Zenodo.org will be unavailable for 2 hours on September 29th from 06:00-08:00 UTC. See announcement.

Dataset Open Access

Exhaustive Symbolic Regression Function Sets

Bartlett, Deaglan J.; Desmond, Harry; Ferreira, Pedro G.


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/5c5294e6-6476-4f7e-b4cd-ebfc77602d96/core_maths.zip"
      }, 
      "checksum": "md5:da925e09c586f7dae78b711aa6526466", 
      "bucket": "5c5294e6-6476-4f7e-b4cd-ebfc77602d96", 
      "key": "core_maths.zip", 
      "type": "zip", 
      "size": 84451703
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/5c5294e6-6476-4f7e-b4cd-ebfc77602d96/ext_maths.zip"
      }, 
      "checksum": "md5:87095338efd9956127df9f9839664396", 
      "bucket": "5c5294e6-6476-4f7e-b4cd-ebfc77602d96", 
      "key": "ext_maths.zip", 
      "type": "zip", 
      "size": 961687318
    }
  ], 
  "owners": [
    434242
  ], 
  "doi": "10.5281/zenodo.7339113", 
  "stats": {
    "version_unique_downloads": 21.0, 
    "unique_views": 153.0, 
    "views": 175.0, 
    "version_views": 175.0, 
    "unique_downloads": 21.0, 
    "version_unique_views": 153.0, 
    "volume": 8167490177.0, 
    "version_downloads": 24.0, 
    "downloads": 24.0, 
    "version_volume": 8167490177.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.7339113", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.7339112", 
    "bucket": "https://zenodo.org/api/files/5c5294e6-6476-4f7e-b4cd-ebfc77602d96", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.7339112.svg", 
    "html": "https://zenodo.org/record/7339113", 
    "latest_html": "https://zenodo.org/record/7339113", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.7339113.svg", 
    "latest": "https://zenodo.org/api/records/7339113"
  }, 
  "conceptdoi": "10.5281/zenodo.7339112", 
  "created": "2022-11-20T10:46:20.873351+00:00", 
  "updated": "2022-11-21T14:26:36.730239+00:00", 
  "conceptrecid": "7339112", 
  "revision": 2, 
  "id": 7339113, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.7339113", 
    "description": "<p>ESR (Exhaustive Symbolic Regression) is a symbolic regression algorithm which efficiently and systematically finds all possible equations at fixed complexity (defined to be the number of nodes in its tree representation) given a set of basis functions.&nbsp;This is achieved by identifying the unique equations, so that one minimises the number of equations which one would have to fit to data.</p>\n\n<p>Here we provide the functions generated, the unique equations, and the mappings between all equations and unique ones&nbsp;using different sets of basis functions. These are:</p>\n\n<ul>\n\t<li>&quot;core_maths&quot;:&nbsp;<span class=\"math-tex\">\\(\\{x, a, {\\rm inv}, +, -, \\times, \\div, {\\rm pow} \\}\\)</span></li>\n\t<li>&quot;ext_maths&quot;:&nbsp;<span class=\"math-tex\">\\(\\{x, a, {\\rm inv}, \\sqrt{\\cdot}, {\\rm square}, \\exp, +, -, \\times, \\div, {\\rm pow} \\}\\)</span></li>\n</ul>\n\n<p>where <span class=\"math-tex\">\\(x\\)</span>&nbsp;is the input variable and <span class=\"math-tex\">\\(a\\)</span>&nbsp;denotes a constant.</p>\n\n<p>One can fit these functions to a data set of interest by using the <a href=\"https://esr.readthedocs.io\">ESR package</a>.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Exhaustive Symbolic Regression Function Sets", 
    "notes": "DJB is supported by the Simons Collaboration on ``Learning the Universe'' and was supported by STFC and Oriel College, Oxford. HD is supported by a Royal Society University Research Fellowship (grant no. 211046). PGF acknowledges support from European Research Council Grant No: 693024 and the Beecroft Trust.", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "7339112"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "7339113"
          }
        }
      ]
    }, 
    "keywords": [
      "Symbolic Regression"
    ], 
    "publication_date": "2022-11-20", 
    "creators": [
      {
        "orcid": "0000-0001-9426-7723", 
        "affiliation": "CNRS & Sorbonne Universit\u00e9, Institut d'Astrophysique de Paris and Astrophysics, University of Oxford", 
        "name": "Bartlett, Deaglan J."
      }, 
      {
        "orcid": "0000-0003-0685-9791", 
        "affiliation": "Institute of Cosmology & Gravitation, University of Portsmouth", 
        "name": "Desmond, Harry"
      }, 
      {
        "orcid": "0000-0002-3021-2851", 
        "affiliation": "Astrophysics, University of Oxford", 
        "name": "Ferreira, Pedro G."
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.7339112", 
        "relation": "isVersionOf"
      }
    ]
  }
}
175
24
views
downloads
All versions This version
Views 175175
Downloads 2424
Data volume 8.2 GB8.2 GB
Unique views 153153
Unique downloads 2121

Share

Cite as