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ABSTRACT

The variational auto-encoder has become a leading frame-

work for symbolic music generation, and a popular re-

search direction is to study how to effectively control the

generation process. A straightforward way is to control a

model using different conditions during inference. How-

ever, in music practice, conditions are usually sequential

(rather than simple categorical labels), involving rich in-

formation that overlaps with the learned representation.

Consequently, the decoder gets confused about whether

to ªlisten toº the latent representation or the condition,

and sometimes just ignores the condition. To solve this

problem, we leverage domain adversarial training to dis-

entangle the representation from condition cues for bet-

ter control. Specifically, we propose a condition corrup-

tion objective that uses the representation to denoise a cor-

rupted condition. Minimized by a discriminator and max-

imized by the VAE encoder, this objective adversarially

induces a condition-invariant representation. In this pa-

per, we focus on the task of melody harmonization 1 to

illustrate our idea, while our methodology can be general-

ized to other controllable generative tasks. Demos and ex-

periments show that our methodology facilitates not only

condition-invariant representation learning but also higher-

quality controllability compared to baselines.

1. INTRODUCTION

In deep music generation, improving controllability has

been a major challenge that gains increasing research at-

tention [1±6]. In practice, controllability is typically im-

plemented under a conditional architecture, where the gen-

eration process is biased by external condition inputs. For

example, EC2-VAE [7] learns a representation zx of 8-

beat melody x while the underlying chords are given as

condition c. The system is controllable if the gener-

ated melody can adapt to variable chords properly. For

1 Demos and codes via https://zhaojw1998.github.io/DAT_CVAE.
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such representation-learning architectures, however, the

decoder tends to find a shortcut from zx to x without at-

tending to c, leading to ªcondition collapseº. The reason

for this, as we argue, is that zx is inevitably intertwined

with condition c in the representation space, as c is often

an innate property of x. In the case of EC2-VAE, the con-

dition of chords is very much implied by the melody.

To address this problem, the representation zx must be

disentangled from condition c. A popular way to achieve

this goal is to use an adversarial objective that predicts c

from zx, as shown in Figure 1. On the one hand, this ob-

jective is optimized by a discriminator; on the other hand,

the encoder is trained to ªfoolº the discriminator by de-

taching c-related cues out of zx. In this way, the decoder

cannot find a shortcut in zx but is forced to seek c to recon-

struct x. Such a technique stems from domain adversarial

training (DAT) [8], where the ªdomainº is interpreted as

ªconditionº that controls the generation.
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Figure 1: An illustration of domain adversarial training

over a conditional generation architecture.

Apparently, DAT can be a powerful tool for controllable

music generation. Previous studies [9, 10] have discussed

simple scenarios where the condition is a global label (e.g.,

note density). In music practice, however, local and se-

quential conditions [11] are more common. In such cases,

c may not be fully implied by x, so the objective that sim-

ply predicts c from zx does not necessarily hold.

In this paper, we focus on sequential conditions and de-

velop a generalized form of DAT for controllable music

generation. We illustrate our methodology with the task

of chord representation learning conditioned on melody,

where x stands for the chord progression, and c is the

melody condition. In general, a chord progression can

match many melodies, so we cannot directly predict c

(melody) from zx (chord) for the DAT objective. Instead,

we leverage zx to reconstruct c from a corrupted condition

c∗. We rely on c∗ to provide the melody context that can-

not be hinted by chord x; on the other hand, the corrupted
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information reveals c’s harmonic dependency on x, which

we enforce the discriminator to learn. With proper corrup-

tion design, our DAT objective can be generalized to more

scenarios with sequential conditions.

A well-trained model with good controllability can help

us harmonize a new melody using the representation (style)

of an existing chord progression. Experiments show that

our model performs an excellent disentanglement of data

representation from the condition, and the controllability

outperforms the baselines. In summary, our contributions

in this paper are as follows:

• A general approach to controllability: Based on

a novel adversarial objective with condition corrup-

tion, we generalize domain adversarial training to

music generation with sequential conditions;

• A novel harmonization methodology: We present

a representation learning-based method for melody

harmonization. Our current model harmonizes pop

and folk melodies with the triad and seventh chords.

2. RELATED WORKS

2.1 Domain Adversarial Training

Domain adversarial training (DAT) is a representation

learning approach initially proposed for domain adaptation

tasks [12±14]. Through an adversarial process as described

in Section 1, DAT enforces domain invariance to data rep-

resentation so that it can be adapted to different domains

flexibly. Such adaptability to new domains is analogous to

controllability with new conditions. For generation tasks,

DAT has been utilized to learn a condition-invariant data

representation. Such invariance enforces the decoder to

use condition information for reconstruction [15]. During

inference, the decoder ªlistens toº new conditions as well

and generates new data in a controllable way.

The first attempts that incorporate DAT with generation

dealt with facial image generation conditioned on binary

attributes (e.g., male or female) [15, 16]. Such conditions

cannot be explicitly supervised because we cannot find any

pair of images that represents the same person both male

and female. Fortunately, DAT enforces attribute invariance

at encoding and learns attribute dependency at decoding,

thus circumventing this problem. Recently, DAT has been

extended to symbolic music generation conditioned on var-

ious attributes. Kawai et al. adopts DAT to a variational

auto-encoder (VAE) for melody generation conditioned on

statistical attributes (e.g., note density) [9]. Later, Mat-

suoka et al. generalizes this methodology to generating

polyphonic music with similar conditions [10].

For previous works, the conditions are particularly a

global statistical label, which only represents a limited sce-

nario of controllable generation. In our paper, we general-

ize the usage of DAT to sequential conditions. Conditioned

on an 8-bar melody, we aim to learn a pitch-invariant rep-

resentation of an 8-bar chord progression, which can later

be adapted to varied melody conditions and to harmonize

them. Our main novelty lies in a special design of the ad-

versarial objective, which is to denoise corruption rather

than make full prediction. This technique greatly helps us

in dealing with the nuance of sequential conditions.

2.2 Controllable Music Generation

Controllable music generation takes various forms in terms

of controlling technique and music representation [17]. For

controlling technique, controllability can be achieved by

sampling, interpolation, conditioning, and more ways [11].

For music representation, controls can be performed over

statistical music properties (pitch variability, note density,

etc.) [9,10], compositional factors (chord progression, tex-

ture and rhythmic patterns, etc.) [7, 18±20], high-level se-

mantics (emotion, cultural style, etc.) [21], and so on. With

the development of representation learning, such proper-

ties can be abstracted and disentangled for flexible control.

In this paper, we are interested in chord representation

learning conditioned on melodies, which falls into the cat-

egory of controlling compositional factors via condition-

ing. Various conditional architectures, such as conditional

VAE (C-VAE) [22], have been applied for similar pur-

poses [7, 18±21]. However, as the condition is often easily

implied by the representation, the decoder tends to skip

the condition, and simply reconstruct the data for what-

ever conditions. To eradicate this problem, we introduce

domain adversarial training and generalize it to sequential

conditions (in our case, an 8-bar lead melody). Our model

learns a pitch-invariant chord representation so that we can

generate chord progressions harmoniously conditioned on

varied melodies. Such control over compositional factors

is common to broader music generation scenarios, and our

methodology is generally applicable as well.

3. METHODOLOGY

In this section, we introduce our methodology with domain

adversarial training on learning chord representation con-

ditioned on the melody. An overview of our model is illus-

trated in Figure 2. We first describe our data representation

and structure in Section 3.1. Then, we introduce our pro-

posed model in Section 3.2. Finally, we elaborate on our

novel design of condition corruption in Section 3.3.

3.1 Date Representation and Structure

3.1.1 Chord Representation

Our model generates an 8-bar chord progression condi-

tioned on the melody. We quantize the chord progression

at 1-beat unit and derive T = 32 timesteps. The maximum

note count P for each chord is 4, which means we can flex-

ibly represent any type of triad and seventh chords. Specif-

ically, we treat chord progression as a piece of polyphony

and follow [18] to represent it in both a surface structure

(as model input) and a deep structure (for encoding).

The surface structure is a nested array of pitch at-

tributes, denoted by {xt
p|1 ≤ t ≤ T, 1 ≤ p ≤ P}. Con-

cretely, xt
p is the pth lowest pitch onset at time step t. We

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

926



Enc pitch-axis GRU

VAE ObjectiveAdversarial Objective

Enc pitch-axis GRU

𝑥𝑥11 𝑥𝑥21 𝑥𝑥𝑃𝑃1 𝑥𝑥1𝑇𝑇 𝑥𝑥2𝑇𝑇 𝑥𝑥𝑃𝑃𝑇𝑇

𝑧𝑧𝑥𝑥
�𝑥𝑥1 �𝑥𝑥𝑇𝑇

Dec pitch-axis GRU�𝑥𝑥11 �𝑥𝑥21 �𝑥𝑥𝑃𝑃1 �𝑥𝑥1𝑇𝑇 �𝑥𝑥2𝑇𝑇 �𝑥𝑥𝑃𝑃𝑇𝑇

⋯
⋯⋯ ⋯

⋯ ⋯
𝑐𝑐1 𝑐𝑐2 𝑐𝑐4𝑇𝑇
𝑐𝑐1∗

Transformer Encoder Layer�̂�𝑐1 �̂�𝑐2 �̂�𝑐4𝑇𝑇 Dec pitch-axis GRU

Transformer Encoder Layer⋯ ⋯ ⋯D
is
c
r
im
in
a
to
r

Encoder

Decoder
𝑧𝑧𝑥𝑥 𝑧𝑧𝑥𝑥 𝑧𝑧𝑥𝑥

𝑐𝑐1: 4 𝑐𝑐5: 8 𝑐𝑐(4𝑇𝑇−3): 4𝑇𝑇
𝑐𝑐(4𝑡𝑡−3): 4𝑡𝑡

Dec time-axis GRU

𝑥𝑥𝑇𝑇⋯𝑥𝑥1 𝑥𝑥2
Enc time-axis GRU𝑐𝑐2∗ 𝑐𝑐4𝑇𝑇∗

× 𝐾𝐾

Condition 𝒄𝒄 (lead melody)

Input 𝒙𝒙 (chord progression)

Condition Corruption

⋯
⋯

⋯⋯ ⋯

⋯
Conditioning

Domain Adversarial Training 

(DAT)

Condition

Figure 2: Chord representation learning with adversarial intervention for melody control.

represent xt
p as a 13-D one-hot vector corresponding to 12

pitch classes plus a padding state. For most of our chord

progression data, the offset of the last chord is precisely

followed by the onset of the next one. Hence we do not

explicitly consider the duration attributes.

For the deep structure, we build a syntax tree as in [18]

to reveal the hierarchy from note via chord to chord pro-

gression. First, for 1 ≤ t ≤ T, 1 ≤ p ≤ P , xt
p itself con-

stitutes the bottom layer of the tree. Then, for 1 ≤ t ≤ T ,

we define xt as the summary of xt
1≤p≤P , which lies at the

middle layer of the tree. Finally, we define zx as the sum-

mary of x1≤t≤T , which is the root of the tree. Such a deep

structure is illustrated in Figure 3. Conceptually, while xt

is a compact representation of a single chord, zx represents

the complete chord progression.

chord progression

D G B C E GD F A

chord

note

⋯ ⋯ ⋯ ⋯ ⋯
Figure 3: Tree-structure data representation of chord pro-

gression, reproduced from [18] with permission.

3.1.2 Melody Representation

Our model receives an 8-bar lead melody as the condi-

tion. we quantize the melody at 1
4 -beat unit and derive

4T = 128 time steps. Following [7], we represent the

melody as a sequence of note onsets plus a hold and a rest

state. Each note onset consists of two one-hot vectors each

representing 12 pitch classes and 10 octave ranges (reg-

isters). In our model, the melody pitch shares the same

learnable embedding with the chord pitch.

3.2 Proposed Model

Our model applies a similar VAE architecture as PianoTree

VAE [18], which learns representation for polyphonic mu-

sic in a hierarchical manner. We use the surface structure

of chord progression as the model input. The VAE archi-

tecture is built upon the deep tree-like structure.

We first illustrate the vanilla VAE design in the right

half of Figure 2. Let x be the input chord progression and

xt
p be the pth lowest pitch onset at time step t. The encoder

first summarizes xt
1≤p≤P into an intermediate representa-

tion xt (chord representation) for each time step t, and then

encodes x1≤t≤T to the complete representation zx. The

decoder is basically a mirrored version of the encoder. The

melody condition c, with its every four timesteps summed

together, is concatenated to x1≤t≤T during encoding and

to zx during decoding. The loss function of our vanilla

VAE architecture is:

L(θenc, θdec) = −EQ [logPθdec (x | zx, c)]

+ αKL(Qθenc
(zx | x, c) ∥ N (0, 1)),

(1)

where Pθdec and Qθenc refer to the VAE decoder and en-

coder. θdec and θenc are the learnable parameters. α is a

balancing parameter for the regularization of KL loss [23].

Ideally, zx should be a relative progression representa-

tion whose absolute pitch is controlled by melody c. How-

ever, as the input chord, x already has absolute pitch, this

information is preserved in zx as a redundant melody cue

and confuses the decoder from attending to the condition.

To solve this problem, we assign a discriminator (left

in Figure 2) to the VAE architecture. Instead of predict-

ing c from zx as conventional DAT objectives do, we bias

the discriminator to denoise a corrupted melody condition.

The corruption is done by transposing the melody to 12

keys with equal chance, which breaks the harmonic rela-

tion to the chord. In this way, we learn and extract the

chord’s dependency on its melody condition.

Formally, our discriminator leverages zx to reconstruct

melody condition c from a corrupted one c∗. Our DAT ob-

jective with condition corruption is trained in an adversar-

ial manner. We optimize the discriminator by minimizing

the reconstruction loss:

L(θdis) = −EQ [logRθdis (c | zx, c
∗)] , (2)
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where Rθdis
is the discriminator with parameters θdis.

On the other hand, we optimize the VAE encoder by

maximizing condition reconstruction error:

L(θenc | θdis) = −EQ [logRθdis (1− c | zx, c
∗)]

+ αKL(Qθenc
(zx | x, c) ∥ N (0, 1)),

(3)

where 1 − c is a confusion criterion that encourages the

encoder to ªfoolº the discriminator. L(θi | θj) means we

optimize θi while fixing θj . The KL loss in Equation (3)

and (1) ensures a consistent posterior regularization.

During domain adversarial training, Equation (2) and

Equation (3) are iteratively optimized aside from the main

VAE objective (1). In this way, the encoder is explicitly

biased to disentangle zx from c. The decoder learns to re-

trieve missing cues from c to reconstruct x, and thus guar-

antees controllability in the conditional architecture.

3.3 Condition Corruption

The main novelty of our architecture over previous appli-

cations of DAT [9,10,15] is that we incorporate a corrupted

condition term to generalize this method to sequential con-

ditions. The necessity of condition corruption is that, when

c is not fully implied by x, the conventional DAT objec-

tive which predicts c from zx no longer holds. In our

case, x (chord) can be accompanied with various unique

c (melodies), and a melody is largely independent of the

chord in terms of sequential rhythmic patterns.

Condition corruption aims to reveal the dependency of

c on x when a direct predictive inference from x to c can-

not be established. The corrupted condition c∗ serves as a

context to fill in such prediction gap, and the dependency

is highlighted when using zx to denoise c∗. It may require

field knowledge to design a proper corruption method for a

specific scenario. Such corruption should keep the context

part while blocking the dependency.

In our case, we corrupt the melody by transposing it

to 12 keys with equal probability. The transposed melody

c∗ keeps the original rhythm and pitch curve shape while

distorting the harmonic relation to the chord progression.

Here the rhythm and the curve shape are the contexts, and

the harmonic relation is the dependency. We compare our

corruption method with a corruption-by-masking baseline

in Section 4.6 to support the effectiveness of our design.

4. EXPERIMENTS

4.1 Dataset

We collect a total of 2K lead sheet pieces (melody with

chord progression) for folk and pop songs from Notting-

ham [24] and POP909 [25] datasets. We only keep the

pieces with 2
4 and 4

4 meters and slice them into 32-beat

snippets at an 8-beat hop size, deriving a total of 35K sam-

ples. We quantize chords at 4th note and melodies at 16th.

We randomly split the dataset (at song level) into training

(95%) and validation (5%) sets. We further augment the

training data by transposing each sample to all 12 keys.

4.2 Architecture Details

The VAE framework of our model is consistent with Pi-

anoTree VAE [18]. We implement the encoder with two

bi-directional Gated Recurrent Unit (GRU) networks. The

pitch-axis GRU and time-axis GRU each has a hidden di-

mension dp,enc = 256 and dt,enc = 512. The input em-

bedding dimension demb and latent representation dimen-

sion dz are both set to 128. The decoder mirrors the en-

coder with uni-directional GRUs, with hidden dimensions

dt,dec = 1024 and dp,dec = 512. We set the KL balancing

weight α = 0.1 in Equation (1) and (3).

We implement the discriminator using BERT [26] with

relative positional embedding [27±29], as our condition

corruption is conceptually similar to language masking.

For our model, we use 4 Transformer encoder layers with 4

heads [30] and 10% dropout [31]. The hidden dimensions

of self-attention and feed-forward layers are dmodel = 256
and dff = 1024. Our VAE and BERT discriminator each

have 12.55M and 3.24M trainable parameters.

4.3 Training

Our model is trained using Adam optimizer [32], with a

mini-batch of 256 samples and a learning rate from 1e-3

exponentially decayed to 1e-5. We use teacher forcing [33]

for training the GRU-based decoder, with teacher forcing

rate from 0.8 exponentially decayed to 0. We introduce do-

main adversarial training as an iterative process aside from

the main VAE objective, as shown in Algorithm 1. We set

i = 10, j = 1, k = 5, and l = 5. Our model is trained on a

Geforce-2080Ti-12GB GPU. It takes 20 epochs (in around

15 hours) for our model to fully converge.

Algorithm 1: Domain Adversarial Training

1 while training do

2 for i iterations do

3 Optimize VAE with L(θenc, θdec),

4 for j iterations do

5 for k iteration do

6 Optimize discriminator with L(θdis),

7 for l iterations do

8 Optimize encoder with L(θenc | θdis).

Figure 4 shows the trends of adversarial loss L(θdis) (in

Equation (2)) and L(θenc | θdis) (in Equation (3)). In the

early stage, the discriminator learns to reconstruct c based

on zx, so the green curve decreases. However, as the ad-

versarial procedure goes on, zx is gradually disentangled

from c-related cues. Consequently, the discriminator ac-

quires less and less relevant information to reconstruct c

well, and thus the green curve increases. The red curve ex-

hibits an inverse trend, as it is supervised by 1 − c. When

each loss curve converges, we interpret it as an equilibrium

that indicates a successful disentanglement of chord repre-

sentation zx from melody condition c.
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Figure 4: Adversarial loss curves with DAT. Such a trend

is driven by the disentanglement of zx from c.

4.4 Controllable Generation Results

Through domain adversarial training, our model gains reli-

able melody control over chord generation. Our model can

harmonize a new melody using the representation of an ex-

isting chord progression. We hence develop a novel repre-

sentation learning-based harmonization methodology. For

example, Figure 5 presents two source lead sheets selected

from our validation dataset. Both source samples are pop

song phrases which share similar (but not exactly the same)

chord progressions. However, the tonality and chromatic

colours of these two pieces are quite different.
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Figure 5: Source lead sheets.

Figure 6a is the result where we reconstruct chord A

conditioned on melody B, i.e., to harmonize melody B

with the harmonic style in A. Here the ªstyleº includes

tensions with seventh chords and a typical cadence pro-

gression of ii-V-I. We see these features properly fitted to

melody B in the correct tone. In other words, the gen-

eration of chord progression is controlled by the melody.

Figure 6b is the result where we reconstruct chord B con-

ditioned on melody A. For this case, the original seventh

chords in A are replaced by triads with a IV-V-I cadence.

These results suggest that our learned chord representation

can well discern relative progression and chromatic colour,

while our model is controllable in terms of tonality.
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Figure 6: Chord generation conditioned on exchanged

melody conditions. This process can also be viewed as

melody harmonization using exchanged harmonic styles.

4.5 Subjective Evaluation

In this section, we evaluate our model’s performance on

the task of harmonization. We first derive the following

three baseline models for an ablation study:

Non-DAT: Compared with our model, Non-DAT has

the same VAE framework but does not have a discrimi-

nator. It does not explicitly try to disentangle zx from c

using domain adversarial training (DAT);

Mask-CR: Mask-CR has the same architecture as our

model but uses a different condition corruption technique.

Specifically, it applies masking corruption (as in [26])

rather than pitch transposition;

Non-CR: Compared with our model, Non-CR uses the

conventional DAT objective without condition corruption.

It predicts c directly from zx with a GRU discriminator.

To compare our model with the baselines, we survey on

rating the harmonization quality of all models. Our survey

has 10 groups of harmonization results and each subject is

required to listen to 4. In each group, the subjects first lis-

ten to an original lead sheet A and a single melody B. Both

A and B are 8-bar long (16 seconds) and are randomly se-

lected from different musical pieces from our validation

set. As in Section 4.4, we harmonize melody B with the

harmonic style of A using our model and the baseline mod-

els. Subjects are then required to evaluate each version of

harmonization. The rating is based on a five-point scale

from 1 (very poor) to 5 (very high) over three metrics: har-

monicity, creativity, and musicality.

A total of 38 subjects with diverse music backgrounds

participated in our survey and we obtain 142 effective rat-

ings for each metric. As shown in Figure 7, the height of

the bars represents the mean value of the ratings. The error

bars represent the mean square errors (MSEs) computed by

within-subject ANOVA [34]. We report a significantly bet-

ter harmonization performance of our model than all three

baselines in each metric (p-value p < 0.05). Specifically,

we note that our model achieves such performance based

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

929



Harmonicity Creativity Musicality
1.0

1.5

2.0

2.5

3.0

3.5

4.0
Ra

tin
g

Ours 
Mask-CR 
Non-CR 
Non-DAT

Figure 7: Subjective evaluation on the harmonization per-

formance of our model and baseline models.

on a higher degree of representation disentanglement and

controllability. We evaluate these methodological aspects

with finer objective metrics in the following section.

4.6 Objective Evaluation

In this section, we objectively compare our model with the

baselines in terms of disentanglement and controllability.

The baseline models are as defined in Section 4.5.

4.6.1 Disentanglement

Our model disentangles chord representation zx from

melody condition c. In our case, the melody controls the

absolute pitch of the chord progression. A satisfied disen-

tanglement should derive a pitch-invariant representation.

Following [7,35], we develop a similarity criterion to eval-

uate the performance on disentanglement.

Let Ti(·) be a transposition operator with i semi-

tones. We calculate cosine similarity cos(zx, zTi(x)), i =
1, 2, · · · , 12 for our model and for each baseline. In Fig-

ure 8, a higher similarity means representation zx is less

affected by the absolute pitch and thus is better disentan-

gled. Our model outperforms all three baselines, includ-

ing Mask-CR. This finding corroborates that a proper cor-

ruption strategy is crucial to applying domain adversarial

training to concrete tasks. In our case, masking is not the

best way to corrupt, as it is less aware of the harmonization

context or dependency discussed in Section 3.3.

It is also worth noting that the similarity of zx reflects

human pitch perception. For each model, transposing a tri-

tone (T6(·)) derives the lowest similarity. Figure 8 shows

that zT6(x) is literally orthogonal to zx for Non-DAT and

Non-CR. Interestingly, tritone is the most dissonant among

all musical intervals in human perception. Such observa-

tion indicates that our model learns non-trivial music rules.

4.6.2 Controllability

A pitch-invariant representation helps us improve the

model controllability by enforcing the decoder to rely on

external conditions. In our case of harmonization, a good

control generates harmonic chord progression conditioned

on the lead melody. Aside from the subjective evaluation

in Section 4.5, we introduce harmony histogram to objec-

tively interpret the quality of control. Concretely, the har-

mony histogram is defined as the ratio of within-chord note

positions on which the lead melody lies. For tonal music,
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Figure 8: Object evaluation on representation similarity

(invariance) against pitch transposition. A higher value de-

notes better disentanglement.
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Figure 9: Objective evaluation on harmony histogram

upon melody swapping. A higher ratio in root, 3rd, and

5th notes indicates a higher degree of controllability.

there should be more root, 3rd, and 5th notes appearing in

the melody compared to 7th and higher, so that the music

is considered harmonic.

In our experiment, we arrange our validation data into

random pairs and reconstruct the chord progression with

swapped melody conditions. We compare the harmony

histogram of generated results from our model and all

baselines. Additionally, we compute the histogram for the

original (human-composed) data as ground truth. In Fig-

ure 9, we first observe that the histogram distribution has a

larger portion in the root, 3rd, and 5th notes for the original

data. For the baseline models, over 25% melody notes are

beyond all chord notes and tensions (shown by ªothersº in

Figure 9), which indicates excessive disharmony. Our pro-

posed model, on the other hand, keeps a more consistent

pattern with the ground truth.

5. CONCLUSION

In conclusion, we contribute a generalized form of domain

adversarial training for controllable music generation, es-

pecially when complex sequential conditions are involved.

The main novelty lies in the condition corruption objective,

which contextualizes the exact dependency between repre-

sentation zx and condition c, and therefore assists disen-

tanglement and control. Our method shows excellent per-

formance in chord representation learning, where we learn

a pitch-invariant representation conditioned on the melody

and develop a novel harmonization strategy. Our improve-

ment in disentanglement and controllability is elaborated

with extensive subjective and objective evaluation. With

the proposal of our methodology, we hope to bring a new

perspective not only to music generation but also to more

general scenarios of conditional representation learning.
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