Journal article Open Access

High-Frequency Light Rectification by Nanoscale Plasmonic Conical Antenna in Point-Contact-Insulator-Metal Architecture

Mupparapu R.; Cunha J.; Tantussi F.; Jacassi A.; Summerer L.; Patrini M.; Giugni A.; Maserati L.; Alabastri A.; Garoli D.; Proietti Zaccaria R.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2022-11-21</subfield>
  </datafield>
  <controlfield tag="005">20221121142632.0</controlfield>
  <controlfield tag="001">7341380</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:7341380</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Numerous efforts have been undertaken to develop rectifying antennas operating&amp;nbsp;at high frequencies, especially dedicated to light harvesting and photodetection&amp;nbsp;applications. However, the development of efficient high frequency&amp;nbsp;rectifying antennas has been a major technological challenge both due to a lack&amp;nbsp;of comprehension of the underlying physics and limitations in the fabrication&lt;br&gt;
techniques. Various rectification strategies have been implemented, including&amp;nbsp;metal-insulator-metal traveling-wave diodes, plasmonic nanogap optical&amp;nbsp;antennas, and whisker diodes, although all show limited high-frequency operation&lt;br&gt;
and modest conversion efficiencies. Here a new type of rectifying antenna&amp;nbsp;based on plasmonic carrier generation is demonstrated. The proposed structure&amp;nbsp;consists of a resonant metallic conical nano-antenna tip in contact with the oxide&lt;br&gt;
surface of an oxide/metal bilayer. The conical shape allows for an improved&amp;nbsp;current generation based on plasmon-mediated electromagnetic-to-electron&amp;nbsp;conversion, an effect exploiting the nanoscale-tip contact of the rectifying&lt;br&gt;
antenna, and proportional to the antenna resonance and to the surface-electron&amp;nbsp;scattering. Importantly, this solution provides rectification operation at 280 THz&amp;nbsp;(1064 nm) with a 100-fold increase in efficiency compared to previously reported&lt;br&gt;
results. Finally, the conical rectifying antenna is also demonstrated to operate&amp;nbsp;at 384 THz (780 nm), hence paving a way toward efficient rectennas toward the&amp;nbsp;visible range.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Istituto Italiano di Tecnologia</subfield>
    <subfield code="a">Cunha J.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Istituto Italiano di Tecnologia</subfield>
    <subfield code="a">Tantussi F.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Istituto Italiano di Tecnologia</subfield>
    <subfield code="a">Jacassi A.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Istituto Italiano di Tecnologia</subfield>
    <subfield code="a">Summerer L.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Istituto Italiano di Tecnologia</subfield>
    <subfield code="a">Patrini M.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Istituto Italiano di Tecnologia</subfield>
    <subfield code="a">Giugni A.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Istituto Italiano di Tecnologia</subfield>
    <subfield code="a">Maserati L.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Istituto Italiano di Tecnologia</subfield>
    <subfield code="a">Alabastri A.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Istituto Italiano di Tecnologia</subfield>
    <subfield code="a">Garoli D.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Istituto Italiano di Tecnologia</subfield>
    <subfield code="a">Proietti Zaccaria R.</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2030896</subfield>
    <subfield code="z">md5:e806c0f22fe69773abfe006e0534d5f5</subfield>
    <subfield code="u">https://zenodo.org/record/7341380/files/2022_Advanced Energy Materials.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Istituto Italiano di Tecnologia</subfield>
    <subfield code="a">Mupparapu R.</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1002/aenm.202103785</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">High-Frequency Light Rectification by Nanoscale Plasmonic Conical Antenna in Point-Contact-Insulator-Metal Architecture</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
22
13
views
downloads
Views 22
Downloads 13
Data volume 26.4 MB
Unique views 15
Unique downloads 13

Share

Cite as