UPDATE: Zenodo migration postponed to Oct 13 from 06:00-08:00 UTC. Read the announcement.

Dataset Open Access

Exhaustive Symbolic Regression Function Sets

Bartlett, Deaglan J.; Desmond, Harry; Ferreira, Pedro G.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Symbolic Regression</subfield>
  </datafield>
  <controlfield tag="005">20221121142636.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">DJB is supported by the Simons Collaboration on ``Learning the Universe'' and was supported by STFC and Oriel College, Oxford. HD is supported by a Royal Society University Research Fellowship (grant no. 211046). PGF acknowledges support from European Research Council Grant No: 693024 and the Beecroft Trust.</subfield>
  </datafield>
  <controlfield tag="001">7339113</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Institute of Cosmology &amp; Gravitation, University of Portsmouth</subfield>
    <subfield code="0">(orcid)0000-0003-0685-9791</subfield>
    <subfield code="a">Desmond, Harry</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Astrophysics, University of Oxford</subfield>
    <subfield code="0">(orcid)0000-0002-3021-2851</subfield>
    <subfield code="a">Ferreira, Pedro G.</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">84451703</subfield>
    <subfield code="z">md5:da925e09c586f7dae78b711aa6526466</subfield>
    <subfield code="u">https://zenodo.org/record/7339113/files/core_maths.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">961687318</subfield>
    <subfield code="z">md5:87095338efd9956127df9f9839664396</subfield>
    <subfield code="u">https://zenodo.org/record/7339113/files/ext_maths.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2022-11-20</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:7339113</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">CNRS &amp; Sorbonne Université, Institut d'Astrophysique de Paris and Astrophysics, University of Oxford</subfield>
    <subfield code="0">(orcid)0000-0001-9426-7723</subfield>
    <subfield code="a">Bartlett, Deaglan J.</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Exhaustive Symbolic Regression Function Sets</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;ESR (Exhaustive Symbolic Regression) is a symbolic regression algorithm which efficiently and systematically finds all possible equations at fixed complexity (defined to be the number of nodes in its tree representation) given a set of basis functions.&amp;nbsp;This is achieved by identifying the unique equations, so that one minimises the number of equations which one would have to fit to data.&lt;/p&gt;

&lt;p&gt;Here we provide the functions generated, the unique equations, and the mappings between all equations and unique ones&amp;nbsp;using different sets of basis functions. These are:&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;&amp;quot;core_maths&amp;quot;:&amp;nbsp;&lt;span class="math-tex"&gt;\(\{x, a, {\rm inv}, +, -, \times, \div, {\rm pow} \}\)&lt;/span&gt;&lt;/li&gt;
	&lt;li&gt;&amp;quot;ext_maths&amp;quot;:&amp;nbsp;&lt;span class="math-tex"&gt;\(\{x, a, {\rm inv}, \sqrt{\cdot}, {\rm square}, \exp, +, -, \times, \div, {\rm pow} \}\)&lt;/span&gt;&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;where &lt;span class="math-tex"&gt;\(x\)&lt;/span&gt;&amp;nbsp;is the input variable and &lt;span class="math-tex"&gt;\(a\)&lt;/span&gt;&amp;nbsp;denotes a constant.&lt;/p&gt;

&lt;p&gt;One can fit these functions to a data set of interest by using the &lt;a href="https://esr.readthedocs.io"&gt;ESR package&lt;/a&gt;.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.7339112</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.7339113</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
175
24
views
downloads
All versions This version
Views 175175
Downloads 2424
Data volume 8.2 GB8.2 GB
Unique views 153153
Unique downloads 2121

Share

Cite as