Dataset Restricted Access
Garg, Nikhil; Garg, Rohit; Anand, Apoorv; Baths, Veeky
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://zenodo.org/record/7332684</identifier> <creators> <creator> <creatorName>Garg, Nikhil</creatorName> <givenName>Nikhil</givenName> <familyName>Garg</familyName> <affiliation>UMR8520 Institut d'électronique, de microélectronique et de nanotechnologie (IEMN), France</affiliation> </creator> <creator> <creatorName>Garg, Rohit</creatorName> <givenName>Rohit</givenName> <familyName>Garg</familyName> <affiliation>Birla Institute of Technology and Science, India</affiliation> </creator> <creator> <creatorName>Anand, Apoorv</creatorName> <givenName>Apoorv</givenName> <familyName>Anand</familyName> <affiliation>Birla Institute of Technology and Science, India</affiliation> </creator> <creator> <creatorName>Baths, Veeky</creatorName> <givenName>Veeky</givenName> <familyName>Baths</familyName> <affiliation>Birla Institute of Technology and Science, India</affiliation> </creator> </creators> <titles> <title>OASIS EEG Dataset: Decoding the Neural Signatures of Valence and Arousal From Portable EEG Headset</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2022</publicationYear> <subjects> <subject>Electroencephalography (EEG)</subject> <subject>Brain Computer Interface (BCI)</subject> <subject>Machine learning</subject> <subject>Valence</subject> <subject>Arousal</subject> <subject>Emotion</subject> <subject>Feature engineering</subject> </subjects> <dates> <date dateType="Issued">2022-11-17</date> </dates> <resourceType resourceTypeGeneral="Dataset"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/7332684</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.3389/fnhum.2022.1051463</relatedIdentifier> </relatedIdentifiers> <version>1</version> <rightsList> <rights rightsURI="info:eu-repo/semantics/restrictedAccess">Restricted Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Emotion classification using electroencephalography (EEG) data and machine learning techniques have been on the rise in the recent past. However, past studies use data from medical-grade EEG setups with long set-up times and environment constraints. The images from the OASIS image dataset were used to elicit valence and arousal emotions, and the EEG data was recorded using the Emotiv Epoc X mobile EEG headset. We propose a novel feature ranking technique and incremental learning approach to analyze performance dependence on the number of participants. The analysis is carried out on publicly available datasets: DEAP and DREAMER for benchmarking. Leave-one-subject-out cross-validation was carried out to identify subject bias in emotion elicitation patterns. The collected dataset and pipeline are made open source.&nbsp;</p> <p>Code: <a href="https://github.com/rohitgarg025/Decoding_EEG">https://github.com/rohitgarg025/Decoding_EEG</a></p></description> <description descriptionType="Other">Please cite as: N. Garg, R. Garg, A. Anand, V. Baths, "Decoding the Neural Signatures of Valence and Arousal From Portable EEG Headset," Frontiers in Human Neuroscience, Nov. 2022. Doi: 10.3389/fnhum.2022.1051463</description> </descriptions> </resource>
Views | 228 |
Downloads | 48 |
Data volume | 65.4 MB |
Unique views | 181 |
Unique downloads | 7 |