness theories. Based on our findings, we val-

idate the state-of-the-art loudness model ISO 532-3 on

piano-specific tasks and argue that existing methods can be

greatly improved if we have a more detailed human sub-

ject measurement and a deeper understanding of the tim-

bral features of piano tone.

On the application side, we improve the existing perfor-

mance control transfer method with the proposed loudness

estimator. We believe the other downstream applications

can also benefit from our study to propose a clearer prob-

lem definition and more accurate feature extraction.
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