Journal article Open Access
Mupparapu R.; Cunha J.; Tantussi F.; Jacassi A.; Summerer L.; Patrini M.; Giugni A.; Maserati L.; Alabastri A.; Garoli D.; Proietti Zaccaria R.
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://zenodo.org/record/7341380</identifier> <creators> <creator> <creatorName>Mupparapu R.</creatorName> <affiliation>Istituto Italiano di Tecnologia</affiliation> </creator> <creator> <creatorName>Cunha J.</creatorName> <affiliation>Istituto Italiano di Tecnologia</affiliation> </creator> <creator> <creatorName>Tantussi F.</creatorName> <affiliation>Istituto Italiano di Tecnologia</affiliation> </creator> <creator> <creatorName>Jacassi A.</creatorName> <affiliation>Istituto Italiano di Tecnologia</affiliation> </creator> <creator> <creatorName>Summerer L.</creatorName> <affiliation>Istituto Italiano di Tecnologia</affiliation> </creator> <creator> <creatorName>Patrini M.</creatorName> <affiliation>Istituto Italiano di Tecnologia</affiliation> </creator> <creator> <creatorName>Giugni A.</creatorName> <affiliation>Istituto Italiano di Tecnologia</affiliation> </creator> <creator> <creatorName>Maserati L.</creatorName> <affiliation>Istituto Italiano di Tecnologia</affiliation> </creator> <creator> <creatorName>Alabastri A.</creatorName> <affiliation>Istituto Italiano di Tecnologia</affiliation> </creator> <creator> <creatorName>Garoli D.</creatorName> <affiliation>Istituto Italiano di Tecnologia</affiliation> </creator> <creator> <creatorName>Proietti Zaccaria R.</creatorName> <affiliation>Istituto Italiano di Tecnologia</affiliation> </creator> </creators> <titles> <title>High-Frequency Light Rectification by Nanoscale Plasmonic Conical Antenna in Point-Contact-Insulator-Metal Architecture</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2022</publicationYear> <dates> <date dateType="Issued">2022-11-21</date> </dates> <resourceType resourceTypeGeneral="JournalArticle"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/7341380</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1002/aenm.202103785</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Numerous efforts have been undertaken to develop rectifying antennas operating&nbsp;at high frequencies, especially dedicated to light harvesting and photodetection&nbsp;applications. However, the development of efficient high frequency&nbsp;rectifying antennas has been a major technological challenge both due to a lack&nbsp;of comprehension of the underlying physics and limitations in the fabrication<br> techniques. Various rectification strategies have been implemented, including&nbsp;metal-insulator-metal traveling-wave diodes, plasmonic nanogap optical&nbsp;antennas, and whisker diodes, although all show limited high-frequency operation<br> and modest conversion efficiencies. Here a new type of rectifying antenna&nbsp;based on plasmonic carrier generation is demonstrated. The proposed structure&nbsp;consists of a resonant metallic conical nano-antenna tip in contact with the oxide<br> surface of an oxide/metal bilayer. The conical shape allows for an improved&nbsp;current generation based on plasmon-mediated electromagnetic-to-electron&nbsp;conversion, an effect exploiting the nanoscale-tip contact of the rectifying<br> antenna, and proportional to the antenna resonance and to the surface-electron&nbsp;scattering. Importantly, this solution provides rectification operation at 280 THz&nbsp;(1064 nm) with a 100-fold increase in efficiency compared to previously reported<br> results. Finally, the conical rectifying antenna is also demonstrated to operate&nbsp;at 384 THz (780 nm), hence paving a way toward efficient rectennas toward the&nbsp;visible range.</p></description> </descriptions> </resource>
Views | 22 |
Downloads | 13 |
Data volume | 26.4 MB |
Unique views | 15 |
Unique downloads | 13 |