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Maintaining a good quality of transmission (QoT) in optical transport networks is key to maintaining the ser-
vice level agreement between the user and the service provider. QoT prediction techniques have been used to
assure the quality of new lightpaths as well as that of the previously provisioned ones. Traditionally, two different
approaches have been used: analytical methods, which take into account most physical impairments that are
accurate but complex, and high margin formulas, which require much less computational resources at the cost
of high margins. With the recent progress of machine learning (ML) together with software defined networking
(SDN), ML has been considered as another option that could be both accurate and that does not consume as
many resources as analytical methods. SDN architectures are difficult to scale because they are usually central-
ized; this is even worse with QoT predictors using ML. In this paper, a solution to this issue is presented using
a cloud-native architecture, and its scalability is evaluated using three different ML QoT predictors and experi-
mentally validated in a real wavelength-division multiplexing (WDM) over spatial-division multiplexing (SDM)
testbed. © 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

https://doi.org/10.1364/JOCN.449009

1. INTRODUCTION

Traditional transport networks have been built upon dedicated
devices that need to be manually configured when a new con-
figuration or a new device is introduced into the network. 5G
networks are a reality nowadays, and together with Internet of
Things (IoT) services, they force the networks to adapt faster
and to be more resilient to errors. Software defined networking
(SDN) has been consolidated in recent years as a technology
that addresses those challenges, based on the decoupling of the
data plane that is responsible for the forwarding of the network
packets, and the control plane, which makes the decision of
where to forward the packets. Since the control plane and
the data plane are decoupled, new application programming
interfaces (APIs) are needed to adapt to this new strategy. The
northbound interface (NBI) is used by applications to commu-
nicate to the SDN controller, while the southbound interface
(SBI) is used by the SDN controller to communicate with the
data plane. SDN architectures are usually based on open stan-
dards and APIs instead of using proprietary interfaces for the
control plane, such as OpenFlow [1] for the SBI or Transport
API [2] (TAPI) for the NBI. This standardization has enabled
the centralization of the control plane, aggregating multiple

domains, even multiple layers, over the same SDN controller.
This makes the establishment of end-to-end connections much
easier, faster, and more flexible, due to the automation that
SDN brings, allowing for less expenditure on human resources
and thus lower operating expenditures. While the centraliza-
tion has brought many advantages, the emergence of novel
optical technologies such as the elastic optical network (EON)
or spatial-division multiplexing (SDM) has increased the com-
plexity of the network that needs to be managed. The degrees
of freedom that these technologies allow require very high
computational resources to calculate the optimum parameters,
such as modulation format, channel spacing, or symbol rates.

Predicting the QoT of unestablished optical signals is key
to guaranteeing the service level agreement (SLA) of the opti-
cal path. Physical layer impairments have to be taken into
account such as polarization effects, dispersion, or phase shifts.
Nonlinear impairments are especially difficult to estimate, and
analytical models like the split-step Fourier method [3] intro-
duce high computational costs that are hard to manage; thus,
it is unfeasible in a large-scale deployment. On the other hand,
high margin models {based, for example, on the Gaussian noise
(GN) model [4]}, are based on power budget estimations that
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usually assume the worst-case scenario on different nonlinear
effects, reducing complexity at the cost of accuracy.

Machine learning (ML) offers a new way to predict the QoT
of optical paths. After the ML model has been trained, it is able
to predict an optical performance metric, such as the bit error
ratio (BER) or Q factor, from the description of the requested
connection (modulation format, wavelength, spatial path,
etc.). Although QoT ML techniques do not consume as many
resources as analytical methods, it is still unfeasible to rely on
them for large-scale deployments because of the centralization
of the control plane on SDN, where the SDN controllers
have to manage a large number of network elements at the
same time and hence lots of connections coming from those
domains. As a result, a lot of stress is put on the controllers that
are usually developed as monolithic applications [5].

Cloud-native applications rely on an architecture design
with cloud computing in mind. The cloud computing
paradigm offers the pooling of shared computing resources
that can serve multiple tenants dynamically [6]. The appli-
cations are based on microservices, which are a set of loosely
coupled isolated services that interact with each other by means
of lightweight protocols, such as Google Remote Procedure
Calls (gRPC) [7]. These microservices are deployed within
containers, a type of virtualization mechanism that serves an
isolated environment from the rest of the operating system
[8]. They come with little overhead when compared to vir-
tual machines that make use of a hypervisor, which shares the
resources between the full operating system they contain and
the hardware. On the other hand, containers, like Docker
[9] or Linux Containers (LXC) [10], do not need to contain
the full operating system; instead, they make use of the guest
operating system containing only the necessary libraries for the
application. This approach allows easier development, higher
resilience against infrastructure problems, the ability to swap or
update components on the fly, and higher scalability. Providing
automatic deployment, scaling, and management is necessary
to deploy a containerized application in a large-scale manner
[11]. Kubernetes (K8s) [12], Docker Swarm [9], Red Hat
OpenShift [13], or Amazon Elastic Container Service (ECS)
[14] are the most used orchestration platforms and provide the
necessary infrastructure to manage the life cycle of containers.

Scalability has been a general issue in SDN controllers [15].
Monolithic SDN controllers are deployed as a single unit, and
the only way they can scale is in a vertical manner, i.e., adding
more resources to the server the application is running in. They
can manage medium-size networks, but the centralization can
make the SDN controller the bottleneck on high flow request
environments like data centers. As an example, the NOX
[16] controller can handle up to 30,000 requests/s, which in
large data centers can be insufficient, where the flow rate can
reach 10 million requests/s [17]. A report about large-scale
deployments can be found at [18]. In [19], the authors divided
traditional SDN controllers by the scalability approach they
offer into two main categories, topology- and mechanism-
related approaches. In the topology-related approaches, the
SDN controller tries to mitigate the scalability issues by dis-
tributing the controllers, in flat, hierarchical or hybrid designs,
instead of having a unique SDN controller. The mechanism-
related approaches are divided into parallelism-based, using

multithreaded programming to take advantage of multi-core
CPUs, and routing optimizations. The approach followed in
this paper falls into the mechanism-related approaches. Using
microservices together with an orchestration platform, a cloud-
native SDN controller is able to replicate the services of the
controller that are causing the bottleneck into another server
and redirect part of the requests to that replica, alleviating the
high load of the original service, i.e., it is able to scale horizon-
tally. This way, a cloud-native SDN controller can help solve
the concern about scalability in centralized SDN architectures
[20].

This paper extends the work presented in [21], where a
cloud-native SDN controller with an ML framework and a
deep neural network (DNN) model was introduced. Here,
we provide a deeper description of the cloud-native SDN
controller and extend it with two other optical quality of
transmission (QoT) estimators based on ML, one based on
the k-nearest neighbors (k-NN) and another based on sup-
port vector regression (SVR). The dataset used to train the
three models was acquired from real-world data by means of a
wavelength-division multiplexing (WDM) over SDM testbed,
which is also made public. Moreover, a comparison between
the three models is also provided in terms of performance.
The scalability of the SDN controller has also been studied to
assess the validity of the proposed architecture for large-scale
deployments.

This paper is organized as follows. In Section 2 we evaluate
the state of the art for cloud-native and ML for SDN con-
trollers. Section 3 describes the architecture of the cloud-native
SDN controller with ML capabilities and details the workflow
for the composition of the internal topology, the creation of a
connectivity service, and how the controller harvests telemetry
from the chosen devices. Section 4 portrays the experimental
scenario used to evaluate the architecture and describes the
dataset that was gathered and used. Then, Section 5 presents
the results. Finally, Section 6 concludes the paper.

2. RELATED WORK

QoT estimation in optical networks has been the focus of ML
algorithms in the past few years, meant to improve their accu-
racy or speed [22]. Nonetheless, the speed of ML estimators
depends on the algorithm, and they can be very computation-
ally expensive. Another major problem is the source of the data
used to train the models, as having real instead of synthetic data
is hard to obtain.

Since the cloud-native approach has been proposed as
the next step for SDN controllers, it has been discussed and
preliminarily tested in a few articles and research projects. In
[20,23], the authors experimentally showed a basic cloud-
native SDN controller and studied the latency overhead that
the communication between microservices introduced, and
they performed basic demonstrations of two of the most fun-
damental benefits of the cloud-native approach, self-healing
and auto-scaling. In [24,25] the authors demonstrated the
ability of a microservices-based SDN controller to swap mod-
ules on the fly, using Open Network Operating System [26]
(ONOS) or OpenDaylight [27] (ODL) SDN controllers
(monolithic) as the core module. Other projects hosted by
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the Linux Foundation [28] that started as monolithic con-
trollers have changed their path and have begun the transition
to a microservices-based architecture. µONOS [29] is the
cloud-native architecture redesign of ONOS, it is based on
microservices, but it is still very experimental. ODL-Micro
is another project based on ODL, which aims to decouple its
components into microservices.

In [30], a telemetry-enabled cloud-native SDN controller
was deployed on a real testbed and proved that horizontal
scaling is necessary when dealing with a cloud-level number
of transponders on an optical transport network. In [31], they
showed the scalability ability using another QoT predictor
based on the GN model, GNPy [32], using the same cloud-
native architecture. In [33], the authors made use of transfer
learning on a multi-domain EON (MD-EON) to improve the
scalability on the learning process of an ML QoT predictor.

To the best of our knowledge, this is the first work to pro-
pose an ML-based QoT prediction mechanism that relies on
horizontal scaling for (logically) centralized cloud-native SDN
controllers.

3. CLOUD-NATIVE SDN CONTROLLER
ARCHITECTURE

As introduced in Section 1, a cloud-native application has its
modules developed as microservices, in which we differentiate
four types: HTTP, gRPC, database, and scalable microservices.
They are loosely coupled services, developed independently,
in which communication between them is done by means of
lightweight protocols to reduce overhead. The use of gRPC
is very common in microservice architectures, as the use of
HTTP/2 supports multiplexing of requests and responses
as well as making the use of binary headers instead of text as
HTTP 1.1 does. It also uses binary data instead of JSON
as payload, making the protocol more efficient in terms of
bandwidth [7]. The proposed cloud-native SDN controller
(uABNO) has a design based on the IETF Application-Based
Network Operations (ABNO) [34] and has its modules
depicted on Fig. 1.

Four different kinds of microservices are described: HTTP,
gRPC, database, and scalable microservices. The HTTP
microservices are used to interact with the user. The gRPC
microservices are general purpose microservices that perform
their operations and communicate with other microservices.
The database microservices are used to keep and serve the data
needed by other microservices. Finally, the scalable microser-
vices perform tasks with high computational cost and can scale
horizontally if needed to maintain the delay of the operation
within an acceptable range, based on standard (CPU or RAM),
or custom metrics (e.g., connections per second or delay of
operations).

A detailed description of the modules is given:

• NBI: Manages the incoming HTTP requests from the
user and hands them to the appropriate module responsible for
the main workflow of the requested operation.

• Connectivity: Manages the workflows for the connec-
tivity services. This module is where most of the intelligence
of the SDN controller resides. It needs to connect to most

of the other modules to provision the connections to each
domain, get the telemetry from the devices, configure the
optical transponders, or compute a path.

• Context: Manages the database of the controller,
i.e., stores the information. It is used to read, write, delete,
or update data about the topologies, such as nodes, ports,
and links, as well as additional information that is technology
dependent.

• Path Computation: Manages the resolution of an end-
to-end path. It determines a suitable route between input and
output ports based on the topology information given by the
Context module.

• ML Analytics QoT Model (MLAQM): Manages the
ML QoT models that are going to be used by the MLAQP
module. This module is constantly fed with data coming from
the telemetry module. It updates the model it serves after a
determined number of new samples are received. Then it saves
the updated model to be ready to share it with the MLAQP.

• ML Analytics QoT Predictor (MLAQP): Resolves the
QoT prediction requests made by other modules using ML
models. It gets prediction requests made by other modules,
gets an ML model stored by the MLAQM, and predicts the
requested data. It is the scalable microservice demonstrated
in this architecture. As it is a module that can consume a lot
of computational resources, it scales horizontally when the
resources reach a certain limit, deploying new replicas of the
module to help with the requests.

• Connection: Manages the requests going to the underly-
ing SDN controllers; i.e., it acts as the SBI module. It is devel-
oped with a plug-in architecture to be able to support different
protocols, such as TAPI, OpenConfig, OpenROADM, etc.

• Topology: Manages the underlying topologies: retrieves
the topologies from external devices and translates them to
the internal data models. It is also developed with a plug-in
architecture.

• Telemetry: Manages the retrieval of the telemetry data
for the different configured devices. It is used to feed data to
the MLAQM module by pulling data from the devices. This
module enables an incremental learning approach, constantly
gathering new data that can be fed into the MLAQM module
so it can update the models when it receives the new data. It is
also developed with a plug-in architecture.

• Transponder: Manages the configuration of the optical
transponders, i.e., acts as the SBI for the optical transponders.
It is also developed with a plug-in architecture.

These microservices deployed as containers are orchestrated
by means of a cloud controller, which is responsible for the
management of the life cycle of the containers, easing the
operations of deploying, healing, networking, and scaling.
The most important feature of the orchestrators for the QoT
estimators is the scaling capability. The orchestrator can detect
when a service is overloaded and replicate that single service,
instead of having to replicate the whole application. This is
done by fetching the desired metric to be watched from the
resource metrics’ API of each replica. Then, the orchestrator
calculates the average of the metric between all replicas and
computes the following formula:
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Fig. 1. SDN controller architecture.

desiredReplicas= ceil

[
currentReplicas ∗

currentMetricValue

desiredMetricValue

]
.

This is done by retrieving the defined metrics to be watched
each defined period of time and comparing them to the scal-
ing threshold. This way, if the container is receiving more
load than it is able to manage, more replicas are deployed on
other servers, balancing the load between them and keeping a
manageable load in each container.

A. Machine Learning QoT Model/Predictor Services

In ML techniques, first, it is needed to train the ML model so
it is able to estimate or classify the new samples. Depending
on how they treat the training samples, ML techniques can be
divided into four different categories:

• Supervised learning: Algorithms in this category need
labeled datasets to map to the output values or classes.

• Unsupervised learning: Algorithms in this category do
not need training datasets. It is only valid for classification
purposes.

• Semi-supervised learning: It is a mix between the two for-
mer categories, where both labeled and unlabeled data is used.

• Reinforcement learning: This technique is used to learn
policies by letting an agent learn in a specific environment
using some defined actions in order to learn how to maximize
some long-term reward.

All three QoT predictors considered in this paper fall into
the supervised category: k-NN, artificial neural networks
(ANNs), and SVR.

The k-NN [35] is an algorithm where the output value
is the average of the closest k-nearest neighbors to the input
sample. The parameters that can be used to tune the algorithm
are the k value, which is the number of closest labeled samples
to the input sample that is needed to calculate the average
from, and the way the distance is measured (e.g., Euclidean, or
Mahalanobis distances).

ANNs are computing systems whose concept is based on
biological neural networks. ANNs can also be unsupervised.
They consist of a certain number of simple processing nodes,

called units or neurons, organized in layers that use nonlin-
ear activation functions (e.g., sigmoid or hyperbolic tangent
functions) to transform their input signal into the output of
the neuron. The output of each neuron is connected to the
neurons of the next layer (just one or all of them) by variable
link weights plus a bias term. An ANN has to have at least three
layers: the input layer that receives the input vector, one or
more hidden layers, and the output layer. There are different
types of ANN depending on how their layers are connected
(feedforward or recurrent networks) or the density of the con-
nections (fully or sparsely connected). Deep deural networks
(DNNs) [36] are a kind of ANN that feature more than one
hidden layer, making them able to learn more complex func-
tions than shallow (just one hidden layer) neural networks.
The training of the neural network consists of tuning the link
weights by means of a class of algorithms called backpropaga-
tion. Generally, it consists of calculating the gradient of a loss
function for the weights of each of the links of the network
and then updating the weights in a determined rate, called
the learning rate. If the learning rate is too low, the DNN
could take too long to learn the function, and if it is too high,
it could over-fit easily, i.e., find a local minimum (adjust the
weights to the particular training set instead of making it more
general).

The SVR [37] algorithms make use of different kernel func-
tions to map the input vector into a higher dimensional space
and find the hyperplane that fits the most input vectors. There
are two basic parameters that can be adjusted. The C coeffi-
cient is used to tune how well fitted the model should be with
respect to the input samples. The ε parameter controls how
many support vectors the model should have. More support
vectors improve the accuracy, at the cost of the complexity of
the model.

The selected ML QoT model is generated by the MLAQM
in an online manner; e.g., the model is updated every time a
new connectivity service is provisioned. The telemetry module
is responsible for getting the optical performance monitoring
(OPM) data and the present state of the connections to send
it to the MLAQM to create or update the model. If the model
used has not yet achieved an acceptable mean squared error
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(MSE) value or has not been created yet, the SDN controller
can choose a traditional (analytical or high margin) method
to calculate the QoT until the MSE has reached an acceptable
value (whatever is considered enough by the network operator)
in subsequent connections.

B. Connectivity Service Provisioning and QoT
Estimation

The complete workflow for the creation of an end-to-end
connection and the update of the ML QoT model is shown in
Fig. 2. First, the user of the SDN controller sends a request for
the creation of a connectivity service to the NBI (step 1)
and passes it to the Connectivity module (step 2). The
Connectivity module then requests the path to the Path
Computation module (step 3), where it then asks the Context
module for the topology context (steps 4 and 5). With the
received topology, the Path Computation module resolves a
path (step 6) and asks the MLAQP if the estimation for the
BER for the computed path is below the desired threshold
(steps 7 and 8). If it is not, the Path Computation module
keeps computing paths until one of them is suitable and
returns the response (step 9). After that, for each network
domain the path traverses, the Connectivity module sends a
request to the Connection module (step 10). It sends the con-
nection to the network agent (step 11), which in turn returns
the response to the Connection module (step 12) and then
to the Connectivity module (step 13). The same approach
is followed for the provisioning of the transponders, where
the Connectivity module asks the Transponder module to
configure the transponder agent (steps 14–17).

Finally, after the network and transponder agents (the
software pieces that hide the internal details and protocols
to external users) are configured, the Connectivity module
sends the response to the NBI (step 18) and the NBI to the
user (step 19). Nonetheless, a parallel process is launched by
the Connectivity module between steps 17 and 18. In it, the
Connectivity module sends a Remote Procedure Call (RPC)
to the Telemetry module so it acknowledges there has been
a new connectivity service created (step 20). Then, it gets
the current state of the connectivity services created from the
Context module (steps 21 and 22) and asks for the BER of the
transponder to the Transponder module (steps 23–26). After
that, the Telemetry module creates a new sample for the ML
QoT models using the information about current connectivity
services and the BER received from the Telemetry module
(step 27) and sends an RPC to the MLAQM module with
it to update the dataset (step 28). The MLAQM then stores
the new sample, and if the number of new samples stored is
bigger than a defined threshold, it updates the model (step
29) so the MLAQP can use a more accurate model in the
future.

4. EXPERIMENTAL VALIDATION

A. Experimental Scenario

Listing 1. HPA MLAQP configuration file.

The experimental setup is based on a cloud-native SDN
controller deployed at CTTC in Barcelona (Spain) and data
plane hardware and SDN agents deployed at KDDI Research
in Saitama (Japan). The connection between these two prem-
ises was established through OpenVPN tunnels across the
Internet.

The control plane consisted of the cloud-native SDN con-
troller group of microservices deployed using the Docker
container platform and the Kubernetes orchestration platform.
Docker was responsible for the creation of the isolated contain-
ers for each module of the SDN controller, while Kubernetes
was responsible for the automation of the deployment and
scaling of such containers. The Horizontal Pod Autoscaler
(HPA) of Kubernetes was responsible for the deployment of
the replicas of the containers. The configuration of the shared
disk space, available resources, and HPA for the MLAQP is
shown on Listing 1. The container default resources were
50% of a core full capacity and 512 MiB, while the limits were
the same 50% and 2048 MiB. The service started with one
container and was set to a maximum of 20. It used the default
15 s as the time between pooling of the metrics to determine if
there is a need for the replication of the container, in this case,
the CPU utilization, which was set at 35% of a core capacity.
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Fig. 2. Connectivity service provisioning workflow.

The connection module made use of a REST plugin to com-
municate with the SDN agent SDM, while the Transponder
module communicated with the transponders by means of the
NETCONF plugin, and the Telemetry plugin got the data
from the transponders using the gRPC Network Management
Interface (gNMI) plugin. The Topology module used a static
configuration file to load the topology of the three domains,
i.e., the Tx WDM domain, the SDM domain, and the Rx
WDM domain.

The data plane hardware consisted of a WDM/SDM
network domain, which comprised four transponders, two
reconfigurable optical add-drop multiplexers (ROADMs), two
optical switches, an 11 km SDM transmission line (i.e., 19-
core fiber [38]) with a fan-in device, a fan-out device, and
SDN agents. The four tunable transponders (ADVA FSP3000)
operated on a frequency range from 193.2 to 193.5 THz
following the 100 GHz ITU grid and were connected to
the WDM/SDM domain. Each transponder was capable
of two transmission modes, 100 and 200 Gb/s with modu-
lation schemes of dual-polarization quadrature phase-shift
keying (DP-QPSK) and 16 quadrature amplitude modu-
lation (16QAM), respectively, and were controlled by the
SDN controller via NETCONF. The ROADMs had multiple

inputs/outputs and supported a flexible grid in the C-band.
Their inner configuration was based on wavelength-selective
switches (WSSs) for multiplexing and demultiplexing of the
outgoing and incoming optical signals and erbium-doped fiber
amplifiers that were used as preamplifiers and boosters. The
two optical switches that were deployed on each side of the
19-core fiber and were connected to the fan-in and fan-out
devices were non-blocking all-optical matrix switches with an
8× 8 layout, with port #3 unavailable at the moment. Both
the ROADMs and optical switches were controlled by their
respective SDN controllers, and the way all the components
were interconnected is depicted in Fig. 3.

On the transmitter’s side, three of the transponders were
connected to the ROADM, whose output ports were then
connected to the input ports of the optical switch, whereas the
fourth transponder was directly connected to an input port of
the same optical switch. The ROADM provided a WSS func-
tionality where the lightpaths of the three transponders could
be independently switched to any of the used outgoing ports
as long as the lightpaths were tuned on different wavelengths.
The optical switch, on the other hand, would switch the optical
signals from any ingoing port to any outgoing port with the
limitation that signals from different input ports could not
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Fig. 3. Experimental scenario.

be forwarded to the same outgoing port. The output ports of
the optical switch were then connected to the fan-in device in
order to forward the optical signals into the SDM transmis-
sion line. Thus, based on the hardware limitations, the three
lightpaths that went through the ROADM would use different
wavelengths but could be switched on the same or different
cores of the SDM transmission line, whereas the fourth light-
path would always end up on a separate core and could use any
of the available wavelengths. Thus, the ROADM and optical
switch setup would give the option of creating the worst case of
nonlinear interference, where the lightpaths that copropagate
the same core use contiguous wavelengths, and worst-case
inter-core crosstalk, where the fourth lightpath is configured to
propagate an adjacent core and at the same wavelength as one
of the other three lightpaths. After the SDM fiber transmission,
the output ports of the fan-out device were connected to the
optical switch, where the three lightpaths would be switched
to one of the connected ports of the ROADM and then to
the transponders, whereas the fourth lightpath would bypass
the ROADM’s ports and end up at its respective transponder
at the receiver’s side. The data plane, although it is a limited
testbed, will allow us to detect real physical impairments, such
as inter-core interference, and show the control plane being
used on real hardware. Moreover, scalability on a real optical
network would be much more needed since ML algorithms
would need more computer capacity. The control plane, on
the other side, which is the contribution of the paper, is not
affected by the limitations on the testbed and could be scaled to
a real optical network.

B. Obtained Dataset

The dataset, shown in Fig. 4, that was obtained from the
experimental scenario consists of 4384 samples obtained by
provisioning one to four end-to-end lightpaths attending
the limitations described in Section 4.A and measuring the

Fig. 4. First four samples of the dataset.

BER from transponder #1. The BER distribution can be seen
in Fig. 5 with a standard deviation of 0.002760. Most sam-
ples are in the range of 0–0.015, but some can be seen in the
range 0.02–0.033, which corresponds to the situation where
transponder #1 is using core #5 or #6 and transponder #3 is
using core #7, although not all of these situations have such
a high BER. Each sample contains the timestamp in UNIX
format, the BER for transponder #1, the operating frequency
of transponder #1, and the spatial path (i.e., the SDM core)
of each of the four transponders. As previously exposed, the
BER ranges from 0 to 1 (ratio of error bits), the frequency value
ranges from 193,200 to 193,500 GHz in jumps of 100 GHz,
and the path ranges from 3 to 7 (the number of the fiber core)
or 0 (unused path). The CSV file containing the dataset can be
obtained at [39].

C. QoT Models

Three different ML models have been implemented to evaluate
the scalability capabilities that they offer on this architecture:
k-NN, SVR, and DNN, the first two using the scikit-learn [40]
library and the latter using the Tensorflow [41] framework.
They were trained with all the data from the dataset minus the
timestamp, included in the dataset just as accessory informa-
tion. All the columns but the BER were introduced as input
data in one-hot coding.

The k-NN QoT estimator is calculated using 30 neighbors
(n = 30), and it uses the Euclidean distance as the metric for
the distance.
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Fig. 5. Probability distribution of the BER in the dataset.

Fig. 6. MSE of the DNN, k-NN, and SVR QoT estimators by
number of samples.

The DNN QoT estimator implemented consists of a feed-
forward DNN with four fully connected layers, an input layer,
two hidden layers, and the final output layer, with 48 neurons
in total. Every neuron uses the rectified linear unit (ReLU) as
the activation function, a learning rate of 0.000005, and the
Adam algorithm as the optimizer.

Finally, the SVR algorithm uses the radial basis function
(RBF) as the kernel function, with a C value of 1 and an
epsilon value of 0.1.

Figure 6 shows a performance comparison between the three
models in terms of the MSE of the prediction, using a test split
of the dataset, depending on the number of samples. It can be
seen that the best performer is the SVR model followed by the
k-NN and DNN, although the DNN model needs more sam-
ples to reach convergence.

5. RESULTS

The goal of the tests were to assess the cloud-native architecture
for scaling ML QoT estimation. This was done by overloading

Fig. 7. Execution time of the three different ML QoT algorithms.

Fig. 8. Number of deployed replicas by requests per second with
the different ML QoT algorithms.

the controller requesting a large number of connectivity ser-
vices per second that would render the MLAQP unable to serve
all the requests for the BER predictor and force the container
orchestrator to replicate the service. The tests were carried out
on an AMD Ryzen Threadripper 3960 at 3.8 GHz with 32 GB
of memory, running Ubuntu 20.04.2 LTS. The Docker version
was 20.10.7, while the Kubernetes version was 1.21.3.

Figure 7 shows the execution time the three different algo-
rithms take to infer a single sample. Both k-NN and SVR take
almost the same time (55 and 54 ms, respectively), while the
DNN takes about 3.5 times what both k-NN and SVR take
(191 ms).

Figure 8 shows the number of replicas that are deployed over
the traffic load (number of connectivity services requested per
second) in erlangs (average simultaneous utilization of services)
the SDN controller serves. It can be seen that the kNN and
SVR algorithms did not benefit from the scaling of the service,
as the computing time is much faster. Meanwhile, the DNN
model scales up to 8 replicas at 7 erlangs.

Figure 9(a) compares the average response time when 5000
connectivity services are requested to the SDN controller
when the HPA is activated and when it is not. When the HPA
is not activated, the average response time at 1 connectivity
service per second is contained, but it goes up to more than
3.5 s when there are four requests per second. Likewise, when
the HPA is activated, the response time increases with the
erlangs requested. The reason why the DNN with the HPA
activated performs slightly worse at 1 and 2 erlangs may be due
to the periodical retrievals and computations on the metrics
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Fig. 9. Behavior of the SDN controller using the DNN with
increasing load. (a) Response time by number of requests per second.
(b) Standard deviation by number of requests per second.

the system scales to, in this case the CPU usage. However,
the response time stays below 327 ms even when the SDN
controller handles 4 erlangs, more than an eleven-fold decrease
in the response time.

In Fig. 9(b), the standard deviation on the same cases is
shown. While in the non-HPA case the standard deviation of
the response times grows in an exponential manner, when the
HPA is activated, the standard deviation of the response times
stays enclosed between 39 and 167 ms. No load higher than
4 erlangs could be considered on this test because it is the limit
of the system load when no HPA is considered on the DNN
model.

6. CONCLUSIONS

We have presented a cloud-native architecture for SDN con-
trollers with a scalable ML QoT module. Three different
models of ML QoT prediction were compared in terms of
speed and performance within this architecture. It was shown
how an ML QoT estimator based on DNNs is not capable of
supporting high load scenarios and how it can be solved using
horizontal scaling.

Future works could consider the scalability of the MLAQP
module with dedicated ML hardware or implementing the
scalability on other modules, where other high-intensity com-
putation processes could happen, such as routing optimization
or the control of the optical equipment.
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