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ABSTRACT

Recent deep learning-based models for estimating beats
and downbeats are mainly composed of three successive
stages—feature extraction, sequence modeling, and post
processing. While such a framework is prevalent in the
scenario of sequence labeling tasks and yields promising
results in beat and downbeat estimations, it also indicates a
shortage of the employed neural networks, given that the
post-processing usually provides a notable performance
gain over the previous stage. Moreover, the assumption
often made for the post-processing is not suitable for many
musical pieces. In this work, we attempt to improve the
performance of joint beat and downbeat estimation with-
out incorporating the post-processing stage. By inspecting
a state-of-the-art approach, we propose reformulations re-
garding the network architecture and the loss function. We
evaluate our model on various music data and show that
the proposed methods are capable of improving the base-
line approach without the aid of a post-processing stage.

1. INTRODUCTION

Beat and downbeat trackings have been of long-standing
interests in the communities of signal processing and mu-
sic information retrieval (MIR) [1-5]. The two tasks inher-
ently possess the class imbalance issue [6], i.e., the highly
imbalanced numbers of beat (downbeat) and non-beat
(non-downbeat) frames in music data, and hence remain
challenging in many cases even nowadays. To tackle the
beat and downbeat tracking problems, early signal process-
ing approaches have developed a three-stage framework
which consists of feature extraction, sequence modeling,
and post-processing [7-9]. Over the past few years, great
progresses on the two tasks have been made through the
combination of the three-stage pipeline and deep learning
models such as recurrent neural networks (RNNs) [10-12],
convolutional-recurrent neural networks (CRNNs) [13],
and Transformer-based networks [14]. Among the thriving
research, a convolutional approach achieves the state-of-
the-art performance on joint estimation of tempo, beat, and
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downbeat [15], in which convolutional neural networks
(CNNs) and temporal convolutional networks (TCNs) [16]
are placed in charge of the feature extraction and of the
sequence modeling, respectively, while dynamic Bayesian
networks (DBNs) [17] are used for the post-processing.

In spite of the promising results obtained by this ap-
proach, the employed networks raise three concerns. First,
the CNNs for feature extraction convolve an input spec-
trogram with small kernels at the very beginning, and a
max-pooling layer is followed immediately. Therefore, the
spectro-temporal patterns might not be well-captured [18].
Second, the dilated convolutions [19] of the TCNs involve
a small kernel size and an exponentially increasing dila-
tion rate. Despite the large receptive fields obtained at
higher layers, this design leads to extremely sparse sam-
plings which join distantly-separated frames, and conse-
quently the contextual information could be irrelevant [20].
Lastly, the assumptions made for the DBNs that the meter
is unchanged or the rhythmic patterns are known [11,21]
are not always applicable to various music genres, even to
popular music. For example, the Hainsworth dataset [22],
which is often employed for evaluation, includes several
clips of pop or rock songs with changing meter. Moreover,
the DBNs involve intricate design and assumptions for rep-
resenting the state and the transition throughout a piece of
music, and hence introduce non-trivial works in addition
to the training of the preceding neural networks.

In this paper, we cope with the joint beat and downbeat
estimation task by addressing the aforementioned issues.
To get rid of the post-processing DBNs while maintaining
the performance, we consider to improve the network ar-
chitecture and the loss function. Precisely, we propose to
use scaled depthwise separable convolutions [23-25] to ag-
gregate rich contextual information at multiple time scales.
To address the class imbalance issue, the focal loss [26]
and the Dice loss [27] are employed in place of the com-
monly used cross entropy loss. Besides, we make our
model aware of the periodic structure of beat or downbeat
sequences by including a label embedding network [28]
during training. We evaluate the proposed architecture on
various music data, including both audio and MIDI files,
and demonstrate a state-of-the-art performance on the Ball-
room dataset. The main contribution of this work is that
we thoroughly address the architectural issues for beat and
downbeat estimations. Most of the problems are shared
by sequence models in general, and therefore the proposed
methods could be applied to many other MIR-related tasks.
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2. OVERVIEW OF THE STATE-OF-THE-ART

The model of [15] without the DBNSs is taken as our base-
line upon which we build our new model to address the ar-
chitectural issues mentioned beforehand. In the following,
we briefly introduce the baseline model using the three-
stage framework, and present the new model thereafter.
We skip the post-processing stage for we aim to expel the
DBNSs from the system in this work. An overview of the
baseline model is illustrated at the top of Figure 1.

2.1 Feature extraction

Given an audio signal represented as a log-magnitude spec-
trogram of size 7' x J, where 1" denotes the number of time
steps and J the number of frequency bins, the CNNs of
the baseline model extract high-level features using three
groups of 2-D convolution and max-pooling layers. The
three convolutional layers (with a kernel size of 3 x 3,
1 x 12, and 3 x 3, respectively) ! capture harmonic content
at different frequency scales, while the max-pooling oper-
ations (with a kernel size of 1 x 3 ) reduce the frequency
dimension in three steps. In other words, the CNNs grad-
ually transcribe the harmonic information into high-level
features, and output a sequence of size 7' x D with D in-
dicating the dimension of high-level features.

2.2 Sequence modeling

The high-level feature sequence from the previous stage is
then passed to the TCNs for learning temporal structure.
As depicted at the top of Figure 1, each TCN layer per-
forms two 1-D dilated convolutions in parallel with a ker-
nel of size 5 and an exponentially increasing dilation rate
2! (resp. 2!*1), where [ is the layer number. The outputs of
the two dilated convolutions are concatenated and repro-
jected to keep the feature dimensionality constant. As a re-
sult, the TCNis efficiently enlarge the receptive field within
a few layers with the amount of learnable parameters in-
creasing linearly to the number of layers. Given that the
TCNs has 11 layers, the two convolutions at the last layer
will expand the kernels across over 4000 (resp. 8000) time
frames with each element of the two kernels being spaced
1024 (resp. 2048) frames apart. Therefore, the temporal
context modelled by the TCN is more than 80 seconds (as-
sume a frame rate of 100 fps). Afterwards, the output of
the TCNss is processed by the DBNs to obtain a sequence
of beat or downbeat estimates.

2.3 Potential issues

In the community of computer vision, it has been shown
that stacking small convolutional kernels followed by pool-
ing layers is effectual for extracting high-level features of
an image [29-31]. Such a architecture is often adopted by
audio-based, or more specifically spectrogram-based re-
search [32-34]. Considering the nature of images, it is rea-
sonable to aggregate information hierarchically from spa-
tial associations. However, it is questionable that a spectro-

I A kernel size M x N specifies a convolution window across M time
frames and IV frequency bins.
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Figure 1: Architecture reformulation with respect to con-
volution (conv) and max pooling (mp) layers . Top: model
of [15] without DBNs. Bottom: proposed architecture.
The feature dimension is not shown in the figure.

gram could be well-represented with the same architecture.
The characteristic spectral information of a musical piece
does not necessarily reside in the adjacent frequency bins
within a small kernel. Moreover, it is also suspicious that
the compressed frequency dimension after pooling opera-
tions is as meaningful as a downsampled image.

On the other hand, it has been observed that dilated con-
volutions result in the so-called gridding artifacts [35,36],
due to that adjacent elements in the output are calculated
from completely different sets of elements in the input.
Additionally, small convolutional kernels with high dila-
tion rates relate input elements which are highly sparsely
distributed and hence might lack of correlations. In the
scenario of beat or downbeat estimation, stacked 1-D di-
lated convolutions could be preferable for they are able to
encode periodic structure of the beat (downbeat) through
equidistant elements of dilated kernels. However, it is not
guaranteed that an inquired musical piece has a steady
tempo as well as a constant thythm. Hence, a network
equipped with dilated convolutions for modeling temporal
information may have limitations on expressive music.

3. APPROACH
3.1 Task formulation

We treat the joint beat and downbeat estimation task as a
sequence labeling problem [37,38]. Given an input spec-
trogram X € R7*7 the task involves the assignment of
a categorical label € {downbeat, xbeat,neither}?
to each time step ¢ € T. We employ a model architec-
ture which mainly consists of a feature extraction network
(fex), a sequence modeling network (fs¢q), and an estima-

2 The label xbeat refers to a beat which is not a downbeat.



Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

RL

Figure 2: Proposed architecture. Dashed borders indicate
data sequences, and solid ones denote neural networks.
The losses includes focal loss (FL), Dice loss (DL), recon-
struction loss (RL), and structural regularization (SR).

tion network (fes;) for the task:

P = fest(H)a
H:fseq(z)a (1
Z= fex(X)v

where Z, H € RT*P are higher-level feature sequences,
and P € RT3 is a sequence of model estimates indicating
the probabilities of the three categorical labels across all
time steps. The overall model architecture is schematically
shown in Figure 2.

3.2 Reformulation of feature extraction

We propose to use kernels of larger sizes for the 2-D con-
volution layers and remove the intermediate pooling lay-
ers in fe;. As shown at the bottom of Figure 1, the fea-
ture extraction network consist of two layers, denoted as
9(71«) and fg). The first layer captures harmonic informa-
tion distributed across the frequency bins of an input spec-
trogram, while the second layer aggregates the harmonic
information along the temporal dimension. Within each
layer [, we employ two parallel convolutions with kernel
sizes of wégl and wélw)z For these convolution opera-
tions, we keep the frequency dimension of the input spec-
trogram uncompressed, and thus the output shape will be
T x J x D. Finally, we employ a global max pooling
layer (GMP) [39] to reduce the frequency dimension (.J)
of the output, yielding the feature sequence Z € RT*P,
Let f.(-,d,w) denote a standard convolution parameter-
ized by the number of filters d and the kernel size w. The
feature extraction network can be formulated as follows:

Z = fer(X) = GMP(£ (f2) (X)), ,
' 2

élz)() = [fC('7 D, wélw),l)’ fC('7 D, we(zlz),Q)]WgQ»
where W) € R2P*D is a learnable parameter matrix at
the I-th layer, and [, -] indicates a concatenation operation.

3.3 Reformulation of sequence modeling

To maintain a large receptive field while get rid of the
sparse sampling issue introduced by dilated convolutions,

29

we use depthwise separable convolutions [23] (hereafter
separable convolutions) instead. Separable convolution,
denoted as fs.(+,d,w), factorizes a standard convolution
into a depthwise convolution and a pointwise convolution.
This factorization allows a network to expand the receptive
field using a large kernel size without drastically increas-
ing the number of parameters. Similarly to the TCNs, we
use two separable convolutions with kernel sizes of wgeq,1
and Wseq,2, as shown in Figure 1. Each sequence modeling
layer, denoted as fseq(-), is thus formulated as below:

fseq(’) = fsc(‘a D, wseq,l) + fsc('a Da wseq,2)~ (3)

Considering that rhythmic patterns are tempo-
dependent, that is, the inter-beat or the inter-downbeat
interval will vary according to the current tempo, it is
crucial for a network to learn tempo-invariant, or scale-
invariant patterns [40]. To achieve scale invariance, we
simply introduce a set of dilation rates, or scale factors
s = {ry}5_, to each separable convolution. The scaled
separable convolution, accordingly, will operate .S times
on the same input with the kernel being expanded by the
given set of dilation rates:

fsc(’a da w) = (fSC('a d7w7’r1)7 ceey fso('7d7w7TS)); 4

where (-,...,-) denotes a stacking operation. Therefore,
the scaled separable convolution is capable of capturing
rhythmic patterns at different tempi simultaneously. Note
that the dilation employed here differs from that of the
original TCNs in two aspects. First, we employ the dilation
for modeling tempo variance rather than for expanding the
receptive field. Second, the parameters of a scaled separa-
ble convolution are shared among the S operations.

By introducing the scale factors, we add a new di-
mension to the output of the scaled separable convolu-
tion, whose shape thus becomes 7' x D x S. We sum-
marize the scale information by applying a gating mech-
anism, termed scale summarization (SS), which is similar
to the Squeeze-and-Excitation operation of the SENet [41].
Let U € RT*PXS denote the output of a scaled separa-
ble convolution. We use global average pooling (GAP)
along both the time and the feature dimensions to calculate
scalewise statistics z € R®. Subsequently, a gating func-
tion g € R is generated by using a projection layer with
learnable parameters W € R5*9 and a softmax activa-
tion. Lastly, we apply the gate function to U for obtaining
the summarized output U’ € RT*P:

S
U’ =88(U) = > Ug,
s=1 (5)

= GAP (U).

teT,deD

g= sofstenslax(Wz), z
In conclusion, the L-layer sequence modeling network
can be formally expressed as follows:
() -1
HO = 70, (HO),

6
fS((li)q() = SS(f:C('vawsqu) + f:c('»Dawseq,2))a ( )

with boundaries H(®) = Z and HY) = H.
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3.4 Estimation

We employ a convolutional layer with a kernel size of w;
followed by a softmax activation function to estimate the
probabilities of being downbeat (db), xbeat (zb), and
neither (n) at each time step:

Pap, Py, Pr| =P = fooe(H)
= softmax(fo(H, d = 3, ), 7

where Py, Pyp, P, € R7 indicate the estimated proba-
bilities of the three categorical labels across 7' time steps.
During inference, we generate a downbeat sequence (Iz,)
and a beat sequence (I) from Py and P, by finding the
local maximums (LM):

Ly = LM(Pg),

8
I, = LM(P}) = LM(Pg, + Pyy). ®)

3.5 Loss function

Cross entropy is often used as the loss function in the beat
and the downbeat estimation tasks. Since the cross en-
tropy loss treats all samples equally, the network optimiza-
tion will be dominated by vast amount of easy samples,
i.e., time frames not belonging to the beat and the down-
beat. Similar cases can be found in computer vision-related
tasks such as object detection, where exists an extreme
foreground-background disproportion. The focal loss (FL)
[26] is therefore proposed to weigh more on hard or easily
mis-classified samples by introducing a modulating term
to the cross entropy loss:

N
1
FL = -~ Zmi X y; x log(ps), &)

i=1

where p; is the estimated probability of sample 7 being
classified as the ground truth y;, and m; = (1 — p;)"
is the modulating term with ~; being a controllable fac-
tor. It is noteworthy that the FL, as same as the cross en-
tropy, is calculated on individual samples and hence un-
able to reflect spatial or temporal relations between sam-
ples. On the other hand, the Dice loss (DL) [27], which
has been applied to semantic segmentation of images, mea-
sures the overlap between the estimations of N samples
and the ground truths, and thus can delineate the regions of
interest, e.g., beat positions in a given musical sequence:

N
2 Ei:l Pi X Yi
N N :
D1 pzz + i yz‘Q

We propose to use a hybrid of the FL and the DL in
place of the cross entropy loss, for they address the class
imbalance issue from two complementary aspects: the FL
accentuates individual hard samples whereas the DL un-
derlines collective similarity of the minority samples. In
practice, we compute the FL. on P while the DL on both
P4 and Py,. By combining the two losses, we urge our net-
work to focus on the minority classes, i.e., beats and down-
beats, both at the frame level and at the sequence level.

DL=1-

(10)
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Figure 3: Representations of beat (top) and downbeat (bot-
tom) for label embedding (assume a meter of 4/4). The
horizontal axes are the time dimensions while the vertical
axes indicate the phase classes. K and K, are the num-
bers of classes for beat and downbeat, respectively.

3.6 Label embedding

Another concern in regard to the loss function is that the
periodic structure of a beat or downbeat sequence is not
considered. A recent work deals with the periodicity by es-
timating beat phase instead of beat presence at each frame
[42]. Accordingly, the beat estimation task is reformulated
as a sequence labeling problem in which the beat phase is
represented as a discrete sawtooth wave with period equal
to the interbeat interval. This reformulation, however, en-
larges the estimation space as the beat phase is categorized
into K classes with K being the phase resolution.

Alternatively, we leverage the label embedding ap-
proach [28] for learning the periodic structure. As illus-
trated in Figure 3, a sequence of ground-truth annotations
is represented as a discrete triangular wave A{db’b} S
RT>*Kav.py whose troughs locate at the beat or downbeat
frames. We then employ a vanilla autoencoder to encode
the represented annotations in an unsupervised manner.
The encoder (f.n.) and the decoder (f4..) used are both
a simple 1-D convolution layer with a kernel size of we,
i.e., fenc(*) = faec(:) = fe(-, D,w,). The label embed-
ding network is formulated as follows:

[Vzﬂﬂvg)] = faec(E),
E= fenc([deaVb])a (1])
Vb = AasWap, Vi = Ap Wy,
where W4, 1) € REav.03 XD are learnable phase embed-
ding matrices, V4,31 € RT*? are sequences of embed-
dings, E € RT*P is a sequence of joint embeddings, and
V’{db7b} € RT*P are the reconstructions of Viavpy- We
compute the reconstruction loss (RL) as follows:
RL = FL(Ag, Al,) + FL(A,, A}),
Ay, = SO£tGI§(aX(V&bW§b), (12)
Aj = SO£‘EEH11(aX(V{,WJ).

As illustrated in Figure 2, the joint embedding E is
taken as a structural regularization (SR) of H (the output of
the sequence modeling network) by minimizing the mean
squared error (MSE):

SR = MSE(E, H). (13)

Hence, the total loss .¥ = FL + DL + RL + SR. We
train the whole networks in an end-to-end fashion. As the
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contextual information of the annotations is encoded in E,
adding this fopology-aware regularization term (SR) to the
loss computation enables the network to explicitly learn
the structural characteristics [43]. The source code of the
proposed model is available online. 3

4. EVALUATION
4.1 Data preparation

Four datasets are employed in the evaluation, including
the Ballroom [44], the Hainsworth [22], the GTZAN [45],
and the ASAP [46]. Each audio file (with a sampling rate
of 44,100 Hz) in the datasets is transformed into a log-
magnitude spectrogram with a total of 81 frequency bins
from 30 Hz to 17,000 Hz, by using the Python package /i-
brosa [47]. Specifically, the short-time Fourier transform
(STFT) with a window size of 92.9 ms (4,096 samples)
and a hop size of 23.2 ms (1,024 samples) is applied, and
the output spectrogram is mapped onto the Mel scale. The
per-bin first-order difference is calculated for each spectro-
gram as an additional feature (only the positive differences
are retained) [16]. In consequence, each audio file is rep-
resented as X € RT*81%2 with T being the time steps of
the corresponding spectrogram. Besides, the MIDI data of
the ASAP are also used for evaluation. Following [48], we
represent each MIDI file by four features: the pitch pro-
file € RT*88 (i.e., pianoroll), the onset profile € RT*88,
the spectral flux € RT, and the inter-onset interval € R” .
We modify our feature extraction network accordingly for
the MIDI representation, and keep the other parts of the
architecture unchanged. Specifically, the pitch profile and
the onset profile are concatenated together and fed into the
feature extraction network. The output of the feature ex-
traction network is then concatenated with the other two
features and taken as the input of the succeeding layer.

On the other hand, the beat and downbeat annotations
are represented as binary sequences, Yy, Y, € {0,1}7,
where a time step ¢ € T has a value of 1 if it belongs to the
beat or the downbeat, and 0 otherwise. To treat joint beat
and downbeat estimation as a sequence labeling problem,
we further generate Y € {0, 1}73 based on Y4, and Y5,
which is a sequence of one-hot vectors indicating the cate-
gorical label of each time step. The Y is used to compute
the FL (with P) while the Y, and the Y 4, are for the DL
(with Py, and P 4, respectively), as depicted in Figure 2.

4.2 Experiment

We evaluate the proposed architecture on the four datasets
and report the beat and the downbeat estimation perfor-
mances using the standard F1 measure with a tolerance
window of +70 ms. The hyperparameters of the architec-
ture are set as in Table 1. The model of [15] without DBNs
(i.e., the top one in Figure 1) is employed as our baseline
model. The numbers of learnable parameters are around
110K and 63K for the proposed model and the baseline,

3https://github.com/Tsung-Ping/
Joint-beat-and-downbeat-estimation
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Input

J = 81 for Audio
J = 88 for MIDI

Number of frequency bins

Feature extraction

Kernel size wi?l =5x41
Kernel size wg) s =5Hx61
Kernel size wgi)l =15x1
Kernel size wg)Q =21x1
Feature dimension D =20
Sequence modeling

Kernel size Wseq,1 = 301
Kernel size Weq,2 = 401
Scale factor s =1{1,2,3,4}
Number of scales S=4

Number of layers L=14
Estimation

Kernel size West = T
Label embedding

Number of beat phase classes K, =150
Number of downbeat phase classes K4, = 500
Kernel size we =T

Table 1: Hyperparameters of the proposed architecture.

respectively. Evidently, we can employ separable convo-
lutions to enlarge the receptive field without a catastrophic
increase of model capacity. To investigate the effectiveness
of the proposed methods, we further perform an ablation
study by removing one of the reformulations: feature ex-
traction (abl_ex), sequence modeling (abl_seq), loss
function (abl_loss), and label embedding (abl_1lab).
In line with [15], the Ballroom and the Hainsworth are
both split for 8-fold cross-validations.* Note that the two
datasets are used separately rather than merged as a single
cross-validation set. The GTZAN is divided into 10 parts
according to the built-in genre labels, with which a 10-fold
cross-validation is performed to inspect the performance
variance with respect to genre.> For the ASAP, we first
create a subset by selecting audio recordings which have
a paired MIDI file (519 pairs in total). Afterwards, a test
set is built from the subset with musical pieces by the four
composers: Glinka, Mozart, Schubert, and Rachmaninoff;
the remaining data of the subset are used for training. The
paired MIDI files are used as the audio counterparts to ex-
amine the impact of input modality on the performance.
All the training data are augmented in two ways: 1) by
shifting the pitch of an audio signal before the STFT is
applied, and 2) by changing the hop size of the STFT win-
dow.® For the ASAP, we only apply the pitch augmen-
tation as its total duration is significantly longer than the
other three datasets. By the pitch augmentation, we can
easily increase the data amount without extra annotation

4The details of the data splitting can be found at https://
github.com/superbock/ISMIR2020.

5 jazz.00003, jazz.00009, jazz.00010, jazz.00014,
jazz.00018, jazz.00020 are excluded for they have no downbeat
annotations; reggae . 00086 is damaged and also excluded.

6 We use pitch shifts € {-5 ~ +6} (semitones) and hop sizes € {18.9,
20.3, 21.8, 23.2, 26.1, 29.0, 31.9} (ms) for the data augmentation.
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Task Model  Ballroom Hainsworth GTZAN ASAP
blues classical country disco hiphop jazz ~metal pop reggae rock Audio MIDI
Beat baseline 96.60 84.18 83.20 51.62 96.65 97.76 94.61 68.40 8246 93.84 9276 89.90 7143 7245
proposed 96.81 86.28 86.63  63.23 9482 97.63 9558 7980 86.48 94.81 93.05 93.01 7140 75.70
Downbeat baseline 92.06 66.18 59.25 14.70 79.70 8271 7286 3347 64.64 84.67 51.06 7649 4946 5734
proposed 94.21 69.11 60.98  30.17 8391 86.28 79.10 50.66 67.21 83.86 56.87 76.55 63.92 67.43

Table 2: Evaluation results in terms of F1 score (%). For the Ballroom and the Hainsworth, the scores are the averaged
performances over a 8-fold cross-validation. For the GTZAN, the score on each genre is obtained in a 10-fold cross-
validation manner. For the ASAP, the performances on the audio data and on the MIDI data are separately shown.

Task Model Ballroom Hainsworth
abl_ex 96.08 (-0.73) 85.49 079
Beat abl_seq  96.98 0.17) 85.96 032
abl_loss  95.27 (154 86.52 (+0.24)
abl_lab  96.54 (027 86.83 (+0.55)
abl_ex 92.16 (2.05) 62.27 (6.84
abl_seq  94.16 005 69.73 +0.62)
Downbeat abl_loss  91.99 2.2 66.79 (232
abl_lab  93.61 (0.0 69.58 (+047)

Table 3: Ablation study on the Ballroom and the

Hainsworth. Performance in terms of F1 score (%) and rel-
ative improvement against the proposed model (in paren-
theses) are provided.

cost; moreover, the model can explicitly learn rhythmic
features independent of absolute pitch. By the hop-size
augmentation, we can obtain more training data of differ-
ent tempi with a slight adjustment of the annotations.

4.3 Result

The evaluation results are summarized in Table 2, show-
ing the performance on each dataset in terms of beat esti-
mation and downbeat estimation. When evaluated on the
Ballroom and the Hainsworth, the proposed model outper-
forms the baseline in both beat and downbeat estimations.
Moreover, it is surprising that the evaluation results on the
Ballroom are even better than [15] (beat: 96.20; downbeat:
91.6) and [14] (beat: 96.20; downbeat: 93.7) considering
that we didn’t use a combination of datasets for training
and DBNs for post-processing; in addition, our model is
smaller in capacity than the best model of [14] which has
around 4.7M learnable parameters. On the other hand, the
results on the Hainsworth indicate that more efforts should
be put in dealing with music data of diverse styles. For
instance, the choruses collected in the Hainsworth are ex-
tremely flexible in tempo at the beginning and particularly
at the end of each phrase, and therefore a phrase segmen-
tation technique might be incorporated in the tasks.

For the GTZAN, the proposed model demonstrates
its superiority over the baseline in almost all the cases.
The average beat estimation performances are 85.12%
and 88.50% for the baseline and the proposed model, re-
spectively, while the average downbeat estimation perfor-
mances are 61.96% and 67.56%. According to the evalu-
ation results, the rhythmic characteristics of classical
and jazz are quite distinct from the other genres. Nev-
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ertheless, our model still surpasses the baseline by around
15.5 and 17.2 percentage points in estimating the down-
beats of classical and jazz, respectively. These im-
provements are notable and indicate the capability of our
model in both tasks, especially in downbeat estimation.

For the audio data of the ASAP, the proposed model per-
forms comparably to the baseline on the beat estimation
while remarkably outperforms the baseline on the down-
beat estimation. For the MIDI data of the ASAP, our model
achieves greater results both on estimating the beats and
the downbeats. It is worth noting that in all cases, the es-
timation result is better on the MIDI data than on the au-
dio counterpart. Given that automatic music transcription
(AMT) [49-51] is an active research topic in the field of
MIR, it could be promising to incorporate AMT techniques
into the beat and the downbeat estimations.

Finally, as shown in Table 3, the ablation study indicates
that our reformulations of the feature extraction and the
loss function have notable positive effect especially on es-
timating downbeats, while the improvements by the other
components are inconsistent over the tasks and datasets.
We also observed that for the Hainsworth, the model with-
out the label embedding (abl_1ab) performs slightly bet-
ter. This might result from the limited expressiveness of H
due to the regularization on it. A more extensive study is
required to justify the proposed reformulations.

5. CONCLUSION

We have addressed the joint beat and downbeat estimation
task based on a state-of-the-art approach. By inspecting
the potential issues in this approach, we proposed several
reformulations to further the performance of deep neural
networks. We experimentally showed that the proposed
architecture is capable of outperforming the state-of-the-
art approach without the aid of a post-processing network.
In the scenario of deep learning-based beat and downbeat
estimations, as well as in many sequence labeling frame-
works, it is common to involve a post-processing stage in
addition to the deep neural networks since the outputs by
the networks are usually coarse when a simple threshold-
ing method is applied. While involving a post-processing
stage often leads to an improvement over the preceding
deep learning models, it hinders the formulation of end-
to-end training and indicates a necessity to reconsider the
employed neural networks. Hopefully, we are able to build
a model tailored to the task of interest with a deeper look
at the network architecture from the perspective of data.
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