

Nanosatellites: The next big chapter in atmospheric tomography

Gregor Moeller¹ and Chi Ao²

¹ ETH Zürich, Institute of Geodesy and Photogrammetry ² NASA Jet Propulsion Laboratory, California Institute of Technology

IAG Commission 4 Symposium, 5-8 September 2022, Potsdam, Session S7

Content

- 1. Concept of a dense nanosatellite formation
- 2. Multi-signal combination
 - a) The concept of GNSS tomography
 - b) Results from a case study
 - c) Impact analysis
- 3. Summary

SmallSat Launches

- In the next decade, 4-5 times more SmallSat launches are expected
- Average costs per nanosatellite launch: <500k €</p>

In-house developed GNSS payload board for nanosatellite missions

ETH zürich

ETH zürich

Cross-link occultation geometry between four nanosatellites and one GNSS satellite

The concept of GNSS tomography (exemplary for water vapor density ρ_w)

Basic function of GNSS tomography

$$N = A^{-1} \cdot AEP \implies \rho_w = A^{-1} \cdot PIWV$$

- Setup tomography model (grid/voxel-based or node-based)
- Ray-trace signal paths and determine components of design matrix A

Solution of inverse problem

- Pseudo inverse $A^+ \implies A = U \cdot S \cdot V^T$
- Truncated singular value decomposition (TSVD)

The concept of GNSS tomography (exemplary for water vapor density)

Impact of the singular value threshold (s_{lim}) on the tomography solution

Differences in N between reference solution and synthetic tomography solution

<u>Goal</u>: Find trade-off between ill-conditioning and over-smoothing

Case study: Water vapor inversion layer between 2-4 km altitude

WRF (reference) water vapor density (ρ_w) field + tangent points of the straight-line RO ray paths through the atmosphere (white lines) - assuming **15 nanosatellite** in one orbit separated by 30 s

Ray-traced **path-integrated water vapour (PIWV)** (visualized for 8 (every 2nd) nanosatellites)

Tomography solution – A priori field

	#Voxels	First guess	#CubeSats	σ _{RO}	σ_{apr}
Test1a	52 x 41	No	8 (0s,60s,,420s)	1	—
Test1b	52 x 41	StdAtm	8 (0s,60s,,420s)	$0.01g/m^3km$	0.2 <i>wvd</i>
Test1c	52 x 41	SmoothWRF	8 (0s,60s,,420s)	$0.01g/m^3km$	0.2wvd

How sensitive is the tomography solution on the quality of the a priori field?

Tomography solution – Number of satellites

	#Voxels	First guess	#CubeSats	σ _{RO}	σ_{apr}
Test3a	52 x 41	SmoothWRF	5 (30s,120s,,390s)	$0.01g/m^3km$	0.2 <i>wvd</i>
Test3b	52 x 41	SmoothWRF	8 (0s,60s,,420s)	$0.01g/m^3km$	0.2 <i>wvd</i>
Test3c	52 x 41	SmoothWRF	15 (0s,30s,,420s)	$0.01g/m^3km$	0.2 <i>wvd</i>

How much depends the tomography solution on the number of satellites?

10

9

8

5

3

2

Tomography solution – Spatial resolution

	#Voxels	First guess	#CubeSats	σ _{RO}	σ_{apr}
Test3a	52 x 41	SmoothWRF	5 (30s,120s,,390s)	$0.01g/m^{3}km$	0.2 <i>wvd</i>
Test3c	137 x 41	SmoothWRF	5 (0s,60s,,420s)	$0.01g/m^{3}km$	0.2 <i>wvd</i>

How good is the spatial resolution of the tomography solution?

10

9

8

6

5

3

2

150

148

22km

Tomography solution – Satellite spacing

Satellite spacing defines: a) the number of overlapping observations, b) horizontal resolution,
c) temporal resolution, d) height of the lowest layers resolved and e) the area covered

ETH zürich

Summary

- Nanosatellite technology opens up new possibilities for Earth observation
- Now available: A high-precision GNSS payload board for nanosatellite PNT
- Observation geometry of a dense satellite formation suited for tomographic processing
 - + not dependent on symmetry assumptions
 - + increased horizontal resolution (> 8 km)
- New quality in the reconstruction of atmospheric structures (demostrated for water vapor distribution)

ETH zürich

Dr. Gregor Moeller Scientific staff gmoeller@ethz.ch

ETH Zürich Institute of Geodesy and Photogrammetry HPV G58.1 Robert-Gnehm-Weg 15 8093 Zurich

www.mpg.igp.ethz.ch

References

Moeller G., Sonnenberg F., Wolf A., Rothacher M., A high-precision commercial off-the-shelf GNSS payload board for nanosatellite orbit determination and timing, Proceedings of the 44th COSPAR Scientific Assembly 2022, Athens, Greece

Turk F.J., Padullés R., Ao C.O., Juárez M.d.I.T., Wang K.-N., FranklinG.W., Lowe S.T., Hristova-Veleva S.M., Fetzer E.J., Cardellach E., Kuo Y.-H., Neelin J.D., Benefits of a Closely-Spaced Satellite Constellation of Atmospheric Polarimetric Radio Occultation Measurements. *Remote Sens.* **2019**, *11*, 2399. https://doi.org/10.3390/rs11202399