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Abstract—In this paper, we design an Anomaly Detection
(AD) framework for mobile data traffic, capable of identifying
different types of anomalous events generated by flash crowds
in metropolitan areas. We state the problem using a semi-
supervised approach and exploit the great performance of
different Recurrent Neural Network (RNN) models to learn
the temporal context of input sequences. Our proposal pro-
cesses real traffic traces from the unencrypted LTE Physical
Downlink Control Channel (PDCCH) of an operative network,
gathered during an extensive measurement campaign in two
major cities in Spain. The AD framework is designed to
perform: i) a-posteriori analysis to understand users’ behavior
and urban environment variations; ii) real-time analysis to
automatically and on-the-fly alert urban anomalies; and iii)
estimation of the duration of the periods identified as anoma-
lous. Numerical results show the higher performance of our
AD framework compared to classic AD algorithms and confirm
that the proposed framework predicts anomalous behaviours
with high accuracy and regardless of their cause.

Index Terms—Anomaly detection, mobile networks, traffic
modeling, smart cities, remote sensing, edge computing, dis-
tributed learning.

I. INTRODUCTION

The growth in the cellular networks’ market drives the
mobile traffic to rapidly evolve from a relatively steady
stream of traffic to a more dynamic traffic pattern, requiring
the development of data-oriented services and network man-
agement. Relevant data shows that in 2018 global mobile
data traffic amounted to 19 exabytes per month. By 2022,
mobile data traffic is expected to reach 77 exabytes per
month worldwide at a compound annual growth rate of 46%
[1]. The growing complexity and diversity of mobile net-
work architecture have made difficult to monitor efficiently
the multitude of network elements, and to make sure to
provide satisfactory network performance. To address the
issue, both the cloud and edge side of the mobile network are
becoming increasingly sophisticated to encounter their users,
who produce and consume huge amounts of mobile data
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every day. Therefore, introducing Machine Learning (ML)
solutions into future mobile networks draws unique research
interest, opening new possibilities through the systematic
mining of collectable information from traffic data [2], [3].

In this context, we exploit the extreme ubiquity of the
mobile telecommunication sector and the capability of Re-
current Neural Networks (RNNs), in detail the Long Short-
Term Memory (LSTM) cells, to learn the temporal context
of input sequences and perform mobile traffic Anomaly
Detection (AD). In particular, we use the information ex-
changed by the different network elements as pictures taken
by panoramic cameras, which provide a city-scale sensing
system to monitor large metropolitan areas. The proposed
AD framework is capable to analyze this massive amount of
data with the aim to detect the beginning of critical situations
(e.g., flash crowd) and estimate its duration. We identify
periods of contextual anomalies, which are characterized by
values that are exceptional compared to the traffic seasonal
pattern. Differently from [4; 5; 6], in our study, we are
interested in legitimate activities, i.e., in detecting transient
changes in the customer demand, rather than in Denial of
Service and we are not focusing on malicious attacks and
intrusion detection. Also, other anomalous events due to
hardware/software malfunction (e.g., dormant cells) are not
part of our study.

We use real data captured from the unencrypted LTE
Physical Downlink Control Channel (PDCCH), which in-
cludes multiple scheduling information for the transmitting
users. We process Downlink Control Information (DCI)
messages, which enable distributed AD implementations at
the edge of the network (i.e., the base stations - BSs) [7].
In fact, we build one generic multivariate AD model to be
trained in distributed sources (i.e., the different BSs of a
mobile network) by using their local dataset collected from
the DCI messages. AD at the edge presents key features
for network management: i) it prevents possible network
congestion: no need of transmitting data to a central cloud
server, ii) it reduces the complexity of deep learning models:
distributed implementations are based on local data only, iii)
it preserves user privacy: only control channel information
are processed without knowledge of the user identity or
content, and iv) it speeds up the response time: low latency
is experienced when data are processed at the edge, once
the algorithm is trained (inference phase).

Our dataset exhibits multiple features with significant
spatio-temporal variations resulting from the user behaviors,
which can be employed for urban anomaly identification



and prediction, user mobility analysis, public transporta-
tion planning, network diagnosis and management [8]. In
our proposal, the AD problem is addressed with a semi-
supervised learning from non-anomalous samples [9]. The
absence of outliers in the training phase of the RNNs is
ensured through an unsupervised pre-processing of data.
This particular feature enables an automatic and autonomous
AD framework, which does not require a-priori information
on the anomalous events to be detected.

Our AD proposal is tailored to tackle three different
challenges. First, we perform an Ex-Post (EP) analysis
to a-posteriori identify anomalous behaviors of the mo-
bile traffic traces. We use two RNN models: a predictive
approach, through Stacked LSTM, and a reconstructive
approach, based on Encoder-Decoder architecture. Though
these methods are substantially different, their common
purpose is to define a procedure to compute the prediction
or reconstruction error so as to identify the traffic samples
deviating from the normal behaviour, since errors should be
much higher in presence of outliers than for normal samples.
The a-posteriori analysis is important to understand users’
behavior and adapt network planning to urban environment
variations. Second, we enhance the EP approach to perform
Real-Time (RT) AD to automatically and on-the-fly alert
traffic anomalies. Third, we estimate the duration of the
periods identified as anomalous. This Anomaly Duration
procedure enables the possibility to distinguish the long
lasting anomalous periods from any anomalous behavior of
short duration, by looking at the density and the distribution
of the outliers. These features enable third-party services
like public transportation management, route optimization,
which are of high interest for municipalities to support
sustainability in metropolitan areas. Moreover, being aware
of the duration of an anomalous event, the operator may
activate possible countermeasures to cope with unexpected
network conditions and promptly adapt mobile network
operations (e.g., deployment of additional/temporary infras-
tructure, like drones).

Though the idea of AD using PDCCH data has been
preliminary sketched in our previous work [10], this paper
develops novel enhanced contributions along several dimen-
sions, as detailed next:

• We present a two-stage semi-supervised framework
to perform mobile traffic AD, as a combination of
unsupervised and deep learning techniques for urban
anomalies. Our proposal does not require any prior
information on the anomalous events and is not limited
to any predefined set of anomalies. Indeed, it is based
on multivariate analysis of the mobile traffic traces and
develop a system that identifies anomalies regardless of
their cause (e.g., sport and religious events, festivals).

• The proposed mobile traffic AD framework is tailored
to address two different and complementary prob-
lems. i) The a-posteriori (EP) analysis is suited for
sustainable city planning of urban mobility, and ii)
the real-time (RT) analysis allows to identify on-the-

fly anomalous behaviors and trigger proper functions
for both urban traffic monitoring and efficient mobile
network management.

• We extend the RT analysis, so as to distinguish long
lasting anomalous behaviors in their early stages using
Deep Quantile Regression.

• The AD processing pipeline is designed to work on
control channel information directly at the edge of the
network and may be distributed among the deployed
base stations. The proposed approach presents clear ad-
vantages in terms of prevention of network congestion,
reduction of learning model complexity, user privacy
preservation, faster response time.

The paper is organized as follow: in Section II we present
an overview of AD literature. In Section III we introduce
the dataset containing the mobile traffic traces. Section IV
presents our AD general framework; then, we focus on the
EP/RT analysis in Section V, and on the anomaly duration
analysis in Section VI. The obtained results are presented
in Section VII, and Section VIII concludes the paper.

II. RELATED WORK

A. Deep learning for mobile traffic modelling

Deep learning algorithms achieved relevant results in a
vast range of networking problems. An exhaustive survey
of the crossovers between mobile network management and
deep learning is provided in [11], with focus on nine specific
domains where deep learning has made advances. Solu-
tions based on the combinations with traditional approaches
are proposed both for network security and resource op-
timization, processing the great amount of data generated
by the network elements mainly for traffic prediction and
classification. Convolutional Neural Networks (CNN), Deep
Belief Networks (DBN), Stacked AutoEncoders (SAE) and
LSTMs are particularly used for these purposes, as they are
specialized in modeling spatial and/or temporal data.

In [12], the authors develop an autoencoder, combined
with LSTMs, to model spatial and temporal correlations of
mobile traffic distributions. The obtained performance over-
come SVM and ARIMA model. Mobile traffic forecasting
is performed using CNNs and LSTMs also in [13], [14] and
[15], where the proposals gain significantly higher accuracy
by extracting spatio-temporal features. Recently, a multi-task
architecture combining autoencoders and fully connected
layers has been designed for joint traffic classification and
prediction in [16]. Multi-task learning has been used also
in [17] for packet-level prediction of mobile apps. More-
over, in [18] mobile traffic forecasting is extended to long
time frames. The authors combine Convolutional LSTMs
(ConvLSTMs) and 3D CNNs to construct spatio-temporal
neural networks capable to capture the complex spatio-
temporal features at city scale. Also in [19], the authors
provide mobile traffic prediction at city-scale using graph
neural networks. The proposed solution is based on Dynamic
Graph Convolution and Gated Linear Units to predict traffic
consumption over short, medium and long time-frames.



B. Anomaly detection in urban context.

Focusing on anomaly detection, in [20] the authors pro-
vide a review of deep learning applications to identify
anomalous mobile network usage in an urban context. The
problem of AD and Mobile Edge Computing (MEC) is
addressed in [21]. The authors propose a framework based
on deep Feedforward NNs, which processes Call Detail
Records (CDRs). Computation is distributed and executed
in the MEC servers located at the base station sites. AD
using CDRs is performed also in [22], where deep prediction
models are trained using anomalous and anomaly-free data
to highlight the effect of anomalies in the training/building
phase of intelligent models. In [23] an algorithm based
on one-class Support Vector Machine (SVM) is proposed
to capture rare patterns occurred in multiple data sources,
integrated anomaly score for each analyzed area.

Moreover, a survey of real-time big data processing
technologies used for AD in different fields of action is
presented in [24]. Similarly to our approach, in [25] LSTMs
are trained with normal traffic samples using the KDD 1999
dataset [26], before performing a live prediction on multiple
time-steps to develop a network intrusion detector. Then, the
prediction error is used for detecting contextual anomalies
comparing it with predetermined thresholds. In [27] and
[28], the authors exploit the Attach Request counter, a Key
Performance Indicator (KPI) used to count the amount of
users that are attached to the network in a given time period,
to identify possible urban anomalies.

In our previous work [7], we perform a-posteriori AD
using LSTMs with data captured from the unencrypted LTE
Physical Downlink Control Channel (PDCCH), to identify
crowded events a-priori known. The AD problem is stated
as a classification task and opens some issues related to
the unbalanced class problem, i.e., the possibility that one
class (the anomalies) is poorly represented with respect to
the other (normal samples). Therefore, in this paper, we
propose a semi-supervised deep learning approach where
only one class of samples (normal traffic) is needed to
train the AD algorithms. In particular, we exploit the LSTM
capabilities to extract relevant patterns in the multivariate
input dataset collected from the mobile network. Once the
deep models are trained, instead of using a static threshold
on the reconstruction (or prediction) error to identify the
outliers, we define a dynamic error threshold that takes into
account the traffic variation during the day. Then, through
the targeted analysis of outliers density in short spans of
time, we distinguish between anomalous network behavior
of short duration from those of prolonged duration. The
robustness of the procedure allows us to not restrict the
study to an a-posteriori analysis of the traffic traces, but
rather it enables the development of a system for real-
time AD applications. With respect to previous related work
[10], where AD is performed using LSTMs and PDCCH
scheduling information to identify crowded events that are
a-priori known, our framework identifies urban anomalies
without any prior knowledge on crowd events through the

unsupervised data pre-filtering procedure. Moreover, in this
work we also perform real-time detection of anomalous
urban events and the prediction of the duration of the
anomaly based on DQR. The same dataset of our previous
papers is used here, since it allows early detection of outliers
compared to more coarse-grained measurements such as
CDRs. For additional details, please refer to Sec. III.

C. Deep Quantile Regression for AD purposes.

The DQR approach to identify anomalies is introduced
in [29], [30], and [31]. The use of DQR jointly with deep
learning is used in [32]. Similarly to our work, they use
RNNs models and quantile regression to detect anomalies.
However, the applications is in knowledge areas far from
networking, such as smart building and urban mobility. To
the best of our knowledge, this work represents the first
proposal of DQR application for AD in mobile networks.
Moreover, form a methodological perspective, we extend the
approach in [32] by proposing a Encoder-Decoder architec-
ture enabling a larger prediction horizon.

Table I summarizes the novelties and contributions of
our papers with respect to the most relevant state-of-the-
art (SOTA) literature introduced above. The comparison is
performed based on a set of key features for AD purposes
and namely: application of deep learning models, edge
computing, processing from control channel data, attacks
detection and hardware/software malfunction, identification
of urban anomalies with mobile data, real-time data process-
ing, identification of urban anomalies with semi-supervised
learning with no a-priori information and usage of DQR for
AD.

III. DATASET

The dataset used for our work has been collected in
Madrid, Rastro district, and it results from a measurement
campaign based on data gathered directly from the LTE
PDCCH. Similar data are also collected in Barcelona, Born
district, and used to generalize the proposed distributed AD
framework. More in details, a SDR-based collection system
[33] captures and decodes the Downlink Control Information
(DCI) messages sent from the eNodeB to the connected UEs
[34]. At each Transmission Time Interval (TTI) of 1 ms, we
have access to the scheduling information of the UEs in
connected mode in the Uplink (UL) and Downlink (DL).
Data are available in [35].

Among the several parameters available in a DCI mes-
sage, we use the following D = 3 features:
• the number of transmitting UEs (nRNTI),
• the number of allocated resource blocks in Uplink

(RBUL),
• the number of allocated resource blocks in Downlink

(RBDL).
Points of the dataset are D−dimensional vectors denoted by

y(n) = [nRNTI(n), RBUL(n), RBDL(n)] (1)

with n ∈ [1, N ], being N the size of the dataset.



TABLE I: Comparison between state-of-the-art and our proposal

Feature SOTA Our Proposal

Deep Learning [12], [13], [14], [15], [19], [16], [17], [18], [21], [22], [25], [7], [10] X

Edge Computing [21], [23], [7], [10] X

Attacks Detection and [4], [5], [6], [22],
Hardware/Software Malfunction [23], [27], [28], [25] -

Urban Anomalies with
Control Channel Data [7], [10] X

Real-time Data Processing
for Urban Anomalies - X

Semi-supervised Learning
for Urban Anomalies - X
with no Prior Information

DQR for Urban Anomalies - X

The observation period comprises the temporal window
between the end of June and the beginning of August
2016 (06/29 - 08/09) that includes six weeks of informa-
tion (also referred to as WR1,WR2, ...,WR6). We know
that two types of occurrences took place in the eNodeB
coverage area. El Rastro, one of the most popular open
air flea markets in Spain, is held every Sunday and public
holiday during the year. The Fiesta de San Cayetano, the
Rasto block party takes place each year during the first
week of August; it includes dramatized historical parade,
musical performances, and cultural guided tours around the
neighborhood and attracts a large number of people. Fig. 1
shows in red the position of the monitored eNodeB and in
green the position of the events in its coverage area, which
are identified through the Fiesta de San Cayetano program
available online [36]. We use known events in our study
as the ground-truth that allows us to assess the goodness
of the approach with some well-known metrics (e.g., F-
score). While operators could know in advance about some
of these events, AD is useful to cope with the actual impact
of the events, with unexpected popularity of events and,
hence, amount of anomalous traffic, and with unexpected
and unpredictable events.

Figure 2 shows a representation of the variables of in-
terest during the observation period, by averaging points
of different weeks. The daily pattern underlines the nature
of the district: a typical residential area with commercial
activities, like restaurants and shops. Data reflects people’s
daily routine: high values of nRNTI are shown during
the day, whereas smaller values are detected during nights.
A different behavior is distinguishable between weekends
and week days. A clear pattern is visible during Sunday
(9 a.m.-3 a.m.), which coincides with the Rastro market.
No other relationship with the events occurred in the district
during the measurement campaign are visually noticed. We
also report the correlation among the three variables in
Fig. 3. Despite being quite low in general (Fig.3a), it can
be noticed that it grows during some of the known events,

Fig. 1: Map of the Rastro district, in Madrid. The eNodeB
position is shown in red and the position of the scheduled
events mentioned on the festival program in green.

e.g., Sunday’s market (Fig. 3b). This preliminary analysis
supports our idea to perform a multivariate analysis for AD
purposes.

IV. AD FRAMEWORK

The general framework used for the Ex-post (EP), Real-
time (RT) and anomaly duration analysis is shown in Fig. 4.
The block diagram reports the phases of the three types of
analysis. The analysis-specific methods implemented in each
block are detailed in Sections V and VI for EP/RT and
anomaly duration analysis, respectively. The main phases
are:

1 Pre-Processing Through Unsupervised Learning
phase, to uniquely identify the outliers from the orig-
inal dataset and exclude them from the training phase
of the RNNs.

2 Learning Algorithm phase, to train the LSTM-based
architectures for our multiple analysis.

3 Outlier Definition phase, to identify the contextual
anomalies based on the output of our RNN models.

4 Anomalous Periods Identification phase, to distin-
guish long lasting anomalous periods from momentary
irregular trends.
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Fig. 2: Temporal representation of the variables of interest
(nRNTI , RBUL, RBDL) during the observation period in
the Rastro district, Madrid.

(a) Total Correlation plot
in Rastro district.

(b) Sunday’s market
Correlation plot.

Fig. 3: Pearson Correlations between the three variables of
interest.

A. Pre-Processing Through Unsupervised Learning

Data pre-processing is necessary to assure that the training
set is composed of normal samples and, hence, to identify
anomalous samples through dynamic a threshold mechanism
run over the error signal; whereas the test set may contain
also anomalous events. To exclude outliers from the train-
ing set, we process data with an unsupervised approach.
Therefore, no a-priori information on the anomalous events
is provided to the AD framework. We selected the K-means

algorithm, as shown in Fig. 5 based on our previous study
in [37]. However, our framework is general enough to in-
clude other unsupervised outlier detection alternatives (e.g.,
Kalman filter). No other essential information is removed
from the dataset with this procedure.

The K-means algorithm finds clusters in data by grouping
objects according to the presence of similarity between
them. For each group, a centroid is defined, representing
the point at the center of the cluster. Given the multivariate
nature of the problem, the algorithm proceeds iteratively:
at each iteration, it analyzes the similarity of the objects
through the computation of their Euclidean distance from
the centroids on a 4 dimensional space, including the three
variables of interest (nRNTI , RBUL, RBDL) and a time
variable that indicates the minute of the day (necessary to
identify contextual anomalies). When the algorithm con-
verges, the objects belonging to the cluster with the lowest
number of samples are defined as outliers and excluded from
the subsequent phases.

We define the number of K clusters in which the dataset
is divided, by using the Elbow method [38]. K is a function
of two variables: the number of outliers identified and the
distorsion, i.e., the curve that measures the dispersion of the
data that is defined as the distance between the elements of a
cluster and the centroid. We first compute the value beyond
which the number of outliers remains stable, then, we select
the value which is the closest to the elbow of the distorsion.
As shown in Fig. 6, the procedure suggests to set K equal
to 5.

Fig. 7 shows the outcome of the clustering phase. The
outliers are represented in red and distinguished for each
of the three variables of interest. Many anomalous points
are identified in the interval [11 a.m.-4 p.m.], and they are
related to the Sunday’s Rastro Market.

B. Learning Algorithm phase

As input to our RNN models, we consider, as in [39], a
sliding window of length W points of D dimensions. Each
input is, hence, a W ×D matrix denoted by

x(n) = [y(n), y(n− 1), .., y(n−W + 1)] (2)

with n ∈ [W,N ].
Then, we tailor RNNs to cope with two different tasks

(Fig. 8):
• predictive, to forecast values up to T time steps ahead,

using Stacked or Encoder-Decoder models;
• reconstructive, to reconstruct the input samples taking

advantage of the Autoencoder design.
For the predictive task, the algorithm receives a samples

x(n) and predicts T points ẑ(n) = [ŷ(n + 1), ŷ(n +
2), .., ŷ(n + T )]. In this context, the RNN can be seen as
a function Φpred whose output represents the prediction of
the variables of interest on the following T time-steps:

Φpred(x(n)) = ẑ(n) (3)



Fig. 4: Block diagram of the proposed AD Framework.

Fig. 5: Details of the Pre-Processing through unsupervised
learning phase.

Fig. 6: Definition of K: distortion and normalized number
of outliers produced with different values of K.

We use a Stacked architecture consisting in multiple hid-
den layers [40] and an Encoder-Decoder (ED) architecture
composed of two fundamental parts, the encoder and the
decoder [41]. The encoder is a function δ that maps an
input space χ = RD to a latent space χ′; the decoder is the
complementary function that creates a map from the latent
space χ′ to the target space Υ. In other words, the encoder
builds a compressed representation of the relevant features
of the input data, encoding them into particular states used
by the decoder to generate the output. In this way, the model
replicates the most important features in the training data,

Fig. 7: K-means output, using K =5. In red the outliers
excluded from the RNNs training phase.

to precisely reproduce the most frequent characteristics of
the observations.

For the reconstructive task, we employ the Autoencoder
architecture, which is a special case of ED, where χ ≡ Υ.
Therefore, the Autoencoder can be seen as a self-supervised
ED model, which tries to reconstruct the input sequences.
Given an input sample x(n), the Autoencoder is a function
ΦAE that produces an output, which is the reconstructed
version x̂(n) of the input:

Φrec(x(n)) = x̂(n) (4)

C. Outlier Definition phase

The identification of the outliers is performed as inference
on the input traffic sequences. Since models are trained with
normal samples, identified through the data pre-processing
phase (Section IV-A), when the trained RNNs process
anomalous traffic samples, they worsen their performances.
Therefore, we define ’normality’ thresholds, which represent
the limits beyond which the output of the RNN models are
labelled as representative of an anomalous behavior.

Different normality thresholds and comparison method-
ologies have been implemented based on the different pro-
posed analysis (EP, RT and anomaly duration), as detailed
in Sections V and VI.

D. Anomalous Period Identification phase

This phase aims to identify anomalous periods of large
duration and distinguish them from occasional outliers. The



proposed procedure is based on the evaluation of the density
of the outliers identified in specific time windows. In EP and
RT analysis the procedure is focused on the sample at one
time-step ahead, whereas the anomaly duration analysis is
based on longer prediction horizons.

V. EX-POST AND REAL-TIME ANALYSIS

In this section we specify how we tune the algorithms
described previously for the EP and RT analysis.

In the data pre-processing phase, data have been normal-
ized and arranged from 6 a.m. to 5 a.m. of the following
day to consider daily patterns due to people behavior. Data,
which are collected every 1 ms, are aggregated in time-steps
of 1 minute.

For the learning phase, we arrange LSTM cells in a
Stacked architecture for the predictive purpose, to accurately
predict the future values of our variables of interests at
T =1 time-steps ahead. Instead, we use the Autoencoder
architecture for reconstructive purposes, to reproduce the
input samples. The two loss functions used for training
stacked and autoencoder architectures are, respectively:

Lpred(n) =
1

D
‖ŷ(n)− y(n)‖2 (5)

Lrec(n) =
1

D

1

W
‖x̂(n)− x(n)‖2 (6)

where the operator ‖a‖2 indicates the norm of the vector or
matrix a.

Algorithm 1 Outliers identification algorithm.

1: x(n) : traffic sample of length W

Ô Computation of the normality threshold σ, ∀ x(n) ∈
Validation set:

2: K: low-pass filter of length W
3: EMA(n)← Lpred/rec(n) ∗K(n)
4: residual(n)← Lpred/rec(n)− EMA(n)
5: σ ← standard deviation (residual)

Ô Identification of outliers, ∀ x(n) ∈ Test set:
6: if EP analysis then
7: if residual(n) > σ then
8: the sample at time n is labelled as outlier.
9: if RT analysis then

10: if
∣∣Lpred/rec(n)

∣∣ > σ then
11: the sample at time n is labelled as outlier.

In the Outliers Definition phase, we define a dynamic
threshold-based method to identify the outliers, as sketched
in Algorithm 1. The algorithm is based on the computation
of the exponential moving average EMA(n) of the error
as a linear convolution between Lpred/rec(n) and a low-
pass filter K(n) with length W , for each element of the
Validation set, Then, the threshold σ is computed as the
standard deviation of the residual, defined as the difference
between the loss (Lpred/rec(n)) and the exponential moving
average (EMA(n)). In the EP analysis, a traffic instance

y(n) is tagged as outlier if the residual(n) is greater than σ.
In the RT analysis, such detrending procedure is not added
since real-time calculation of the residual is not possible.
Hence, a traffic instance x(n) is labelled as an outlier if
Lpred/rec(n) is greater than σ.

Finally, we distinguish between sparse outliers and
anomalous periods using two parameters: m and p. The
parameter m represents the number of considered subse-
quent time instants, whereas p represents the fraction of the
samples out of the m considered ones that must be defined
as outliers to identify the beginning of an anomalous period.

VI. ANOMALY DURATION ANALYSIS

When anomaly duration is the objective, data is aggre-
gated with time-steps of 10 minutes in the pre-processing
phase, to let RNN models predict longer time horizons. The
identification of the normal class is performed through K-
means, as previous described and as it is done for the EP
and RT analysis.

The learning algorithm is based on an ED architecture
composed by Bidirectional LSTM layers to evaluate the
network prediction uncertainty on T time-steps ahead. The
choice of the BiLSTM layers is due to its capability to
better deal with the extension of the temporal horizon with
respect to LSTM [42]. With this scheme, we perform a Deep
Quantile Regression (DQR) [43]. In particular, we use the
following loss function for an individual data point:

L(ξi(n)|α) =

{
αξi(n) if ξi(n) ≥ 0,

(α− 1)ξi(n) if ξi(n) < 0.
(7)

where ξi(n) is defined as:

ξi(n) = yi(n)− Φrec(yi(n)),∀i = 1, ..., D (8)

The parameter α represents the target quantile for the
prediction, e.g., fixing α =0.5 is equivalent of requesting
the model to predict the median value (Q50). Then, the loss
function for training is following (6).

In our case, we define two boundaries, given by the 10−th
and the 90−th percentiles, Q10 and Q90, respectively. By
doing so, we obtain a confidence interval of width WQ, that
covers the range of values that our deep model can assume,
i.e., the ground-truth is likely to belong to such interval.
Such interval will be ’narrow’ if the model is accurate in
its prediction; instead, it will be ’wide’ when the model is
not able to accurately predict the future traffic. When an
anomalous sample is found, the algorithm evaluates WQ
for each future time-step t ∈ [1, T ] and for each sample
x(n) such as:

WQt(x(n)) = Q90t(x(n))−Q10t(x(n)). (9)

To identify the outliers, we define a normality threshold
ŴQt, for each t ∈ [1, T ], computed as the maximum
obtained using the samples of the validation set, and we
compared it with WQt(x(n)) ∀ t ∈ [1, T ] identified as an
outlier.

Fig. 9 shows the normality threshold ŴQt varying the
number of prediction timesteps with LSTM and BiLSTM



Fig. 8: Details of the Learning Algorithm phase.

Fig. 9: Normality thresholds fixed using LSTM and BiLSTM
layers for each t ∈ [1, T ], and T =6.

layers. This figure helps in understanding the reason behind
the choice of BiLSTM in our final architecture. Using LSTM
makes prediction uncertainties increase as the prediction
horizon enlarges. On the contrary, BiLSTM layers are
trained to know input samples in both temporal directions,
producing a more stable ŴQt regardless of the amplitude
of the prediction horizon.

The identification of long lasting anomalous behaviors is
determined by means of a parameter m, which represents
the minimum number of samples needed to be defined as
future outliers in the window [1,T].

VII. NUMERICAL RESULTS

We implemented the proposed AD framework in Python,
using keras library and Tensorflow as backend. To setup the
hyperparameters of RNN models we use Hyperopt, a Python
library for serial and parallel optimization over awkward
search spaces [44].

The performance of the proposed AD frameworks is
evaluated exploiting the knowledge about the occurrences
that took place in the eNodeB coverage area in the period
of interest. The dataset has been divided regardless of the
purpose of the analysis such that:
• the training set is the first 50% of the global dataset

and used to train the RNN models;
• the validation set is the following 25% of the dataset

and is used for validation purposes in the training phase

of the RNN models and also to define the ’normality
thresholds’ (Sec. IV-C);

• the test set represents the last 25% of the dataset,
starting from Saturday 16/07/30 and Monday 16/08/08.

The evaluation is performed using Google Colaboratory,
which provides free hardware acceleration with Tensor Pro-
cessing Unit (TPU).

The results are shown in terms of F-score, defined as the
harmonic mean of Precision (P) and Recall (R):

F = 2
RP

R+ P
. (10)

P can be seen as the capability of the system not to label as
anomalous a sample that is normal, and it depends on two
values: the number of anomalous samples that are correctly
classified as anomalous (true positive, Tp) and the normal
samples that are incorrectly classified as anomalous (false
positive, Fp)

P =
T p

T p + F p
. (11)

Instead, R, known also as hit-rate or sensitivity, depends
on Tp and on the number of anomalous samples incorrectly
classified as normal (false negatives, Fn), and it can be seen
as representative of the ability of the framework to find all
the anomalous points:

R =
T p

T p + F n
. (12)

Moreover, we include also the confusion matrices cal-
culated as the percentage of true positives Tp and false
negatives Fn normalized over the totality of anomalous
samples and the percentage of Tn and Fp normalized over
the totality of the normal samples.

In Section VII-A, we evaluate the EP and the RT perfor-
mance by proceeding through the different algorithm phases;
the anomaly duration analysis is discussed in Section VII-B.
Finally, Section VII-C generalizes results over different
dataset.



TABLE II: Design parameters for EP and RT analysis.

Parameter Value

NHLpred

number of hidden layers
Stacked architecture 2

NHLrec

number of encoding-decoding layers
Autoencoder architecture 2

C number of cells for each LSTM layer 100
W window size 5
D number of features 3
Opt optimization algorithm Adam

T forecasted time-steps 1

m
number of subsequent time

instants evaluated to identify
the beginning of an anomalous periods

10

p
fraction of the m time-steps

that must be defined as outliers to
identify an anomalous period.

0.80

A. Ex-post and Real-Time Results Analysis

The main parameters used in the algorithms for the EP
and RT analysis are summarized in Table II. For the predic-
tive approach, we employ a Stacked architecture combining
NHLpred

= 2 hidden LSTM layers with C = 100 LSTM
units and a final Fully Connected (FC) layer with NFC = 3
cells. T has been fixed equal to 1 to predict samples one
time-step ahead. For the reconstructive approach, we em-
ploy an Autoencoder composed by encoder and decoder of
NHLrec

= 2 LSTM layers with C = 100 LSTM units and a
final FC layer to reconstruct the input. The two architectures
(i.e., Stacked and Autoencoder) have similar complexity.
In fact, after our empirical hyper-parameters optimization,
we ended up with architectures having an equal number of
layers and LSTM cells. This result was somehow expected,
since both methods use LSTM as baseline architecture and
work on the same input features. One important aspect to
highlight is that the number of hidden layers is 2: this
confirms that working with data at the edge simplifies the
artificial neural network model, reduces complexity and
makes response time shorter than a central solution in a
cloud data center.

Fig. 10 shows the performance of the proposed EP and
RT procedures in terms of F, P and R. Different values of
p are analyzed: higher values of p lead both approaches to
detect only a limited number of the events known (lower R);
which, however, are found with higher precision. The best
EP performance is obtained using the predictive approach
and p=0.8. The reconstructive approach and a value p=0.8
are the best option in RT. In both cases P and R are close to
75%. This difference on the performance of the RNN models
is mainly due to the different loss functions used for the
training phase, their variability with time and the comparison
with the normality thresholds. The detrending procedure
included in Algorithm 1 line 7) has been introduced to
smooth out isolated error peaks due to sporadic outliers.
However, it is only possible in EP, as discussed in Section V.
Something similar is intrinsically done by the autoencoder
in the calculation of Lrec, because it tries to reconstruct the
input samples in an observation window W . Therefore, the
reconstructive approach in RT results more robust than the

Fig. 10: Performance measures of EP and RT procedure.
The values are specified for different values of p. F-score is
shown on the top of the bars.

predictive approach, when a sporadic outlier is identified and
an increase in the error occurs.

We visually summarize the results of the two selected
learning architectures for EP and RT analysis in Fig. 11,
which shows the periods of anomalies found in the Test set.
In the top part of the figure, we represent the anomalous
periods identified by our AD framework with horizontal
colored bars: in black, those related to the RT analysis and
in blue to the EP analysis. The relevant time periods of the
known occurrences are shown as colored vertical areas: in
green the events related to the Fiesta de San Cayetano in
the eNodeB coverage area (in [36] the program available
online) and in blue those related to the Rastro Market. We
correctly identify 97% and 98% of the normal samples, but
only 73% and 64% of the outliers in EP and RT, respectively,
as confirmed by the confusion matrices reported in Fig. 12.
This result is due to several reasons. First of all, the opening
and closing hours of the Rastro Market have been fixed
based on the normal scheduling by the municipality, i.e.,
from 9 a.m. to 3 p.m.. However, most of the people attend
the market avoiding the early hours of the morning, thus
no crowd is gathered till noon. Second, even if the program
of the Fiesta de San Cayetano is available online, we only
know its starting time; instead, no information can be found
about the end and the turnout at the event. In this sense the
numerical results presented herein must be evaluated with
the awareness that part of the time shifts that we consider
may not show any anomalous behavior, and may not be fully
recognizable by looking at RBUL, RBDL and nRNTI ,



Fig. 11: Periods of contextual anomalies identified by the EP and RT anomaly detection procedure with both predictive
and reconstructive approach. The events related to the Fiesta de San Cayetano are represented by the green zones, whereas
those related to the Rasto Market are in blue.

(a) Predictive approach
for EP analysis.

(b) Reconstructive
approach for RT

analysis.

Fig. 12: Confusion matrices for EP and RT analysis with
p=0.8.

because not related to the events. Indeed, Fig. 11 shows
that many of the found anomalous periods are shifted with
respect the considered relevant time periods, producing high
false negatives and affecting F.

Moreover, to fully understand the capabilities of the pro-
posed AD framework, we compare it with some benchmark
algorithms, as those identified in [45] and in particular:

• K-means, as an evidence of the capability of a self-
contained clustering approach;

• One Class SVM (OC-SVM) [46], as classification
algorithm that works by capturing the density of the
majority class, classifying the samples on the extremes
of the density function as outliers.

• Isolation Forest [47], another classification algorithm
which, instead of building a model of normal instances,
explicitly isolates anomalous points in the dataset.

The setup of each benchmark in our comparison is shown
in Table III. Performance of the benchmark algorithms are

Fig. 13: Performances comparison with the selected AD
benchmarks.

reported in Fig. 13, together with our best solutions for
EP and RT analysis: predictive approach based on Stacked
LSTM and recursive approach based on Autoencoder, re-
spectively. The proposed AD framework leads to a better
identification of the anomalous periods, with F values
higher of almost 20%. Fig. 13 shows that our approach
reaches a good trade-off between Precision (P) and Recall
(R). Instead, the selected benchmarks tend to define the
sample at the peak as outliers (this is the case of the Isolation
Forest) or identify a lower number of outliers (K-means and
OC-SVM). This is also shown in Fig. 14, where the inability
of K-means and OC-SVM to identify some of the events
related to the Fiesta of San Cayetano is evident, whereas
Isolation Forest results in a high number of anomalous
periods not related to any of the known events.



TABLE III: AD benchmark algorithms hyperparameters.

Parameter Algorithm Description Value

K K-means The number of clusters to form as well as the
number of centroids to generate. 5

ν OC-SVM Controls the sensitivity of the support vectors and should
be tuned to the approximate ratio of outliers in the data. 0.3

n.estimators Isolation Forest Number of base estimators in the ensemble. Default value: 100

Fig. 14: Periods identified by the selected AD benchmarks.

TABLE IV: Anomaly duration network design parameters.

Parameter Value

NHL
number of BiLSTM layers

composing both the Decoder and the Encoder 2

C number of cell for each BiLSTM layer 100 - 50
W moving-window samples 5
D number of features 3
Opt optimization algorithm Adagrad

T forecasted time-steps 6

m
number of time instants that

must be defined as future outliers
to identify a long-lasting anomaly.

4

B. Anomaly Duration Analysis

The AD framework for the anomaly duration analysis is
designed to forecast T =6 time-steps, enabling the evalua-
tion of the hour following the beginning of the anomalous
period.

The RNN built for DQR purpose is composed of BiLSTM
layers in which both the encoder and the decoder are
of NHL =2 hidden layers with nC = [100, 50] cells,
respectively; a final FC layer is then employed to generate
the output. Table IV summarizes all the relevant model
design parameters.

In Fig. 15, we include the confusion matrix. Very low
values of Fp demonstrate the capacity of our AD framework
to label correctly most of the normal periods. As a conse-
quence, we obtain high Tn values. Our AD framework is
capable of identifying anomalous periods of short duration
with P and R values around the 75% and 66%, respectively.

Fig. 15: Confusion matrix for the anomaly duration analysis,
It shows the percentage of Tp and Fn normalized over the
totality of the long lasting anomalies and the percentage of
Tn and Fp normalized over the totality of spare samples.

This returns a F-score of about 70%. Our proposal defines
34% of the long lasting anomalous periods as temporary
events, which has a negatively influence on P and R.

We report below the main remarks on the behavior of the
proposed AD framework for a better understanding of its
advantages and limitations:
• The events related to the Sunday’s Rastro Market (two

Sundays in our Test set) are correctly labelled as long
lasting anomalous periods from 11 a.m. to 2 p.m.
Our framework cannot identify any anomalous behavior
from 9 a.m. to 11 a.m.

• During the events of the Wednesday night / Thursday



Fig. 16: Pearson Correlations in Born district, Barcelona.

morning (Fiesta de San Cayetano), the interval 0-2 a.m.
is labelled as normal period.

• All the events related to the Fiesta de San Cayetano are
correctly identified starting from 10 p.m.. Instead, the
beginning of the event (i.e., 9 p.m.) is labelled as not
belonging to any anomalous occurrence.

• On the second Sunday of the Test set, the algorithm
identifies two long lasting anomalous periods at 8 p.m.
and 9 p.m., which are not reported in the program of
Fiesta de San Cayetano. Similarly, another anomalous
period is identified between 7 p.m. and 8 p.m.. on
Wednesday and Friday, which could be related to the
preparation process for the events scheduled at night.
However, we have contrasted our result with the event
organizers, which confirmed that normally technicians
are coming before the time schedule and stay after it
to disassemble the stage and other equipment needed
for the event (e.g., music amplifiers, mixer, etc.). They
also reported to us that people attending the show are
normally arriving earlier the scheduled time and leaving
the area between 30 minutes or 1 hour later. Such
information may partially justify the achieved results.

As a conclusion, we remark that the numerical results
reported herein are heavily influenced by the approximate
knowledge about the people movement during the events
used as ground-truth, as also mentioned for EP and RT
analysis.

C. Evaluation on other datasets

We report here similar analysis on another dataset col-
lected by monitoring an eNobeB located at the Born district
in Barcelona, Spain. This analysis confirms the validity of
our distributed AD proposal and generalizes the method-
ology introduced in this paper: following the introduced
methodology, the AD framework in Fig. 4 can be trained at
each BS using its local dataset collected from DCI messages
of PDCCH. Barcelona Born is a district in downtown with
mixed land use, i.e., residential and leisure areas, with
historic buildings and shops. The monitored eNodeB is
located in the proximity of Bası́lica de Santa Maria Del
Mar and Passeig del Born, one of the city’s most popular
nightlife hotspots that attracts several people. Data is related
to a temporal window that includes the Easter period of 2019
(03/28 - 04/04), and provides traffic traces influenced by the

Fig. 17: Performance measure of EP and RT AD procedure
considering different values of p in Born district. F-score is
shown at the top of the bars.

religious events of that period and namely Easter (04/01) and
the days before (03/31 and 03/30).

From a preliminary analysis of traffic traces, it emerges
that higher values of the three variables of interest are
noticed until late hours of the night, due to the cultural and
leisure nature of the neighborhood. In Fig. 16, the correlation
between the three features results to be almost negligible,
though higher than the case of Madrid Rastro.

Fig. 17 reports the performance in terms of F, P and R.
The framework reaches F-scores of about 87-88%; perfor-
mance is similar regardless of whether the reconstructive or
predictive approach is used. F is generally higher than in
Rastro district. This is mainly due to the different dynamics
of the three features and their correlation.

The comparison with the benchmark algorithms (intro-
duced in Section VII-B) is reported in Fig. 19. Even in this
case, the proposed framework outperforms the considered
benchmark algorithms, with values of F that are 10− 20%
higher. This confirms the ability of our semi-supervised
approach to find a good trade-off between the number of
identified outliers and the precision of such identification.

Morevoer, the proposed framework allows to correctly
distinguish long lasting anomalous period also in Born
district: in fact, F-score is around 80%, and succeeds in
identifying 75% of the long lasting anomalies.

Also in this studied case, the periods related to the closure
of the detected events are the most critical. As for the Madrid
Rastro dataset, this behavior is probably due to the lack of
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Fig. 19: Comparison with AD benchmark algorithms in Born
district in terms of F -score.

knowledge about the end of the events that we are detecting.
The results presented in this sub-section confirm that the

proposed AD framework generalizes on other datasets and
is capable of predicting anomalous behaviours regardless of
their cause.

VIII. CONCLUSIONS

In this paper, we have proposed a semi-supervised ap-
proach for traffic Anomaly Detection in urban areas, which
works directly at the edge of the mobile network. The AD
framework exploits real-world PDCCH dataset collected in
different spots in Spain. The proposed framework is based
on LSTM neural network models, trained with informa-
tion labelled as normal by the K-means algorithm. Results
demonstrate that our framework based on the combination
of unsupervised and deep learning, automatically identifies
different types of urban anomalies without any a-priori
information. In fact, it does not require any pre-labelled data
and balance different types of information, so as to put aside
any kind of subjectivity.

Numerical results have demonstrated that our proposal is
capable of identifying anomalous events both a-posteriori

and in real-time, over datasets from different metropoli-
tan areas. Moreover, our proposal extension using Deep
Quantile Regression, distinguishes long lasting anomalies
from those of short duration. Finally, further evidences of
the validity of our proposal are related to the capabil-
ity to overcome performance of selected AD algorithms
available in the literature. Therefore, we can conclude that
the proposed semi-supervised AD framework is robust and
general enough to identify crowd events in metropolitan
areas regardless of their cause.

The approach proposed in this paper opens up several
research directions to distributed learning for metropolitan
areas, briefly described next. Understanding the cause of the
anomaly is an interesting and useful topic for smart cities.
A deeper study on the error caused by the identified outliers
can be used to extract meaningful features and classify
different anomalies. Moreover, collaborative training using
local dataset from the distributed sources (i.e. BSs), such as
federated learning, may be explored to generalize the model
and achieve higher accuracy. Finally, we believe that data
fusion from heterogeneous sources (e.g., traffic cameras,
traffic intensity sensors) may also support the design of
a high accurate and general model for urban anomalies
identification. We mention here also the possibility to ex-
plore the design of distributed learning algorithms using
the collected dataset from the LTE control channel for
intrusion detection, denial of service and software/hardware
malfunction purposes.

REFERENCES

[1] “Cisco annual internet report, 2018–2023,”
https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-
paper-c11-741490.html.

[2] K. Zheng, Z. Yang, K. Zhang, P. Chatzimisios,
K. Yang, and W. Xiang, “Big data-driven optimiza-



tion for mobile networks toward 5g,” IEEE Network,
vol. 30, pp. 44–51, 01 2016.

[3] C. Jiang, H. Zhang, Y. Ren, Z. Han, K. Chen, and
L. Hanzo, “Machine learning paradigms for next-
generation wireless networks,” IEEE Wireless Commu-
nications, vol. 24, no. 2, pp. 98–105, April 2017.

[4] T. Yang and C. Lv, “A secure sensor fusion framework
for connected and automated vehicles under sensor
attacks,” IEEE Internet of Things Journal, pp. 1–1,
2021.

[5] ——, “Secure estimation and attack isolation for
connected and automated driving in the presence of
malicious vehicles,” IEEE Transactions on Vehicular
Technology, vol. 70, no. 9, pp. 8519–8528, 2021.

[6] Y. Xing, C. Lv, H. Wang, D. Cao, and E. Velenis,
“An ensemble deep learning approach for driver lane
change intention inference,” Transportation Research
Part C: Emerging Technologies, vol. 115, p. 102615,
2020.

[7] H. D. Trinh, L. Giupponi, and P. Dini, “Urban anomaly
detection by processing mobile traffic traces with lstm
neural networks,” Proceedings of the 2019 IEEE Inter-
national Conference on Sensing, Communication and
Networking(SECON), 2019.

[8] X. Cheng, L. Fang, X. Hong, and L. Yang, “Exploiting
mobile big data: Sources, features, and applications,”
IEEE Network, vol. 31, pp. 72–79, 01 2017.

[9] R. Chalapathy and S. Chawla, “Deep learning for
anomaly detection: A survey,” 01 2019.

[10] H. D. Trinh, E. Zeydan, L. Giupponi, and P. Dini,
“Detecting mobile traffic anomalies through physical
control channel fingerprinting: A deep semi-supervised
approach,” IEEE Access, vol. 7, pp. 152 187–152 201,
2019.

[11] C. Zhang, P. Patras, and H. Haddadi, “Deep learning
in mobile and wireless networking: A survey,” IEEE
Communications Surveys & Tutorials, vol. PP, 03 2018.

[12] R. Y. C. Feng, S. Arshad and Y. Liu, “Evaluation
and improvement of activity detection systems with
recurrent neural network,” in 2018 IEEE International
Conference on Communications (ICC), May 2018, pp.
1–6.

[13] C. C. C. Huang and Q. Li, “A study of deep learning
networks on mobile traffic forecasting,” in 2017 IEEE
28th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC),
Oct 2017, pp. 1–6.

[14] I. Alawe, A. Ksentini, Y. Hadjadj-Aoul, and P. Bertin,
“Improving traffic forecasting for 5g core network scal-
ability: A machine learning approach,” IEEE Network,
vol. 32, pp. 42–49, 11 2018.

[15] L. Chen, D. Yang, D. Zhang, C. Wang, J. Li, and T.-M.-
T. Nguyen, “Deep mobile traffic forecast and comple-
mentary base station clustering for c-ran optimization,”
Journal of Network and Computer Applications, vol.
121, pp. 59 – 69, 2018.

[16] A. Rago, G. Piro, G. Boggia, and P. Dini, “Multi-
task learning at the mobile edge: an effective way
to combine traffic classification and prediction,” IEEE
Transactions on Vehicular Technology, pp. 1–1, 2020.

[17] A. Montieri, G. Bovenzi, G. Aceto, D. Ciuonzo,
V. Persico, and A. Pescapè, “Packet-level prediction
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