Dataset Open Access
Bartlett, Deaglan J.;
Desmond, Harry;
Ferreira, Pedro G.
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/5c5294e6-6476-4f7e-b4cd-ebfc77602d96/core_maths.zip" }, "checksum": "md5:da925e09c586f7dae78b711aa6526466", "bucket": "5c5294e6-6476-4f7e-b4cd-ebfc77602d96", "key": "core_maths.zip", "type": "zip", "size": 84451703 }, { "links": { "self": "https://zenodo.org/api/files/5c5294e6-6476-4f7e-b4cd-ebfc77602d96/ext_maths.zip" }, "checksum": "md5:87095338efd9956127df9f9839664396", "bucket": "5c5294e6-6476-4f7e-b4cd-ebfc77602d96", "key": "ext_maths.zip", "type": "zip", "size": 961687318 } ], "owners": [ 434242 ], "doi": "10.5281/zenodo.7339113", "stats": { "version_unique_downloads": 21.0, "unique_views": 153.0, "views": 175.0, "version_views": 175.0, "unique_downloads": 21.0, "version_unique_views": 153.0, "volume": 8167490177.0, "version_downloads": 24.0, "downloads": 24.0, "version_volume": 8167490177.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.7339113", "conceptdoi": "https://doi.org/10.5281/zenodo.7339112", "bucket": "https://zenodo.org/api/files/5c5294e6-6476-4f7e-b4cd-ebfc77602d96", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.7339112.svg", "html": "https://zenodo.org/record/7339113", "latest_html": "https://zenodo.org/record/7339113", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.7339113.svg", "latest": "https://zenodo.org/api/records/7339113" }, "conceptdoi": "10.5281/zenodo.7339112", "created": "2022-11-20T10:46:20.873351+00:00", "updated": "2022-11-21T14:26:36.730239+00:00", "conceptrecid": "7339112", "revision": 2, "id": 7339113, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.7339113", "description": "<p>ESR (Exhaustive Symbolic Regression) is a symbolic regression algorithm which efficiently and systematically finds all possible equations at fixed complexity (defined to be the number of nodes in its tree representation) given a set of basis functions. This is achieved by identifying the unique equations, so that one minimises the number of equations which one would have to fit to data.</p>\n\n<p>Here we provide the functions generated, the unique equations, and the mappings between all equations and unique ones using different sets of basis functions. These are:</p>\n\n<ul>\n\t<li>"core_maths": <span class=\"math-tex\">\\(\\{x, a, {\\rm inv}, +, -, \\times, \\div, {\\rm pow} \\}\\)</span></li>\n\t<li>"ext_maths": <span class=\"math-tex\">\\(\\{x, a, {\\rm inv}, \\sqrt{\\cdot}, {\\rm square}, \\exp, +, -, \\times, \\div, {\\rm pow} \\}\\)</span></li>\n</ul>\n\n<p>where <span class=\"math-tex\">\\(x\\)</span> is the input variable and <span class=\"math-tex\">\\(a\\)</span> denotes a constant.</p>\n\n<p>One can fit these functions to a data set of interest by using the <a href=\"https://esr.readthedocs.io\">ESR package</a>.</p>", "license": { "id": "CC-BY-4.0" }, "title": "Exhaustive Symbolic Regression Function Sets", "notes": "DJB is supported by the Simons Collaboration on ``Learning the Universe'' and was supported by STFC and Oriel College, Oxford. HD is supported by a Royal Society University Research Fellowship (grant no. 211046). PGF acknowledges support from European Research Council Grant No: 693024 and the Beecroft Trust.", "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "7339112" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "7339113" } } ] }, "keywords": [ "Symbolic Regression" ], "publication_date": "2022-11-20", "creators": [ { "orcid": "0000-0001-9426-7723", "affiliation": "CNRS & Sorbonne Universit\u00e9, Institut d'Astrophysique de Paris and Astrophysics, University of Oxford", "name": "Bartlett, Deaglan J." }, { "orcid": "0000-0003-0685-9791", "affiliation": "Institute of Cosmology & Gravitation, University of Portsmouth", "name": "Desmond, Harry" }, { "orcid": "0000-0002-3021-2851", "affiliation": "Astrophysics, University of Oxford", "name": "Ferreira, Pedro G." } ], "access_right": "open", "resource_type": { "type": "dataset", "title": "Dataset" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.7339112", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 175 | 175 |
Downloads | 24 | 24 |
Data volume | 8.2 GB | 8.2 GB |
Unique views | 153 | 153 |
Unique downloads | 21 | 21 |