Zenodo.org will be unavailable for 2 hours on September 29th from 06:00-08:00 UTC. See announcement.

Dataset Open Access

# Exhaustive Symbolic Regression Function Sets Bartlett, Deaglan J.; Desmond, Harry; Ferreira, Pedro G.

### JSON-LD (schema.org) Export

{
"description": "<p>ESR (Exhaustive Symbolic Regression) is a symbolic regression algorithm which efficiently and systematically finds all possible equations at fixed complexity (defined to be the number of nodes in its tree representation) given a set of basis functions.&nbsp;This is achieved by identifying the unique equations, so that one minimises the number of equations which one would have to fit to data.</p>\n\n<p>Here we provide the functions generated, the unique equations, and the mappings between all equations and unique ones&nbsp;using different sets of basis functions. These are:</p>\n\n<ul>\n\t<li>&quot;core_maths&quot;:&nbsp;<span class=\"math-tex\">\$$\\{x, a, {\\rm inv}, +, -, \\times, \\div, {\\rm pow} \\}\$$</span></li>\n\t<li>&quot;ext_maths&quot;:&nbsp;<span class=\"math-tex\">\$$\\{x, a, {\\rm inv}, \\sqrt{\\cdot}, {\\rm square}, \\exp, +, -, \\times, \\div, {\\rm pow} \\}\$$</span></li>\n</ul>\n\n<p>where <span class=\"math-tex\">\$$x\$$</span>&nbsp;is the input variable and <span class=\"math-tex\">\$$a\$$</span>&nbsp;denotes a constant.</p>\n\n<p>One can fit these functions to a data set of interest by using the <a href=\"https://esr.readthedocs.io\">ESR package</a>.</p>",
"creator": [
{
"affiliation": "CNRS & Sorbonne Universit\u00e9, Institut d'Astrophysique de Paris and Astrophysics, University of Oxford",
"@id": "https://orcid.org/0000-0001-9426-7723",
"@type": "Person",
"name": "Bartlett, Deaglan J."
},
{
"affiliation": "Institute of Cosmology & Gravitation, University of Portsmouth",
"@id": "https://orcid.org/0000-0003-0685-9791",
"@type": "Person",
"name": "Desmond, Harry"
},
{
"affiliation": "Astrophysics, University of Oxford",
"@id": "https://orcid.org/0000-0002-3021-2851",
"@type": "Person",
"name": "Ferreira, Pedro G."
}
],
"url": "https://zenodo.org/record/7339113",
"datePublished": "2022-11-20",
"keywords": [
"Symbolic Regression"
],
"@context": "https://schema.org/",
"distribution": [
{
"contentUrl": "https://zenodo.org/api/files/5c5294e6-6476-4f7e-b4cd-ebfc77602d96/core_maths.zip",
"encodingFormat": "zip",
},
{
"contentUrl": "https://zenodo.org/api/files/5c5294e6-6476-4f7e-b4cd-ebfc77602d96/ext_maths.zip",
"encodingFormat": "zip",
}
],
"identifier": "https://doi.org/10.5281/zenodo.7339113",
"@id": "https://doi.org/10.5281/zenodo.7339113",
"@type": "Dataset",
"name": "Exhaustive Symbolic Regression Function Sets"
}
175
24
views