
CADENCE DETECTION IN SYMBOLIC CLASSICAL MUSIC
USING GRAPH NEURAL NETWORKS

Emmanouil Karystinaios1 Gerhard Widmer1,2

1 Institute of Computational Perception, Johannes Kepler University Linz, Austria
2 LIT AI Lab, Linz Institute of Technology, Austria

firstname.lastname@jku.at

ABSTRACT

Cadences are complex structures that have been driving

music from the beginning of contrapuntal polyphony un-

til today. Detecting such structures is vital for numerous

MIR tasks such as musicological analysis, key detection,

or music segmentation. However, automatic cadence de-

tection remains challenging mainly because it involves a

combination of high-level musical elements like harmony,

voice leading, and rhythm. In this work, we present a graph

representation of symbolic scores as an intermediate means

to solve the cadence detection task. We approach cadence

detection as an imbalanced node classification problem us-

ing a Graph Convolutional Network. We obtain results that

are roughly on par with the state of the art, and we present

a model capable of making predictions at multiple levels

of granularity, from individual notes to beats, thanks to the

fine-grained, note-by-note representation. Moreover, our

experiments suggest that graph convolution can learn non-

local features that assist in cadence detection, freeing us

from the need of having to devise specialized features that

encode non-local context. We argue that this general ap-

proach to modeling musical scores and classification tasks

has a number of potential advantages, beyond the specific

recognition task presented here.

1. INTRODUCTION

Graph Neural Networks (GNNs) have recently seen stag-

gering successes in various fields. The MIR community

has also experienced the influence of GNNs, principally

in the field of recommender systems [1]. However, other

sub-branches of MIR could potentially enjoy the graph rep-

resentation and the benefits of graph deep learning.

Modeling musical scores in all their complexity has

been challenging, with many approaches resorting to pi-

ano rolls [2], note arrays [3], or custom descriptors [4]. In

this paper, we present a new representation of the score

as a homogeneous graph with note-wise features to model

aspects of the score. We use this representation to address

© E. Karystinaios, G. Widmer. Licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). Attribution:

E. Karystinaios, G. Widmer, ªCadence Detection in Symbolic Classical

Music using Graph Neural Networksº, in Proc. of the 23rd Int. Society

for Music Information Retrieval Conf., Bengaluru, India, 2022.

the cadence detection task using graph neural networks,

treating the task as a node classification problem. More

specifically, our contribution is two-fold: a simple graph

representation of scores extended with local features, and

a Graph Convolutional Network (GCN) model to tackle

heavily imbalanced classification tasks such as Cadence De-

tection. Score modeling itself has two aspects: (1) the con-

struction of the graph, i.e., what are the nodes, and which

connections do we define between them; and (2) the choice

of score features, and how these relate to their respective

graph nodes. The classification model is an adapted ver-

sion of GraphSMOTE [5], a Graph Convolutional Network

designed to deal with imbalanced classification problems,

which we modified to deal with larger graphs and apply

stochastic training. Henceforth, we call this model Stochas-

tic GraphSMOTE. We employ this model on top of our

score modeling with the intention of solving the Cadence

Detection task.

The cadence detection setting is binary, i.e., there is a

cadence (maybe of a specific type) or not. The current state

of the art [4] uses an Support Vector Machine (SVM) clas-

sifier on a set of custom-designed cadence-specific features,

based on three defined "cadence anchor points", and per-

forms score/feature modeling and cadence classification at

the level of beats. The model was tested on two annotated

datasets: 24 Bach fugues and 42 Haydn string quartet ex-

positions. Our new model proposed here will be shown to

achieve comparable overall results; however, we will argue

that it makes fewer task-related and musical assumptions,

resulting in more general applicability. In particular, our

empirical results suggest that by providing local features

and applying a Graph Neural Network with neighbor con-

volution, we can learn nonlocal aspects that help improve

prediction. This gives a more general approach for a variety

of tasks where features are provided at the level of notes,

but prediction may be note-wise, onset-wise, or beat-wise.

The rest of the paper is structured as follows. Section

2 discusses related work on cadence detection and music

score modeling. Section 3 describes the score model and

the graph construction from the score, section 4 introduces

the corpora, and section 5 presents the proposed learning

algorithm. Section 6 presents a series of three experiments

and also takes a qualitative look at some examples. Finally,

section 7 summarizes and concludes.

917



2. RELATED WORK

Graphs have emerged as a natural representation of mu-

sic since the development of Tonnetz by Euler. Since

then, there have been various proposals to use graph repre-

sentations for addressing music analysis and MIR tasks.

For instance (to name just two), [6] introduced rela-

tional Klumpenhouwer networks for music analysis, and [7]

used Tonnetz trajectories for composer classification. One

can distinguish between heterogeneous and homogeneous

graphs [8]. Heterogeneous graphs may have multiple types

of edges and nodes, while homogeneous graphs are simpler,

containing only a single edge and node type. Recently, the

creators of VirtuosoNet, a computational model for gen-

erating piano performances, used a heterogeneous graph

representation of the score and trained their system using

a Graph Neural Network [9]. However, in later publica-

tions, they reverted to a model without using graphs which

achieved better performance [10]. In the present paper, we

wish to show that a simple, homogeneous graph represen-

tation can form a natural and general basis for modeling a

non-trivial music analysis task.

Automatic cadence detection is a challenging task. Al-

though cadences are well established concepts, their defini-

tion or annotation in music can cause disagreements among

musicologists. Previous work on automatic cadence detec-

tion has been done by [11] on Bach fugues and by [12] for

a generalized classical music analysis system. A feature-

based approach using standard Machine Learning classi-

fiers is presented in [4] which represents the current state

of the art. Recently, Sears and Widmer [13] highlighted

the difficulty of detecting textbook voice leading schemata

that occur near cadences in written music. However, to our

knowledge, there exists no method employing deep learning

models to solve the task.

3. MODELING SCORES AS A GRAPH

We model a score as a graph with individual notes and

rests as nodes and simple temporal relations as edges. In

addition, each graph node is associated with a vector of

feature values that represent some basic properties of a note

and its immediate context. Formally, let G = (V,E) be a

graph, where V is the set of nodes and E ⊆ V × V the

set of edges and let A be the adjacency matrix of G. Each

note and each rest in a score are represented as a node in

notea noteb restk noted notee

notec notef

Figure 1. Example graph creation from a score following

the process described in the text. Eon is denoted in blue,

Econs in green, and Edur in red. Global attributes such as

time and key signatures are added as node features.

the graph. We create three types of undirected connections

between notes/rests: edges Eon between notes that occur

on the same onset; edges Econs between consecutive notes,

and edges Edur between a note of longer duration and notes

whose onsets occur during this time:

Eon = {(i, j) | on(ni) = on(nj)}

Econs = {(i, j) | on(ni) + dur(ni) = on(nj)}

Edur = {[(i, j) | on(ni) + dur(ni) > on(nj)]∧

[on(ni) < on(nj)]}

E = Eon ∪ Econs ∪ Edur

where ni is the ith note. on denotes the onset of a note,

dur the duration. All edges in E are undirected.

3.1 Feature Overview

We use three types of features to further describe a note: 1

general-purpose note-level features to describe a note and its

immediate rhythmic/melodic context; general graph topol-

ogy features to capture aspects of local connectivity; and

cadence-specific note features inspired by [4]. The third

feature category is the only one that is designed with the

specific classification target in mind; however, in contrast

to [4], we restrict these to only consider the immediate local

context of a note instead of using positional features relat-

ing to predefined past ªcadence anchor points". In this way,

we wish to demonstrate the generality of our representation

and learning approach, which will hopefully learn more

long-distance aspects automatically, as needed.

The first category, general note-wise features, is the

largest one. For each note in the score, we extract onset

time expressed in score-relative beats, duration in beats, and

MIDI pitch, using the partitura package [14]. Furthermore,

we translate global attributes such as time signature and

assign them to each note. Also using partitura, we extract a

set of generic note-wise features as defined in [15]. Finally,

we extract features summarizing intervallic information

at the time of onset of each note. These include interval

vectors [16] and binary features activated when interval-

lic content is identical to the interval set corresponding to

particular chord types, i.e., major, minor, diminished, etc.

Second, we add graph-aware features using the first

20 eigenvectors from the Laplacian of the adjacency ma-

trix [17].

The final category contains note-wise cadence-related

features similar to those in [4], such as voice leading infor-

mation and voicing. However, our features are calculated

at the note level only, considering the time of onset for

each note and its immediate neighbors, such as adjacent

past onsets or simultaneous onsets. In particular, we do not

use any information about events that occur on previous

beats. While these features are more restricted compared

to [4] they are also more general, since we make no assump-

tions on and reference to ªcadence anchor points" (e.g.,

1 Code and a complete specification of all features is available on
https://github.com/manoskary/cadet.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

918



the occurrence of the preceding subdominant and domi-

nant harmony), which in [4] are identified with specialized

heuristics. In total, we store 135 features per node.

4. PROBLEM SETTING & CORPORA

In this work, we are interested in cadences of the Baroque

and Classical periods. The main focus will be on detecting

Perfect Authentic Cadences (PAC); where our annotated

datasets permit, we will also consider root position Imper-

fect Authentic Cadences (rIAC) and Half Cadences (HC).

The manual annotations in these datasets mark a cadence

as occurring on the beat where the final I (i) arrives. Our

precise task thus is to predict, for every note of the score,

whether this note is contained in a cadence’s arrival beat.

To benchmark our method, we used two datasets also

used by Bigo et al. [4], and a third one annotated by

Allegraud and al. [18]. The first set contains the 24

fugues from Bach’s Well-tempered Clavier, Book I. The

cadence annotations were presented in [11]. The second

dataset contains 45 movement expositions from Haydn

string quartets; the cadence annotations were produced

by Sears and colleagues [19]. The last dataset contains

31 movements of Mozart string quartets with cadence an-

notations included. All the scores were retrieved from

http://kern.ccarh.org and were parsed in python

using the partitura package [14]. 2

Cadences occur with low frequency in music. In par-

ticular, for the corpora we cover in this paper, cadences of

all types combined account for less than 2% of the total

notes in the score. Our produced score graphs range from

approximately 25k nodes for the Bach fugues all the way

to 70k nodes for the Mozart string quartets with more than

750k edges. Table 1 gives detailed dataset statistics.

5. MODEL

5.1 Graph Convolutional Network

The authors of [4] underline the importance of non-fixed

positions for the cadence anchor points. We address this by

employing a graph convolutional network. Graph Convo-

lution Networks (GCNs) are based on the same principle

as CNNs, but in the context of graphs we encounter the

message passing concept, meaning convolution occurs only

among nodes connected by edges. This theoretically allows

local features to connect with distant features of their k-hop

neighbors. Therefore, graph representation can learn, using

local node information, higher lever information by sam-

pling information from neighbors. Figure 2 illustrates the

neighbor sampling concept.

For our model, we propose Stochastic GraphSMOTE, a

Graph Convolutional Network with a built-in graph Auto-

Encoder and Synthetic Minority Over-sampling for imbal-

anced node classification. The model consists of 4 parts,

the encoder, a SMOTE layer in the encoder’s latent space,

the decoder, and the classifier. The structure of the model

2 For reproducibility, we provide the generated graphs that were used
for training on https://github.com/manoskary/tonnetzcad

Figure 2. Multi-hop Neighborhood sampling. vj is 3-hop

neighbor of vi. Color cues mark the k-hop neighborhoods

occurring within the ellipses. The arrows demonstrate a

random walk starting from vi and ending at vj .

follows GraphSMOTE [5] but with some major differences,

mainly to adapt for stochastic training, which is needed

because of the large size of our score graphs.

The encoder applied to a node i is defined as a standard

GraphSAGE [20] stack given by:

h
(l+1)
N (i) = mean

(

{W
(l+1)
pool · hl

j , ∀j ∈ N (i)}
)

h
(l+1)
i = σ

(

W
(l+1)
enc · concat(hl

i,h
l+1
N (i))

)

h
(l+1)
i = norm(hl

i)

where h
(l)
i is the hidden representation of node i on layer

l, σ is an activation function, norm is a normalization func-

tion, W are learnable weights, and N (i) = {j | (i, j) ∈
E} are the neighbors of node i. Let B ⊆ V a subset of

nodes denoting a batch sample. Then, given L the total

number of hidden layers, H
(enc)
B = {h

(L+1)
u | u ∈ B}.

5.2 Dealing with Extreme Class Imbalance: Stochastic

GraphSMOTE

Since cadences are very sparse, we need to introduce a

balancing technique in order to avoid gradient convergence

that will result in predicting only the majority class, i.e.,

absence of cadence. To counter this effect, we introduce

a SMOTE layer that is applied in the latent space of the

encoder. SMOTE generates synthetic samples with the

same label as the minority class (see [21] for details). The

main novelty of our model is that the SMOTE is performed

for each batch separately.

In each batch, we count the occurrence, µi, for each

of the classes i ∈ I . In the binary setting, let µM be the

number of samples with the same label as the majority class

and µm be the number of samples with the same labels

as the minority class. By generating (µM − µm) samples

with the same label as the minority class, we force a 1 : 1
binary class distribution. To generate these samples, in

each batch, we randomly select a sample instance of the

minority class as an anchor point and gather the k nearest

neighbor samples of the same class within the batch. Finally,

µ samples are generated as random linear interpolations

between a randomly selected neighbor out of the k, and the

selected anchor point in the euclidean space. Performing

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

919



Dataset Pieces Nodes Edges PAC rIAC HC

Bach Fugues 24 24,567 229,107 237 78 15
Haydn String Quartets 45 38,661 441,491 434 24 340
Mozart String Quartets 31 68,190 762,796 1,089 - 1,930

Table 1. Cadence nodes constitute less than 2% of all nodes.

SMOTE in the latent space assumes that a more appropriate

representation for the generation of the synthetic minority

samples is learned.

If H
(enc)
B is the hidden representation of the batch sam-

pled nodes after the encoder layer, then H
(smote)
B is the

SMOTE upsampling algorithm applied on H
(enc)
B . Our

Decoder layer is responsible for generating edges within

the original nodes of the graph and the synthetic ones, cre-

ated by SMOTE. The decoder output is described by the

following equation:

A
(dec)
B = σ

(

H
(smote)
B ·W(dec) · transpose(H

(smote)
B )

)

A
(thr)
B = hardshrink

(

A
(dec)
B , τ

)

where W (dec) are the decoder’s learnable weights, σ is

a sigmoid activation function, and hardshrink is the hard

shrinkage function with threshold τ . A
(dec)
B is the generated

adjacency from the decoder and A
(thr)
B is a thresholded

adjacency by a factor τ .

We define a regularization loss that aims at constraining

the generated adjacency close to the original, defined by:

L
(dec)
B = BCE

(

A
(dec)
B ,AB

)

where BCE is the binary cross entropy loss, A
(dec)
B is the

generated adjacency of the decoder for batch sample B and

AB is the adjacency matrix for batch sample B. Since we

learn an edge generator which is good at reconstructing the

adjacency matrix using the encoder’s latent representations,

it should also give adequate edge predictions for synthetic

nodes.

The GNN classifier is composed of a GraphSAGE

layer [20] with a linear layer on top. By adding a graph

convolution layer such as GraphSAGE in the classifier, we

can benefit from learning information from the generated

adjacency and the neighbors of nodes. The GraphSAGE

layer of the classifier is slightly different from the encoder

because it performs directly on the generated thresholded

adjacency of each batch sample:

h
(clf)
N (i) = mean

(

W
(pool) ·A

(thr)
B [i, :] ·H

(enc)
B

)

h
(clf)
i = norm

(

σ
(

W
(clf) · concat

(

h
(enc)
i ,h

(clf)
N (i)

)))

h
(clf)
i = softmax(W(proj) · h

(clf)
i )

where h
(clf)
i are the predicted class probabilities of node

i, W are learnable weights, A
(thr)
B is the generated thresh-

olded adjacency from the decoder, H
(enc)
B are the batch

encodings of the encoder and h
(enc)
i is the encoder’s output

for node i. During training, we use H
(smote)
B and h

(smote)
i

respectively instead of H
(enc)
B and h

(enc)
i . We define the

total loss of our model for batch samples B:

L
(tot)
B = L

(CE)
B + γ ∗ L

(dec)
B

where LCE signifies the cross entropy loss and γ is a hyper

parameter.

Our model is trained stochastically, meaning that to cre-

ate each batch a subset B of nodes are sampled. From these

sampled nodes, given a pre-defined depth k, we retrieve

the immediate neighbors of every v ∈ B up to their k-hop

neighbors in the graph G. We use neighbor sampling to

reduce the cost of retrieving all up to k-hop neighbors of v

by defining a maximum number ϕl of neighbors per depth

layer l.

6. EXPERIMENTS

We conduct three main experiments. The first compares our

model to the state of the art results in [4], using the same

data and train/test setup. The second experiment focuses on

multi-class learning of the particular type of cadence using

different sets of features, in order to investigate how the

model generalizes to a more complex setting and inspect

the relevance of different feature sets. The third experiment

investigates how neighbor convolution contributes to the

model’s performance. 3

We fix our model with a hidden dimension of 256, with

L = 2 hidden layers with ϕ1 = 10 and ϕ2 = 25 sampled

neighbors for hidden layers 1 and 2 of the encoder, respec-

tively, and one hidden layer of the same dimension for the

classifier. The learning rate is set at 0.007, the weight-decay

at 0.007, with a batch size of 1024, k = 3 for SMOTE,

the decoder regularization loss multiplier γ = 0.5, and

adjacency threshold value τ = 0.5.

6.1 Quantitative Results

Table 2 summarizes the results of the first experiment, com-

paring our model’s performance to the state of the art. 4 The

reference model [4] can only classify at the beat level; our

representation and classification model are more flexible in

this regard, as they have access to, and describe, individual

notes. In particular, our model can provide predictions at

three different levels, note-wise, onset-wise and beat-wise

predictions (the latter two simply by aggregation). In Ta-

ble 2 we present the results of these predictions at all levels,

3 All results, experiments, and the trained models are available on
https://wandb.ai/melkisedeath/CadenceDetection

4 In accordance with [4], we ignore the HC in Bach and rIAC in Haydn,
because of their low numbers.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

920



Dataset Model F1 Note F1 Onset F1 Beat Prec. Beat Recall Beat

Bigo et al. model - - 0.80 0.89 0.72

Bach Fugues (PAC) SGSMOTE 0.85 0.75 0.73 0.70 0.77

(12 fugues) Pretrained SGSMOTE 0.90 0.83 0.80 0.74 0.89

Bigo et al. model - - 0.68 0.71 0.65

Bach Fugues (rIAC) SGSMOTE 0.87 0.75 0.73 0.75 0.72

(12 fugues) Pretrained SGSMOTE 0.87 0.73 0.71 0.62 0.82

Bigo et al. model - - 0.69 0.60 0.82

Haydn String Quartets (PAC) SGSMOTE 0.77 0.56 0.59 0.47 0.78

(21 pieces) Pretrained SGSMOTE 0.81 0.63 0.64 0.54 0.78

Bigo et al. model - - 0.29 0.19 0.56

Haydn String Quartets (HC) SGSMOTE 0.65 0.32 0.30 0.33 0.27

(21 pieces) Pretrained SGSMOTE 0.69 0.44 0.41 0.41 0.41

Table 2. Results using half of the dataset for training, half for testing. Bach: fugues no.1-12 were used for training, no.13-24

for testing; Haydn: random 21:21 split. The pretrained network was trained on the other dataset, i.e. Pretrained SGSMOTE

for Bach Fugues was pre-trained on string quartets, etc. Classification is binary, the presented F1 scores are for the positive

class, i.e., the cadence (PAC: Perfect Authentic Cadence; rIAC: root position Imperfect AC; HC: Half Cadence).

Figure 3. Haydn’s String Quartet 29. Op.54 No.1 Mvt. II, mm. 33-45. Showing the output of the Stochastic GraphSMOTE

Network for PAC prediction. True negatives are marked with red, true positives with green, false positives with blue. A

partial analysis shows the chords towards the end of cadences and highlights a modulating sequence where every sequence

ends with a cadential pattern, which counts as false positive predictions by the network.

in terms of F1 score. Only beat-wise scores are given for

the reference model (taken from [4]). The last two columns

of table 2 give the recall and precision for the beat-wise

prediction. All metrics are presented for the positive, i.e.

minority/cadence, class.

Our model matches or slightly surpasses the state of the

art in rIAC detection in Bach fugues and on HCs in Haydn

string quartets but does not reach the reference model’s

F1 results in PAC detection. We additionally present a

pre-trained version of Stochastic GraphSMOTE, where the

network was first trained on additional data and fine-tuned

for the task. Specifically, the network for PAC prediction in

Bach was pre-trained on the string quartets and vice versa.

Pre-training, and thus the need for additional data, is the

price we pay for the generality of the graph representation

and the consequent size (number of parameters) of the deep

network. Pre-training helps to (markedly) improve the re-

sults on HC, catch up with the reference on PAC in Bach,

and narrow the gap on PAC in Haydn.

Generally, our results agree with [4] in implying that half

cadences (HC) seem significantly harder to identify than

authentic cadences, both perfect and imperfect. Another,

more specific, observation concerns different ways in which

the compared models achieve their overall F1 scores. In the

PAC detection tasks, in particular, we observe comparable

or higher recall of our model compared to the reference,

but lower precision. This observation motivated us to check

some of our model’s false positive predictions; Section 6.2

below will show several instructive examples of ‘almost

correct’ identifications.

The second experiment we conducted (Table 3) focuses

on comparing the relevance of feature groups. For compact-

ness we present here a multi-class classification scenario

where we account not only for the existence of a cadence

but also for the type of cadence present; that is, we have

tree-class problems: no cadence, PAC, or rIAC (Bach) / HC

(Haydn, Mozart). We compare two configurations: using

all available features (as in the first experiment, feature set

all in the table), or only feature sets 1 and 2, excluding the

cadence-specific features (category 3 in Section 3.1; marked

general in the table). Given this 3-class setting, we chose

to report the macro averaged F1 score over all three classes.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

921



Dataset Features F1 Note F1 Beat

Bach Fugues general 0.602 0.667

(PAC & rIAC) all 0.653 0.702

Haydn String Quart. general 0.542 0.610

(PAC & HC) all 0.648 0.663

Mozart String Quart. general 0.584 0.569

(PAC & HC) all 0.588 0.606

Table 3. Three-class cadence classification with two dif-

ferent feature sets. Results were obtained by 5 fold cross

validation (70% of pieces for training, 10% validation, 20%

testing); no pre-training. Feature set all contains all features

from Section 3.1; general excludes Category 3 cadence-

specific engineered features.

(Macro averaging was chosen to counter the overwhelming

effect of the majority class no cadence). The results (see

Table 3) support the relevance of carefully devised cadence-

related features à la [4]. However, also the general-purpose

category 1 and 2 features alone support non-trivial cadence

recognition and discrimination performance, which implies

that the relational graph representation in combination with

a convolutional approach manages to enrich highly local

features with relevant non-local score context.

To investigate this latter aspect in more detail, we run a

third experiment, to look at the effect of neighbor convolu-

tion depth on the obtainable classification score, again at

three prediction granularity levels (note, onset, beat). Con-

volution depth refers to the number l of hidden layers of the

encoder and the subsequent neighbor sampling up to l-hop

neighbors. Our results (see Table 4) suggest that neighbor

convolution clearly contributes to learning non-local fea-

tures. Best results are achieved when using a convolution

depth of 2. Increasing the receptive field beyond that level,

we observed some instabilities emerging in the learning

model, which could be attributed to the common vanishing

gradient problem in deep GCNs [22].

Depth F1 Note F1 Onset F1 Beat

None 0.833 0.671 0.667

1-hop 0.854 0.707 0.701

2-hop 0.869 0.737 0.732

3-hop 0.836 0.706 0.659

Table 4. Effect of neighbor convolution depth on PAC pre-

diction in Bach fugues. The F1 Note/Onset/Beat scores

presented are binary, i.e., for the PAC class. Depth refers to

neighbor convolution depth. None means no graph convolu-

tion.

6.2 A Qualitative Look

Motivated by the fact that our model, while higher on recall,

seems to be lower on precision than the model in [4], we

take a closer look at some of the false positives in individual

examples. Our findings suggest that many false positive

predictions resemble cadences, in terms of tonal structure

or implications, and could be considered and annotated as

Figure 4. Predictions of Stochastic GraphSMOTE for fugue

No.19, J.S.Bach, Well-tempered Clavier.

such, but lack some main components.

Figure 4 shows an example. The cadence prediction by

our model on the downbeat of bar 23 is a false positive,

according to the ground truth annotation. However, one

could argue that the passage clearly has a cadence-like role,

marking the end of the 2nd fugal episode and the return to

the original tonality of A major [23].

Another example is the passage discussed in Fig.4 of [4],

where a pattern occurs that has all the technical ingredi-

ents of a PAC, but was not annotated as such for (debat-

able) higher-level musicological considerations. Again, our

model’s PAC prediction there counts as a false positive.

As a final example, consider mm. 33-45 of Haydn’s

Op.54 No.1, 2nd mvt (Figure 3). We observe two false

positive beat-wise predictions (8 if we count note-wise) in

bars 39 and 44, respectively, following a true PAC on the

beginning of bar 34. A harmonic analysis of these bars indi-

cates a proper PAC preparation with text-book voice leading

on the cadence arrival point in every occasion. These two

false positive PACs form part of a modulating melodic and

harmonic sequence; whether to classify them as cadences

is a matter of higher-level musicological considerations.

We cite these few qualitative examples in an attempt

to show that our prediction model can identify many more

cadential patterns than the raw experimental figures suggest,

but by design cannot consider high-level musical considera-

tions such as, e.g., whether PAC-like patterns that occur in

sequence should count as PACs or not.

7. CONCLUSION

We have presented a graph approach to effectively target

the cadence detection task on symbolic classical scores.

We demonstrated that our Graph Convolutional Network,

Stochastic GraphSMOTE, can learn using only local note

features, without the need for any musical assumptions

about cadence anchor points. Furthermore, our network can

produce fine-grained predictions at the level of individual

notes.

Future work will address the performance of the model

on different tasks, using the same graph representation.

We hope to be able to show that this simple but general

and natural representation of scores in terms of graphs can

support a broad variety of symbolic music analysis and

classification tasks.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

922



8. ACKNOWLEDGEMENTS

This work is supported by the European Research Council

(ERC) under the EU’s Horizon 2020 research & innovation

programme, grant agreement No. 101019375 (ªWhither

Music?º), and the Federal State of Upper Austria (LIT AI

Lab). The authors would like to thank Dr. Hamid Eghbal-

zadeh for helpful discussions on Graph Neural Networks.

9. REFERENCES

[1] F. Korzeniowski, S. Oramas, and F. Gouyon, ªArtist

similarity with graph neural networks,º in Proceedings

of the 22nd International Society for Music Information

Retrieval Conference, 2021.

[2] C.-Z. A. Huang, C. Hawthorne, A. Roberts, M. Din-

culescu, J. Wexler, L. Hong, and J. Howcroft, ªThe

bach doodle: Approachable music composition with

machine learning at scale,º in Proceedings of the 18th

International Society for Music Information Retrieval

Conference, 2019.

[3] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.-

Z. A. Huang, S. Dieleman, E. Elsen, J. Engel, and

D. Eck, ªEnabling factorized piano music modeling and

generation with the maestro dataset,º in Proceedings of

7th International Conference on Learning Representa-

tions, 2019.

[4] L. Bigo, L. Feisthauer, M. Giraud, and F. Levé, ªRel-

evance of musical features for cadence detection,º in

Proceedings of the 19th International Society for Music

Information Retrieval Conference (ISMIR 2018), 2018.

[5] T. Zhao, X. Zhang, and S. Wang, ªGraphsmote: Imbal-

anced node classification on graphs with graph neural

networks,º in Proceedings of the 14th ACM Interna-

tional Conference on Web Search and Data Mining,

2021.

[6] A. Popoff, M. Andreatta, and A. Ehresmann, ªRela-

tional poly-klumpenhouwer networks for transforma-

tional and voice-leading analysis,º Journal of Mathe-

matics and Music, vol. 12, no. 1, 2018.

[7] E. Karystinaios, C. Guichaoua, M. Andreatta, L. Bigo,

and I. Bloch, ªMusic genre descriptor for classifica-

tion based on tonnetz trajectories,º in Proceedings of

Journées Informatiques Musicales, 2021.

[8] C. Shi, Y. Li, J. Zhang, Y. Sun, and S. Y. Philip, ªA

survey of heterogeneous information network analysis,º

IEEE Transactions on Knowledge and Data Engineer-

ing, vol. 29, no. 1, pp. 17±37, 2016.

[9] D. Jeong, T. Kwon, Y. Kim, and J. Nam, ªGraph neural

network for music score data and modeling expressive

piano performance,º in International Conference on

Machine Learning, 2019.

[10] D. Jeong, T. Kwon, Y. Kim, K. Lee, and J. Nam, ªVirtu-

osonet: A hierarchical rnn-based system for modeling

expressive piano performance.º in Proceedings of the

20th International Society of Music Information Re-

trieval Conference, 2019.

[11] M. Giraud, R. Groult, E. Leguy, and F. Levé, ªCom-

putational fugue analysis,º Computer Music Journal,

vol. 39, no. 2, 2015.

[12] P. R. Illescas, D. Rizo, and J. M. I. Quereda, ªHarmonic,

melodic, and functional automatic analysis,º in Proceed-

ings of the International Computer Music Conference,

2007.

[13] D. R. Sears and G. Widmer, ªBeneath (or beyond) the

surface: Discovering voice-leading patterns with skip-

grams,º Journal of Mathematics and Music, vol. 15,

no. 3, 2021.

[14] C. E. C. Chacón, P. Silvan, E. Karystinaios, F. Foscarin,

M. Grachten, and G. Widmer, ªPartitura: A python

package for symbolic music processing,º in Proceed-

ings of the Music Encoding Conference, 2022.

[15] C. E. C. Chacón, ªComputational modeling of expres-

sive music performance with linear and non-linear basis

function models,º Ph.D. dissertation, Johannes Kepler

University, Austria, 2018.

[16] M. Schuijer, Analyzing atonal music: Pitch-class set

theory and its contexts. University Rochester Press,

2008.

[17] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and

X. Bresson, ªBenchmarking graph neural networks,º

arXiv preprint arXiv:2003.00982, 2020.

[18] P. Allegraud, L. Bigo, L. Feisthauer, M. Giraud,

R. Groult, E. Leguy, and F. Levé, ªLearning sonata

form structure on mozart’s string quartets,º Transac-

tions of the International Society for Music Information

Retrieval (TISMIR), vol. 2, no. 1, 2019.

[19] D. R. Sears, M. T. Pearce, W. E. Caplin, and

S. McAdams, ªSimulating melodic and harmonic expec-

tations for tonal cadences using probabilistic models,º

Journal of New Music Research, vol. 47, no. 1, pp. 29±

52, 2018.

[20] W. Hamilton, Z. Ying, and J. Leskovec, ªInductive rep-

resentation learning on large graphs,º Advances in neu-

ral information processing systems, vol. 30, 2017.

[21] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.

Kegelmeyer, ªSmote: synthetic minority over-sampling

technique,º Journal of artificial intelligence research,

vol. 16, pp. 321±357, 2002.

[22] G. Li, M. Muller, A. Thabet, and B. Ghanem, ªDeep-

gcns: Can gcns go as deep as cnns?º in Proceedings

of the IEEE/CVF international conference on computer

vision, 2019.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

923



[23] ªBach: Prelude and fugue no.19 in a

major, bwv 864 analysis,º May 2018.

[Online]. Available: https://tonic-chord.com/

bach-prelude-and-fugue-no-19-in-a-major-bwv-864-analysis/

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

924


