Dataset Open Access
Bartlett, Deaglan J.;
Desmond, Harry;
Ferreira, Pedro G.
{ "description": "<p>ESR (Exhaustive Symbolic Regression) is a symbolic regression algorithm which efficiently and systematically finds all possible equations at fixed complexity (defined to be the number of nodes in its tree representation) given a set of basis functions. This is achieved by identifying the unique equations, so that one minimises the number of equations which one would have to fit to data.</p>\n\n<p>Here we provide the functions generated, the unique equations, and the mappings between all equations and unique ones using different sets of basis functions. These are:</p>\n\n<ul>\n\t<li>"core_maths": <span class=\"math-tex\">\\(\\{x, a, {\\rm inv}, +, -, \\times, \\div, {\\rm pow} \\}\\)</span></li>\n\t<li>"ext_maths": <span class=\"math-tex\">\\(\\{x, a, {\\rm inv}, \\sqrt{\\cdot}, {\\rm square}, \\exp, +, -, \\times, \\div, {\\rm pow} \\}\\)</span></li>\n</ul>\n\n<p>where <span class=\"math-tex\">\\(x\\)</span> is the input variable and <span class=\"math-tex\">\\(a\\)</span> denotes a constant.</p>\n\n<p>One can fit these functions to a data set of interest by using the <a href=\"https://esr.readthedocs.io\">ESR package</a>.</p>", "license": "https://creativecommons.org/licenses/by/4.0/legalcode", "creator": [ { "affiliation": "CNRS & Sorbonne Universit\u00e9, Institut d'Astrophysique de Paris and Astrophysics, University of Oxford", "@id": "https://orcid.org/0000-0001-9426-7723", "@type": "Person", "name": "Bartlett, Deaglan J." }, { "affiliation": "Institute of Cosmology & Gravitation, University of Portsmouth", "@id": "https://orcid.org/0000-0003-0685-9791", "@type": "Person", "name": "Desmond, Harry" }, { "affiliation": "Astrophysics, University of Oxford", "@id": "https://orcid.org/0000-0002-3021-2851", "@type": "Person", "name": "Ferreira, Pedro G." } ], "url": "https://zenodo.org/record/7339113", "datePublished": "2022-11-20", "keywords": [ "Symbolic Regression" ], "@context": "https://schema.org/", "distribution": [ { "contentUrl": "https://zenodo.org/api/files/5c5294e6-6476-4f7e-b4cd-ebfc77602d96/core_maths.zip", "encodingFormat": "zip", "@type": "DataDownload" }, { "contentUrl": "https://zenodo.org/api/files/5c5294e6-6476-4f7e-b4cd-ebfc77602d96/ext_maths.zip", "encodingFormat": "zip", "@type": "DataDownload" } ], "identifier": "https://doi.org/10.5281/zenodo.7339113", "@id": "https://doi.org/10.5281/zenodo.7339113", "@type": "Dataset", "name": "Exhaustive Symbolic Regression Function Sets" }
All versions | This version | |
---|---|---|
Views | 175 | 175 |
Downloads | 24 | 24 |
Data volume | 8.2 GB | 8.2 GB |
Unique views | 153 | 153 |
Unique downloads | 21 | 21 |