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ABSTRACT

Nowadays, commercial music has extreme loudness and

heavily compressed dynamic range compared to the past.

Yet, in music source separation, these characteristics have

not been thoroughly considered, resulting in the domain

mismatch between the laboratory and the real world. In

this paper, we confirmed that this domain mismatch neg-

atively affect the performance of the music source sep-

aration networks. To this end, we first created the out-

of-domain evaluation datasets, musdb-L and XL, by mim-

icking the music mastering process. Then, we quantita-

tively verify that the performance of the state-of-the-art al-

gorithms significantly deteriorated in our datasets. Lastly,

we proposed LimitAug data augmentation method to re-

duce the domain mismatch, which utilizes an online limiter

during the training data sampling process. We confirmed

that it not only alleviates the performance degradation on

our out-of-domain datasets, but also results in higher per-

formance on in-domain data.

1. INTRODUCTION

Recent commercial music has extreme loudness compared

to the past [1, 2]. Since many artists and producers want

their music to be perceptually louder, it has become so

trendy that it rather harms the quality of music [3] and even

there exists the expression ‘loudness war’ [4].

A dynamic range compressor [5] is used to increase the

loudness of music while keeping the digital level under 0

decibels relative to full scale (dBFS), which is the max-

imum possible level in the digital domain. It is a time-

varying non-linear processor that adjusts the level of the

signal when the level exceeds the threshold. Especially, a

limiter refers to a dynamic range compressor that strongly

compresses the signal with a high ratio parameter above

1:10 and increases the gain of the signal by the headroom

obtained through compression.

In the last stage of music production, so-called master-
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Figure 1. The short example of a limiter applied music

source in our musdb-XL dataset. Recent commercial music

has this loud volume and distorted signal characteristics.

Figure 2. The boxplot representing the loudness distri-

butions of different evaluation datasets, recent commercial

music, and training examples generated from the official

implementation of Open-unmix [6].

ing, engineers are often asked to increase the overall loud-

ness of music. A limiter is a core tool for achieving it; it

is used to make small parts of music to be louder and loud

parts of music fit under 0 dBFS [7,8]. In this process, orig-

inal signals are distorted and become louder. The example

of a limiter usage is depicted in Figure 1.

However, these characteristics have not yet been thor-

oughly considered in the music source separation. Al-

though many data augmentation techniques have been pro-

posed, such as random gain scaling and mixing of differ-

ent instrumental stem sources [9, 10], the training exam-

ples have small overall loudness that is far from real-world

commercial music 1 , as can be seen in the blue line of Fig-

ure 2. This causes a huge domain shift between train and

real-world domains. The term LUFS in Figure 2 is an ab-

breviate for loudness unit relative to full scale, which is a

1 Based on the investigation of 50 songs in ‘Pop Life playlist’ created
by Tidal, May. 2022.
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measure of music loudness [11, 12].

Furthermore, since the standard benchmark datasets for

music source separation, musdb [13] and musdb-hq [14],

do not reflect the characteristics of loud commercial mu-

sic as shown in the red lines of Figure 2, they are unable

to show performance degradation comes from the domain

shift. Therefore, we conjecture that even good-performing

networks based on musdb test subset may exhibit worse

performance on real world. This problem is no exception

to other datasets [15±17] for music source separation, since

they do not consider the music mastering process.

Based on this question, we investigated how heavily

compressed music and its loudness affect the degradation

of music source separation networks. To this end, we man-

ually built new evaluation datasets by applying a limiter to

the musdb-hq test subset [14] to get loud and compressed

music imitating the modern music mastering process. One

is the musdb-L dataset, with increased loudness to an ap-

propriate degree for pleasant sound following [3]. The

other is the musdb-XL dataset, which raised the loudness

to an excessive degree, as often found in recent popular

music. Using our datasets, we confirmed that more dy-

namic range compression in test domains results in more

performance degradation of the networks.

Moreover, we conducted various experiments on the

training data creating methods to reduce the domain shift

between train and real world data from the perspective of

music loudness and heavy compression. We trained mu-

sic source separation networks using the training examples

constructed by (1) linear gain increasing, (2) the proposed

LimitAug method which utilizes an online limiter during

the sampling process of training examples, (3) simple in-

put loudness normalization, and (4) the loudness normal-

ization after applying the LimitAug. We confirmed that

all of the methods not only showed robust performance

on out-of-domain musdb-L and musdb-XL data, but also

showed better performance on in-domain musdb-hq test

dataset than the baseline.

To summarize, our contributions are three-fold.

• We built musdb-L and XL datasets 2 , which have

comparable overall loudness to commercial mu-

sic, for evaluation of music source separation algo-

rithms.

• Using musdb-L and XL, we quantitatively confirmed

that the domain shift causes performance degrada-

tion of the state-of-the-art networks that were trained

without considering loud and compressed music

characteristics.

• We proposed LimitAug 3 data augmentation method

and experimentally confirmed that it is beneficial to

alleviate the domain shift between train data and the

musdb-L or XL.

2 https://github.com/jeonchangbin49/musdb-XL
3 https://github.com/jeonchangbin49/LimitAug

dataset
Loudness [LUFS]

min max median mean (std)

musdb-hq -18.84 -13.52 -16.02 -15.92 (1.27)

musdb-L -14.39 -8.61 -10.61 -10.89 (1.19)

musdb-XL -11.93 -6.99 -8.41 -8.61 (1.17)

commercial -10.75 -6.10 -7.96 -8.05 (1.06)

Table 1. Loudness statistics of musdb-hq, musdb-L,

musdb-XL datasets, and the investigated commercial mu-

sic.

2. MUSDB-L AND MUSDB-XL

musdb [13] and musdb-hq [14] have been the standard

benchmark datasets on music source separation since their

presentation in Signal Separation and Evaluation Chal-

lenge (SiSEC) 2018 [18]. They consist of various genres of

150 professionally produced songs Ð 100 songs for train,

50 songs for test Ð from folk, indie to electronic, rock gen-

res. Each song has its constituting 4 stems, vocals, drums,

bass, and the remaining as other. The musdb-hq dataset

is the uncompressed version of musdb with the extended

frequency bandwidth from 16kHz to 22.05kHz, which is a

full bandwidth of 44.1kHz sample rate. We used musdb-hq

for high-quality dataset construction.

Since the test subset of musdb-hq has small overall

loudness compared to commercial mastering-finished mu-

sic, we conjectured that it could not fully reflect the perfor-

mance degradation related to heavy dynamic range com-

pression, which prevails in recent commercial music. In

addition, to the best of our knowledge, there is no dataset

for music source separation that reflects these characteris-

tics or considers the music mastering process. Therefore,

we built musdb-L and musdb-XL datasets, which have loud

and compressed characteristics similar to commercial mu-

sic. L and XL each stands for Loud and eXtremely Loud.

2.1 Dataset construction

To reflect the characteristics of commercial music, we cre-

ated datasets by imitating the music mastering process.

Both datasets were made by manually applying the com-

mercial digital limiter, iZotope Ozone 9 Maximizer 4 , to

the musdb-hq test subset. For each musdb-L and musdb-

XL, we controlled the threshold parameter of a limiter so

that compression is applied about 3-4 dB and 6-7 dB in

loud parts of mixture tracks of the musdb-hq. As shown

in Table 1, musdb-L and musdb-XL are about 5 and 7

LUFS louder than the original musdb-hq dataset on aver-

age, respectively. musdb-L has insufficient loudness com-

pared to loud commercial music but less distorted sources.

musdb-XL has comparable loudness to commercial music

and more distorted sound than musdb-L.

To make the ground truth stem tracks of each mixture,

we calculated the sample-wise ratio between the limiter ap-

plied mixture and the original mixture, then multiply it to

the individual stems to make the ground truth stems for

musdb-L and XL.

4 https://www.izotope.com/en/products/ozone.html
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3. METHODS

In general, a limiter is used as the last signal processor

in music mastering of commercial music [7, 8]. Since it

tends to be used excessively in modern commercial music

[1,2,4], it should be considered in music source separation

for the development of robust application.

We assumed that the key differences between the real-

world mastering-finished music, i.e. a limiter applied mu-

sic, and the standard training examples for music source

separation are i) the overall amplitude scale, and ii) the

signal distortion caused by a limiter.

Here we introduce two ways to avoid each domain mis-

match problem.

3.1 Input loudness normalization

First of all, the simple loudness normalization, which is a

linear gain adjustment of network inputs to the pre-defined

reference level, is the easiest technique to avoid the do-

main shift caused by i) overall amplitude scale mismatch.

This can be categorized into two, (i) input loudness nor-

malization during both the training and evaluation stages

of networks, and (ii) normalization only at the evaluation

stage.

The method (i) is already used in various studies with

different ways. For example, the network such as Demucs

v3 [19], uses input standardization in time domain based

on the mean and standard deviation of the training data.

In Open-unmix [6], the network implicitly normalizes the

input by utilizing trainable input scaling parameters that

works in time-frequency domain. However, we assumed

that explicitly adjusting the gain of the inputs based on the

waveform, thereby minimizing the overall amplitude scale

mismatch between train and test domain, can greatly re-

duce the performance degradation comes from the domain

shift.

The method (ii), normalization only at the evalua-

tion stage, can be considered as a readily applicable

workaround for the models that were trained without con-

sidering music loudness. This method is a simple idea to

reduce the overall amplitude scale difference between train

and real-world domain. Since the music source separation

networks are non-linear systems, we hypothesized that lin-

ear scale difference of the inputs might affect the quality of

final outputs. That is, input normalization only at the eval-

uation stage can be a simple, yet effective trick for models

that were already trained without considering the domain

mismatch.

Though these methods can mitigate the domain mis-

match related to i) amplitude scale, there needs to be an-

other strategies that can reflect ii) the signal distortion

caused by a limiter.

3.2 LimitAug

The best way to consider the characteristics of the limiter

applied source is simply using the limiter during the net-

work training. Therefore, we propose the LimitAug data

# mix, tgt : mixture and tgt sources.

# gain(src, tgt_lufs) : calculate lufs of source,

#  then adjust its gain targeting given lufs,

#  return output and adjusted gain

# gain_adj(src, adj_gain) : gain adjustment

#  of source with given adj_gain.

tgt_lufs = random_sampled_tgt_lufs

mix_loud, _ = gain(mix, tgt_lufs)

mix_loud_limited = limiter(mix_loud)

ratio = mix_loud_limited / mix

tgt_loud = tgt * ratio

if input_loud_norm:

  mix_loud_limited, adj_gain = gain(src, tgt_lufs)

  tgt_loud = gain_adj(tgt_loud, adj_gain)

estimates = network(mix_loud_limited)

loss = objective(estimates, tgt_loud)

Figure 3. numpy-like pseudocode of the proposed Limi-

tAug method.

augmentation method, which utilizes an online limiter dur-

ing the training examples construction process, to reduce

the domain shift between the training examples and real-

world commercial music. The LimitAug can be considered

as creating train examples that forcibly reflect the distor-

tion that comes from a limiter, which cannot be reflected

by the simple input loudness normalization technique.

The pseudocode for LimitAug is shown in Figure 3.

First, calculate the LUFS of the mixture created by the

data sampling process. Second, adjust the gain of the in-

put mixture source targeting the randomly sampled LUFS

value. Then, it is followed by the online limiter to fit the

waveform under 0 dBFS. Lastly, calculate the sample-wise

(A sample refers to an each waveform value) ratio between

the limiter applied mixture source and the original mixture

source, then multiply the ratio to the original target source

to get the ground truth target signal of the limiter applied

mixture source.

When adjusting the gain and applying the limiter to the

input mixture, for example, if the input mixture had -15

LUFS and the randomly sampled target LUFS was -10,

note that the gain-scaled mixture by +5 dB does not have

exact -10 LUFS due to the compression of a limiter and

the nature of LUFS calculation, which considers frequency

weighting [11, 12].

The proposed LimitAug can be used with other data

augmentation methods; in our study, random gain scaling,

channel swap and mixing of different instrumental stem

sources [9, 10] were used. Also, additional loudness nor-

malization can be applied after the LimitAug as depicted

in conditional statement of Figure 3, so that the overall

amplitude scale mismatch between training and evaluation

stages be minimized.

4. EXPERIMENTS

Here we briefly summarize our following experiments.

In Section 5.1, we quantitatively evaluated various mu-

sic source separation networks that were trained without

considering the loudness and heavy dynamic range com-

pression, and confirmed the performance degradation on

musdb-L and musdb-XL, compared to the origianl musdb-

hq evaluation dataset.
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network
extra

train data

test

data

SDR median (mean) [dB]

vocals bass drums other avg

Open-unmix [6] -

hq 6.16 (2.54) 5.03 (2.67) 6.00 (5.46) 4.22 (3.46) 5.35 (3.53)

L 6.33 (1.63) 4.81 (2.71) 5.82 (5.38) 4.11 (3.42) 5.27 (3.28)

XL 5.98 (0.89) 4.76 (2.59) 4.97 (4.89) 4.04 (3.29) 4.94 (2.92)

TFC-TDF

-U-net [20]
-

hq 7.18 (4.26) 5.59 (3.35) 5.76 (5.30) 4.04 (3.18) 5.64 (4.02)

L 7.03 (3.65) 5.41 (3.08) 5.52 (5.09) 3.67 (3.00) 5.41 (3.71)

XL 6.95 (3.14) 5.48 (2.90) 5.11 (4.68) 3.55 (2.82) 5.27 (3.39)

Demucs v3-A [19] -

hq 8.11 (5.22) 9.34 (6.21) 8.57 (8.01) 5.51 (5.03) 7.88 (6.12)

L 7.54 (5.15) 9.32 (6.22) 8.26 (7.65) 5.51 (5.01) 7.66 (6.01)

XL 7.30 (4.86) 9.19 (6.14) 7.62 (6.78) 5.37 (4.97) 7.37 (5.69)

Open-unmix [6] ✓

hq 7.02 (4.93) 5.91 (4.06) 7.18 (6.91) 4.94 (4.76) 6.26 (5.17)

L 6.83 (5.12) 6.23 (4.09) 7.07 (6.92) 4.94 (4.78) 6.27 (5.23)

XL 6.70 (4.77) 6.16 (3.87) 6.80 (6.48) 4.89 (4.61) 6.14 (4.93)

Spleeter [21] 25000+

hq 6.51 (4.42) 4.77 (3.57) 6.00 (6.09) 4.22 (4.12) 5.38 (4.55)

L 6.18 (3.90) 4.73 (3.34) 5.67 (5.94) 4.37 (4.03) 5.24 (4.30)

XL 6.03 (3.38) 4.80 (3.13) 5.55 (5.52) 4.24 (3.91) 5.15 (3.98)

Demucs v3-B [19]
200+ including

musdb-hq test set

hq 9.24 (7.05) 11.65 (9.58) 11.73 (11.34) 7.83 (8.03) 10.11 (9.00)

L 9.05 (6.91) 11.61 (9.55) 11.05 (10.27) 7.83 (7.91) 9.88 (8.66)

XL 8.76 (6.41) 11.56 (9.29) 9.22 (8.78) 7.52 (7.51) 9.26 (8.00)

Table 2. Performance of various music source separation networks trained with musdb-hq [14] on the test using musdb-hq,

musdb-L and musdb-XL.

In Section 5.2, we simply normalized the network in-

puts in the evaluation stage, to observe the performance

degradation caused by the signal distortion caused by a

limiter, not an overall amplitude mismatch between the

training and the evaluation data. Then, we carefully an-

alyzed the results on Demucs v3 [19], which took the 1st

place in the 2021 Sony Music Demixing (MDX) Challenge

leaderboard A and the 2nd place in the leaderboard B [22].

The leaderboard A was the competition that only allowed

training on the only musdb-hq train subset, and the leader-

board B allowed the extra training data.

In Section 5.3, we conducted a comparative study on

various training data construction strategies. Unfortu-

nately, we were unable to train the current state-of-the-art

Demucs v3, due to the constraint of our GPU experimen-

tal environments. Considering the training efficiency and

reasonable performance, we used TFC-TDF-U-Net [20] Ð

a backbone architecture of KUIELab-MDX-Net [23] with

slight modifications, which took the 2nd place in the 2021

MDX Challenge leaderboard A Ð in this experiment.

4.1 Training

In Section 5.1 and Table 2, we used official pre-trained

weights of each model except TFC-TDF-U-Net since there

were no official weights for the 4 stems of musdb-hq. For

fair comparison in Section 5.3, we trained TFC-TDF-U-

Net for 300 epochs with early stopping, based on official

training framework of Open-unmix [6] and official network

implementation of TFC-TDF-U-net. We used default net-

work hyper-parameters introduced in its webpage 5 .

For the LimitAug, we used the limiter implemented in

pedalboard [24]. The threshold parameter was set to

0 dBFS, and the release parameter was randomly sampled

from uniform distribution of (30, 200) millisecond in data

sampling process. Also, we used pyloudnorm [25] for

loudness calculation.

5 https://github.com/ws-choi/ISMIR2020_U_Nets_SVS

4.2 Evaluation

In all of the evaluations, Signal-to-Distortion Ratio (SDR)

[26] was calculated using museval python library [18].

Also, in following experimental results, both median and

mean SDR scores were presented for the detailed compar-

ison. Note that we only used the musdb-hq train subset for

training the networks. musdb-L and XL are only for evalu-

ation.

In the original musdb-hq test subset, as stated in the

official webpage 6 , ‘PR - Oh No’ track’s mixture signal

is panned to the right channel, which causes the incon-

sistency between linear summation of stems and mixture

source. Since this causes the limiter to be operated in un-

musical way while the construction of musdb-L and XL,

which also can be hardly found in popular music, we used

the linear summation of stems as a mixture only for this

track. This may results in the slight difference of SDR

scores between the Table 2 and the official scores of each

network.

5. RESULTS

5.1 Performance degradation on musdb-L and XL

Here we quantitatively evaluated the performance of state-

of-the-art networks on musdb-hq [14], L and XL datasets

and confirmed that the domain shift in perspective of mu-

sic loudness and compression negatively affect the perfor-

mance, indeed. As shown in the Table 2, all networks

showed significant performance degradation on the eval-

uations with musdb-L and musdb-XL datasets. The amount

of decrease on Demucs v3 [19] was slightly larger than

the others. Overall, we concluded that every networks are

somewhat overfitted to the musdb-hq data, making the net-

works vulnerable to loud and heavily compressed music.

Therefore, it is highly required to consider these charac-

teristics for the robust music source separation. Note that

6 https://sigsep.github.io/datasets/musdb
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network
extra

train data

test

data

SDR median (mean) [dB]

vocals bass drums other avg

Demucs v3-A [19] -

hq 8.11 (5.22) 9.34 (6.21) 8.57 (8.01) 5.51 (5.03) 7.88 (6.12)

L 8.05 (5.23) 9.25 (6.20) 8.47 (7.92) 5.53 (5.02) 7.82 (6.09)

XL 7.93 (5.03) 9.27 (5.92) 7.74 (7.44) 5.55 (4.91) 7.62 (5.82)

Demucs v3-B [19]
200+ including

musdb-hq test set

hq 9.24 (7.05) 11.65 (9.58) 11.73 (11.34) 7.83 (8.03) 10.11 (9.00)

L 9.19 (7.04) 11.64 (9.55) 11.68 (11.21) 7.82 (8.02) 10.08 (8.95)

XL 9.13 (6.90) 11.56 (9.33) 11.32 (10.75) 7.74 (7.95) 9.94 (8.73)

Table 3. Performance of Demucs v3 [19] trained with musdb-hq [14]. On the test using musdb-L and musdb-XL, each of

the input sources were loudness normalized targeting the LUFS of its original musdb-hq sources.

network
extra

train data

SDR median [dB]

hq L XL

Open-unmix [6] - 5.35 5.32 5.25

TFC-TDF-U-Net [20] - 5.64 5.62 5.51

Demucs v3-A [19] - 7.88 7.82 7.62

Open-unmix [6] ✓ 6.26 6.25 6.18

Spleeter [21] ✓ 5.38 5.33 5.21

Demucs v3-B [19] ✓ 10.11 10.08 9.94

Table 4. Performance of networks with loudness normal-

ized input at the evaluation stage. Each score represents

the average score across the 4 stems. Note that the net-

works were trained without considering music loudness or

dynamic range compression explicitly.

we stated the scores on different test datasets in each block

to emphasize the performance degradation between the do-

mains.

5.1.1 Extra training data

Though the extra training data was of help, it did not work

as the fundamental solution to the domain shift. Open-

unmix [6] with extra training data showed more robust per-

formance than that of the network without extra data, but

performance degradation on Demucs v3-B was more sig-

nificant than that of Demucs v3-A. Since Demucs v3-B was

trained with extra training data including musdb-hq test

subset, it is reasonable to guess that the network is highly

overfitted to the musdb-hq data. Nevertheless, the amount

of performance decrease especially on drums comparing

the scores between musdb-hq and XL, 2.5 dB, is somewhat

high. Considering Demucs v3 uses an input standardiza-

tion technique based on mean and standard deviation of

waveform values both at training and evaluation stages,

this implies that there needs to be another solution for the

robust music source separation.

5.1.2 Performance degradation on drums and vocals

It is noteworthy that the degradation on drums and vocals

were more significant than the others. Due to the percus-

sive nature of drums, in general, they have the biggest mo-

mentary energy in music. Also, since vocals are impor-

tant ingredients in modern commercial music, they usually

consist of not only a single singing voice but also doubling,

harmony and chorus. Therefore, we assumed drums and

vocals are most affected by the limiter, which is activated

when loud input sources that are above the threshold are

given. To quantitatively confirm the signal distortion by the

limiter, we calculated Scale-invariant Signal-to-Distortion

Ratio (SI-SDR) [27] between musdb-hq and musdb-XL for

each stem. As a result, drums and vocals scored each 19.97

and 23.69 dB, on the other hand, bass and other scored

each 25.12 and 25.48 dB on average. That is, the signal

distortion caused by a limiter is more significant on drums

and vocals.

Unfortunately, since the networks in the Table 2 have

never seen these kinds of distorted drums or vocals as

training examples, we assumed that the degradation on

drums and vocals were significant compared to the rest.

This result strongly supports the necessity of considering

the heavy dynamic range compression from the training

stage, i.e. the LimitAug, which forcibly makes the distorted

and compressed training examples for training purposes,

thereby minimizing the domain shift.

5.2 Analysis on the input normalization at the

evaluation stage

If the key differences between the real-world music and

the training examples of music source separation networks

are i) overall amplitude scale, and ii) the signal distortion

caused by a limiter, as stated in Section 3, then what if we

give the loudness normalized musdb-L or XL data as inputs

to the networks in Table 2? Due to the non-linear nature of

deep neural networks, we assumed that simply normalizing

the amplitude scale of the networks on the evaluation stage

may affect the performance.

The inference was conducted with following proce-

dures, (i) reducing the loudness of musdb-L or XL input

so that its loudness becomes same with that of the corre-

sponding original musdb-hq data, (ii) inference with loud-

ness normalized input, and (iii) increasing the scale of out-

put as much as reduced in step (i).

Comparing the scores between Table 2 and Table 4, we

confirmed that the performance degradation was greatly al-

leviated by just the simple loudness normalization of the

inputs only at the evaluation stage. Note that the networks

were not trained with loudness normalized inputs. This

result shows that the input loudness normalization at the

evaluation stage can be a quick and easy solution to get ro-

bust results from the pre-trained music source separation

networks.

Especially, on drums of Demucs v3-B, it should be

noted that the amount of decrease on median SDR score

between the test using musdb-hq and XL was sharply re-

duced from 2.5 dB in Table 2 to 0.4 dB in Table 3. This im-

plies that the network is overfitted not only to the contents

of the signal, but also to the scale or loudness, especially
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network methods
linear

gain increase
LimitAug

input

loud-norm
target LUFS

SDR median (mean) [dB]

hq L XL avg

TFC-TDF

-U-Net [20]

baseline - - - - 5.64 (4.02) 5.41 (3.71) 5.27 (3.39) 5.44 (3.71)

(1) ✓ - -
N (µL, σ

2

L
) 5.90 (4.31) 5.86 (4.33) 5.73 (4.15) 5.83 (4.26)

N (µXL, σ
2

XL
) 5.32 (3.43) 5.36 (3.62) 5.28 (3.49) 5.32 (3.51)

(2) - ✓ -
N (µL, σ

2

L
) 5.79 (4.30) 5.90 (4.41) 5.74 (4.25) 5.81 (4.32)

N (µXL, σ
2

XL
) 5.69 (3.93) 5.72 (4.22) 5.57 (4.15) 5.66 (4.10)

(3) - - ✓ -14 5.89 (4.38) 5.87 (4.35) 5.82 (4.25) 5.86 (4.33)

(4) - ✓ ✓
N (µL, σ

2

L
), -14 5.87 (4.25) 5.85 (4.21) 5.76 (4.16) 5.83 (4.21)

N (µXL, σ
2

XL
), -14 5.78 (4.27) 5.78 (4.26) 5.73 (4.20) 5.76 (4.24)

Table 5. Performance of TFC-TDF-U-Net [20] trained with various training data construction strategies. Each score

represents the average score across the 4 stems.

network methods
target

LUFS

test

data

SDR median (mean) [dB]

vocals bass drums other avg

TFC-TDF

-U-Net [20]

baseline -

hq 7.18 (4.26) 5.59 (3.35) 5.76 (5.30) 4.04 (3.18) 5.64 (4.02)

L 7.03 (3.65) 5.41 (3.08) 5.52 (5.09) 3.67 (3.00) 5.41 (3.71)

XL 6.95 (3.14) 5.48 (2.90) 5.11 (4.68) 3.55 (2.82) 5.27 (3.39)

(3) loud-norm -14

hq 7.35 (4.76) 5.93 (3.61) 5.91 (5.37) 4.39 (3.79) 5.89 (4.38)

L 7.32 (4.72) 5.91 (3.61) 5.85 (5.29) 4.39 (3.78) 5.87 (4.35)

XL 7.26 (4.64) 5.91 (3.62) 5.68 (4.99) 4.42 (3.78) 5.82 (4.25)

(4) LimitAug,

loud-norm

N (µL, σ
2

L
),

-14

hq 7.59 (4.64) 5.75 (3.25) 5.63 (5.28) 4.50 (3.82) 5.87 (4.25)

L 7.58 (4.61) 5.69 (3.21) 5.62 (5.22) 4.50 (3.82) 5.85 (4.21)

XL 7.48 (4.55) 5.67 (3.29) 5.36 (4.99) 4.51 (3.82) 5.76 (4.16)

Table 6. Stem-wise performance of TFC-TDF-U-Net [20] trained with the method (3) input loudness normalization, and

(4) input loudness normalization after the proposed LimitAug.

on drums. Note that there was no distinction between the

given input sources to the networks except the linear gain

difference.

Although the performance degradation was reduced by

the input loudness normalization, still there exists the per-

formance degradation due to the signal distortion caused

by a limiter. Similar to Section 5.1.2, this result also sup-

ports the necessity of the LimitAug for robust music source

separation.

5.3 Analysis on various training strategies

In this section, we trained the TFC-TDF-U-net [20] with

various training data creating methods; (1) linear gain in-

creasing, (2) the proposed LimitAug, (3) input loudness

normalization, and (4) input loudness normalization after

the LimitAug. Of course, the methods (3) and (4) includes

the input loudness normalization at the evaluation stage for

the consistency between train and test domains. We com-

pared the results to check which one is the most powerful

way for training robust music source separation networks.

For the input normalization, we chose the target reference

LUFS value as -14.

In Table 5, we confirmed that all of the methods were

effective for robust music source separation; every meth-

ods showed relatively robust performance on musdb-L and

XL, compared to the baseline. Especially, except the

method (1) targeting LUFS of a normal distribution fol-

lowing statistics of musdb-XL, N (µXL, σ
2

XL
), all methods

showed greater performance on musdb-hq than the base-

line. This result implies that these methods are useful not

only for the domain shift, but also for the standard bench-

mark data.

Furthermore, the methods (3) and (4), which prevent

the domain shift caused by overall amplitude scale mis-

match by input loudness normalization, showed slightly

better performances than others. In the stem-wise analysis

as presented in Table 6, though we expected that the Lim-

itAug would be of help for vocals and drums, the method

(4) was better at vocals and other than the method (3).

Overall, it seems obvious that considering the music

loudness and heavy dynamic range compression from the

training stage is beneficial for robust music source separa-

tion. For real world applications, it is highly recommended

that not just using the single method we experimented, but

using various training methods on different stems or using

a bag of models trained with various methods.

6. CONCLUSIONS

In this study, we questioned the domain shift between the

research and the real-world data for music source separa-

tion, from the viewpoint of music loudness and heavy dy-

namic range compression. To answer this, We first built

new evaluation datasets, musdb-L and musdb-XL, which

reflect dynamic range compressed music characteristics

and heavy loudness. Then, we confirmed the significant

performance degradation of state-of-the-art networks on

our datasets. To alleviate this, we conducted various ex-

periments on training data construction strategies, includ-

ing the proposed LimitAug method, and confirmed that the

methods using the input loudness normalization only or

with the LimitAug greatly improved the robustness. We

hope that our proposed methods and evaluation datasets

could contribute to future music source separation research

and application.
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