Dataset Open Access
Bartlett, Deaglan J.;
Desmond, Harry;
Ferreira, Pedro G.
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.7339113</identifier> <creators> <creator> <creatorName>Bartlett, Deaglan J.</creatorName> <givenName>Deaglan J.</givenName> <familyName>Bartlett</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9426-7723</nameIdentifier> <affiliation>CNRS & Sorbonne Université, Institut d'Astrophysique de Paris and Astrophysics, University of Oxford</affiliation> </creator> <creator> <creatorName>Desmond, Harry</creatorName> <givenName>Harry</givenName> <familyName>Desmond</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-0685-9791</nameIdentifier> <affiliation>Institute of Cosmology & Gravitation, University of Portsmouth</affiliation> </creator> <creator> <creatorName>Ferreira, Pedro G.</creatorName> <givenName>Pedro G.</givenName> <familyName>Ferreira</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3021-2851</nameIdentifier> <affiliation>Astrophysics, University of Oxford</affiliation> </creator> </creators> <titles> <title>Exhaustive Symbolic Regression Function Sets</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2022</publicationYear> <subjects> <subject>Symbolic Regression</subject> </subjects> <dates> <date dateType="Issued">2022-11-20</date> </dates> <resourceType resourceTypeGeneral="Dataset"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/7339113</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.7339112</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>ESR (Exhaustive Symbolic Regression) is a symbolic regression algorithm which efficiently and systematically finds all possible equations at fixed complexity (defined to be the number of nodes in its tree representation) given a set of basis functions.&nbsp;This is achieved by identifying the unique equations, so that one minimises the number of equations which one would have to fit to data.</p> <p>Here we provide the functions generated, the unique equations, and the mappings between all equations and unique ones&nbsp;using different sets of basis functions. These are:</p> <ul> <li>&quot;core_maths&quot;:&nbsp;<span class="math-tex">\(\{x, a, {\rm inv}, +, -, \times, \div, {\rm pow} \}\)</span></li> <li>&quot;ext_maths&quot;:&nbsp;<span class="math-tex">\(\{x, a, {\rm inv}, \sqrt{\cdot}, {\rm square}, \exp, +, -, \times, \div, {\rm pow} \}\)</span></li> </ul> <p>where <span class="math-tex">\(x\)</span>&nbsp;is the input variable and <span class="math-tex">\(a\)</span>&nbsp;denotes a constant.</p> <p>One can fit these functions to a data set of interest by using the <a href="https://esr.readthedocs.io">ESR package</a>.</p></description> <description descriptionType="Other">DJB is supported by the Simons Collaboration on ``Learning the Universe'' and was supported by STFC and Oriel College, Oxford. HD is supported by a Royal Society University Research Fellowship (grant no. 211046). PGF acknowledges support from European Research Council Grant No: 693024 and the Beecroft Trust.</description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 175 | 175 |
Downloads | 24 | 24 |
Data volume | 8.2 GB | 8.2 GB |
Unique views | 153 | 153 |
Unique downloads | 21 | 21 |