Dataset Restricted Access
Garg, Nikhil; Garg, Rohit; Anand, Apoorv; Baths, Veeky
{ "owners": [ 438651 ], "doi": "10.3389/fnhum.2022.1051463", "stats": { "version_unique_downloads": 7.0, "unique_views": 177.0, "views": 224.0, "version_views": 224.0, "unique_downloads": 7.0, "version_unique_views": 177.0, "volume": 65350620.0, "version_downloads": 48.0, "downloads": 48.0, "version_volume": 65350620.0 }, "links": { "latest_html": "https://zenodo.org/record/7332684", "doi": "https://doi.org/10.3389/fnhum.2022.1051463", "badge": "https://zenodo.org/badge/doi/10.3389/fnhum.2022.1051463.svg", "html": "https://zenodo.org/record/7332684", "latest": "https://zenodo.org/api/records/7332684" }, "created": "2022-11-18T03:40:30.635555+00:00", "updated": "2022-11-18T14:26:35.660808+00:00", "conceptrecid": "7332683", "revision": 2, "id": 7332684, "metadata": { "access_right_category": "danger", "doi": "10.3389/fnhum.2022.1051463", "description": "<p>Emotion classification using electroencephalography (EEG) data and machine learning techniques have been on the rise in the recent past. However, past studies use data from medical-grade EEG setups with long set-up times and environment constraints. The images from the OASIS image dataset were used to elicit valence and arousal emotions, and the EEG data was recorded using the Emotiv Epoc X mobile EEG headset. We propose a novel feature ranking technique and incremental learning approach to analyze performance dependence on the number of participants. The analysis is carried out on publicly available datasets: DEAP and DREAMER for benchmarking. Leave-one-subject-out cross-validation was carried out to identify subject bias in emotion elicitation patterns. The collected dataset and pipeline are made open source. </p>\n\n<p>Code: <a href=\"https://github.com/rohitgarg025/Decoding_EEG\">https://github.com/rohitgarg025/Decoding_EEG</a></p>", "title": "OASIS EEG Dataset: Decoding the Neural Signatures of Valence and Arousal From Portable EEG Headset", "journal": { "title": "Frontiers in Human Neuroscience" }, "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "7332683" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "7332684" } } ] }, "access_right": "restricted", "access_conditions": "<p>Please state your name, contact details (e-mail), institution, position, as well as the reason for requesting access to the DREAMER database.</p>\n\n<p>For additional info contact:</p>\n\n<p>Nikhil.Garg [-at-] Usherbrooke.ca</p>\n\n<p>f20180193 [-at-]goa.bits-pilani.ac.in</p>\n\n<p>Veeky [-at-] goa.bits-pilani.ac.in</p>", "version": "1", "keywords": [ "Electroencephalography (EEG)", "Brain Computer Interface (BCI)", "Machine learning", "Valence", "Arousal", "Emotion", "Feature engineering" ], "publication_date": "2022-11-17", "creators": [ { "affiliation": "UMR8520 Institut d'\u00e9lectronique, de micro\u00e9lectronique et de nanotechnologie (IEMN), France", "name": "Garg, Nikhil" }, { "affiliation": "Birla Institute of Technology and Science, India", "name": "Garg, Rohit" }, { "affiliation": "Birla Institute of Technology and Science, India", "name": "Anand, Apoorv" }, { "affiliation": "Birla Institute of Technology and Science, India", "name": "Baths, Veeky" } ], "notes": "Please cite as:\nN. Garg, R. Garg, A. Anand, V. Baths, \"Decoding the Neural Signatures of Valence and Arousal From Portable EEG Headset,\" Frontiers in Human Neuroscience, Nov. 2022. Doi: 10.3389/fnhum.2022.1051463", "resource_type": { "type": "dataset", "title": "Dataset" } } }
Views | 224 |
Downloads | 48 |
Data volume | 65.4 MB |
Unique views | 177 |
Unique downloads | 7 |