Journal article Open Access
Mupparapu R.; Cunha J.; Tantussi F.; Jacassi A.; Summerer L.; Patrini M.; Giugni A.; Maserati L.; Alabastri A.; Garoli D.; Proietti Zaccaria R.
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2022-11-21</subfield> </datafield> <controlfield tag="005">20221121142632.0</controlfield> <controlfield tag="001">7341380</controlfield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="o">oai:zenodo.org:7341380</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Numerous efforts have been undertaken to develop rectifying antennas operating&nbsp;at high frequencies, especially dedicated to light harvesting and photodetection&nbsp;applications. However, the development of efficient high frequency&nbsp;rectifying antennas has been a major technological challenge both due to a lack&nbsp;of comprehension of the underlying physics and limitations in the fabrication<br> techniques. Various rectification strategies have been implemented, including&nbsp;metal-insulator-metal traveling-wave diodes, plasmonic nanogap optical&nbsp;antennas, and whisker diodes, although all show limited high-frequency operation<br> and modest conversion efficiencies. Here a new type of rectifying antenna&nbsp;based on plasmonic carrier generation is demonstrated. The proposed structure&nbsp;consists of a resonant metallic conical nano-antenna tip in contact with the oxide<br> surface of an oxide/metal bilayer. The conical shape allows for an improved&nbsp;current generation based on plasmon-mediated electromagnetic-to-electron&nbsp;conversion, an effect exploiting the nanoscale-tip contact of the rectifying<br> antenna, and proportional to the antenna resonance and to the surface-electron&nbsp;scattering. Importantly, this solution provides rectification operation at 280 THz&nbsp;(1064 nm) with a 100-fold increase in efficiency compared to previously reported<br> results. Finally, the conical rectifying antenna is also demonstrated to operate&nbsp;at 384 THz (780 nm), hence paving a way toward efficient rectennas toward the&nbsp;visible range.</p></subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Istituto Italiano di Tecnologia</subfield> <subfield code="a">Cunha J.</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Istituto Italiano di Tecnologia</subfield> <subfield code="a">Tantussi F.</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Istituto Italiano di Tecnologia</subfield> <subfield code="a">Jacassi A.</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Istituto Italiano di Tecnologia</subfield> <subfield code="a">Summerer L.</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Istituto Italiano di Tecnologia</subfield> <subfield code="a">Patrini M.</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Istituto Italiano di Tecnologia</subfield> <subfield code="a">Giugni A.</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Istituto Italiano di Tecnologia</subfield> <subfield code="a">Maserati L.</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Istituto Italiano di Tecnologia</subfield> <subfield code="a">Alabastri A.</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Istituto Italiano di Tecnologia</subfield> <subfield code="a">Garoli D.</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Istituto Italiano di Tecnologia</subfield> <subfield code="a">Proietti Zaccaria R.</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">2030896</subfield> <subfield code="z">md5:e806c0f22fe69773abfe006e0534d5f5</subfield> <subfield code="u">https://zenodo.org/record/7341380/files/2022_Advanced Energy Materials.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Istituto Italiano di Tecnologia</subfield> <subfield code="a">Mupparapu R.</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.1002/aenm.202103785</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">High-Frequency Light Rectification by Nanoscale Plasmonic Conical Antenna in Point-Contact-Insulator-Metal Architecture</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> </record>
Views | 22 |
Downloads | 13 |
Data volume | 26.4 MB |
Unique views | 15 |
Unique downloads | 13 |