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ABSTRACT

Automated computational analysis schemes for Western

classical music analysis based on form and hierarchical

structure have not received much attention in the litera-

ture so far. One reason, of course, is the paucity of la-

beled datasets Ð which, if available, could be used to train

machine learning approaches. Dataset curation cannot be

crowdsourced; one needs trained musicians to devote siz-

able effort to carry out such annotations. Further, such an

analysis is not simple for beginners; obtaining labeled data

that can capture the nuances of a musician’s reasoning ac-

quired over years of practice is fraught with challenges.

To this end, we provide a system for computational analy-

sis of classical music, both for machine learning and mu-

sic researchers. First, we introduce a labeled dataset con-

taining 200 classical music pieces annotated by form and

phrases. Then, by leveraging this dataset, we show that

deep learning-based methods can be used to learn Form

Classification as well as Phrase Analysis and Classifica-

tion, for which few (if any) results have been reported yet.

Taken together, we provide the community with a unique

dataset as well as a toolkit needed to analyze classical mu-

sic structure, which can be used or extended to drive appli-

cations in both commercial and educational settings.

1. INTRODUCTION

Musical form analysis is the process of analyzing classi-

cal music pieces based on structure, themes, harmonies,

and the relationship between them. This includes the large

form (i.e., the musical ªtemplateº defining the piece’s over-

all structure) and the hierarchical breakdown of themes,

phrases, and often other substructures, including cadences.

It has applications in various areas of music, such as music

education, music analysis, forensic musicology, and so on,

which we will discuss shortly. Typically, this task is car-

ried out by music theorists benefiting from formalizations

that have evolved over the centuries. However, form analy-

sis is considered challenging, both for human analysts and

signal processing algorithms. For humans, it takes years of
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training to learn to understand (not just read) classical mu-

sic well enough to classify its structure. On the other hand,

developing an ML-based approach is hindered by the diffi-

culty of formulating this in a way that can be successfully

learned as a computational task. Indeed, the curation of la-

beled datasets, a central ingredient in the success of super-

vised machine learning models, is prohibitive in terms of

both time and money. First, it would require highly skilled

musicians as annotators. Second, the dataset size is open-

ended. With little guidance from the literature, it is also

not obvious what sample sizes may be meaningful to get a

basic model operational. Thus, budgeting is risky, even for

a feasibility study, with assured cost overruns.

Motivation: The above challenges notwithstanding, let us

consider the potential value for some key applications, if

such a resource were publicly available.

Audio Thumbnail and Fingerprint Generation: Such a sys-

tem can enable audio thumbnail/fingerprint generation for

classical music where the user can quickly grasp the key

sections without listening to the entire piece. This can be

beneficial in marketing a piece of music as a product in a

streaming service or web store (iTunes, Amazon Music) to

draw in revenue for content creators [1±3].

Copyright Detection and Forensic Musicology: Such a sys-

tem can also facilitate Forensic Musicology, which com-

pares numerous pieces for similar or exact replications of

musical phrases, motives, or other structures [1, 4].

Data Mining for Anthologies: Such a system can drive

the production of musical form/analysis-based antholo-

gies, alongside other fields of musicology where signifi-

cant computational research is still in its early stages [5±7].

Music Education and Pedagogy: So far, music education

and evaluation are purely human-guided. The availabil-

ity of such a tool can facilitate the development of music

practice and analysis software, such as dividing a piece by

themes for rehearsal, assignment generation, or a grading

system for human-analyzed scores. During a transitional

time where many educational formats are moving to a hy-

brid setup, these developments will be a net win [8, 9].

Other potential applications also include Audio classifica-

tion and Generalized Audio Structure Analysis.

Limitations of existing methods: In spite of the clearly

defined need, existing structural analysis methods have

been investigated almost exclusively in the context of pop-

ular music and for such tasks as segmentation of a piece

into intro, verse, chorus, bridge, and outro [10]. These

ideas cannot be directly applied to classical music: the for-
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Figure 1. Example of phrase labeling from analysis of Bourrée
from J.S. Bach’s BWV 996 on a human-annotated score, where
the relation between phrases and their respective part can be seen
hierarchically. On an analyzed score, it is standard that only the
first instance of a structure is labeled, although it may continue
far beyond the initial instance.

mal structure in classical music is much more complicated

and includes multiple forms which do not appear in pop-

ular music. Further, beyond form classification, one can

also classify a musical piece into phrases, which typically

correspond to smaller units within the piece. While classi-

cal music form analysis shares some similarities to poetic

form at the part/section level(s) (A′ or stanza), which can

be likened to popular music form (i.e., Verse-Chorus), the

phrase-level analysis is drastically different due to the hi-

erarchy of musical structures involved and a vast number

of possible labels. In addition, classical music forms ap-

ply to the majority of pieces of classical music (given the

large variety of large form structures). This means the form

structure should be applicable to the audio (or the sheet

music) by itself without the need for the segmentation of

lyrical structure since a large majority of classical pieces

are entirely instrumental or only partially lyrical.

Limitations of available datasets: The closest re-

lated dataset available, the Structural Analysis of Large

Amounts of Music Information database, or SALAMI

[11], lacks standardized conventions for the purpose of

allowing for genre flexibility. It uses live recordings for

time-relational analysis rather than basing timestamps on

the sheet music or the score. This is not very useful for

classical music since different conductors and performers

often take drastically different tempi (which may be ad-

justable, but we seek the best overall system performance

for this benchmark) and may omit or add repeats, therefore

the audio cannot be compared to the sheet music directly.

Hence, the use of this dataset for our goals is unfeasible.

Our Contributions: This paper provides a starting point

for automated analysis of classical music forms and

phrases. First, we introduce a new dataset, the Standard-

ized Musical Form and Structure Analysis (SMFSA)

Database, 1 consisting of 200 manually classified MIDIs,

which use common analytical conventions and have cate-

gorical divisions by large musical forms. To demonstrate

the use of the dataset, we also develop a deep learning-

based framework to perform full form analysis, including

1 The database, research [12], and all code for this project can be found
in [13]. The dataset was compiled from open sources, including [14±18].

form classification, segmentation, and part/phrase labeling.

Together, this provides a comprehensive system for auto-

mated analysis of classical music, which is not otherwise

available. This work provides the starting point for fur-

ther development of computational techniques devoted to

classical music as well as stimulating the development of

numerous end-user applications.

2. RELATED WORK

While there are methods to perform genre classification,

musical segmentation, and single-label segment classifi-

cation in popular music, none have focused on the an-

alytical process used by classical musicians specifically.

These systems typically focus on popular music tasks in-

cluding Verse-Chorus classification/segmentation [19] and

genre classification [20], as well as segmenting a piece by

phrases [21] Ð albeit without classifying. Next, we dis-

cuss a few related methods in chronological order.

Hörnel and Menzel [22] presented a melody and har-

mony generator using Feedforward Neural Networks to

analyze musical and structural data in order to learn the

characteristics of the writing style of a composer. How-

ever, their models were unable to learn higher-level musi-

cal structures occurring at multiple time scales simultane-

ously or recognize the melodic versus harmonic context

of notes and intervals. Ponde de León and Iñesta [23]

provided a framework for automatic musical style recog-

nition of digital scores (MIDI) through the classification

of rhythmic, harmonic, and melodic descriptors using k-

Nearest Neighbors (k-NN), Bayesian classification, and

Self-Organizing Maps (SOMs). Ullrich et. al. [24] dis-

cussed the importance of boundary recognition in struc-

tural music analysis using Convolutional Neural Networks

(CNNs). Their model was trained on annotated Mel-scaled

log-magnitude Spectrograms (MLS) [24] (from SALAMI)

to peak-pick the onset boundaries of a given piece. Grill

and Schlüter [25] further improved this model by assign-

ing labels to digital audio using the MLS, Self-Similarity

Lag Matrices (SSLMs), and human-annotated data (again

from SALAMI). O’Brien [26] proposed an extension to the

CNN architecture in [24] using the matrices derived from

the Non-negative Matrix Factorization of a piece of mu-

sic and identifying boundaries using segment association.

O’Brien also noted that two major issues with their model

were the lack of model memory in the CNN (i.e., the lack

of LSTM or Recurrent cells) and the architecture had to

be expanded to allow for a larger dataset [26]. De Be-

rardinis et. al. [27] discussed the challenges of automatic

musical structure detection and the issue of most current

algorithms only being able to produce flat segmentations

that cannot be applied to reveal the hierarchical structure

of the piece. As such, they presented a new system for

this task using multi-resolution community detection and

graph theory to perform boundary detection and structural

grouping, yielding a structural hierarchy. They noted that

the method might also be used for structure visualization

and finer-level musical structure analysis using tree repre-

sentations to reflect additional structural relationships, and

that CNNs will continue to lack improvement without re-

current layers or unsupervised methods.
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3. METHODS

Next, we describe the key components of our model, start-

ing with the dataset collection, the network architecture

of the form analyzer, as well as a peak-picking scheme

needed as input for the phrase analyzer.

3.1 Data Collection

We constructed a dataset Ð the SMFSA Database Ð con-

sisting of 200 pieces of classical music in MIDI format 2

(for ease of score conversion, error correction, and sig-

nal processing). For each piece, we have an accompany-

ing text document containing the form classification and

part/phrase labels with their respective timestamps (ob-

tained from the sheet music analysis performed by a human

annotator), 3 written in a format similar to the SALAMI

dataset. To represent the audio signals, the Mel Spectro-

gram was first generated by resampling the audio with a

sample rate of 44.1 kHz, then computing the Short-Time

Fourier Transform (STFT) over the entire signal with a

hop length of 6144 (0.139 seconds per frame, see [28])

and 8192 samples per frame (a window size of 0.209 sec-

onds per frame multiplied by the sampling rate). Further,

to extract meaningful representations from the raw data,

we obtain the 2D Self-Similarity Matrix (SSM) [25] of the

Mel Spectrogram, constructed from various attributes and

similarity metrics as well as the duration of the piece to cre-

ate the set of features. The final tabulated dataset contains

the mean and variance arrays for the following features:

Mel Spectrogram SSM, Mel-Frequency Cepstral Coeffi-

cient (MFCC) Spectrogram SSLMs (Euclidean and Co-

sine distances), Chromagram SSLMs (Euclidean and Co-

sine distances) [24], as well as 15 other features. Since

only 200 data samples may not be enough for many train-

ing tasks, we extend our dataset to 1200 by augmenting

the dataset using speed shifting, pitch shifting, time shift-

ing, and noise injection [12, pp. 41-46]. The features were

extracted similarly for the augmented dataset as well.

3.2 Form Analyzer Architecture

Our goal is to identify a piece of classical music as one

of the following 12 forms: Arch, Bar, Binary, Minuet

& Trio, Ritornello, Rondo, Sonata (-allegro), Ternary,

Theme & Variation, Through Composed, Unary/Strophic,

and Unique. Note that not all of the forms are equally

distributed in the dataset (reflecting real-world musical

pieces) and this leads to a class-imbalanced multi-class

classification problem (see Supplement Figure 3 for the

relative proportion of each form in the dataset). To address

this problem, we adopt a framework that implements an en-

semble of decision trees using a neural network, which has

been shown to work well for class-imbalanced multi-class

datasets [29, 30]. We note that other alternatives such as

2 While VSTs may differ across sequencing software, the Form Ana-
lyzer and Peak-Picking algorithm are intended to be instrument-neutral
methods. As such, the timbral difference is negligible Ð including run-
ning the algorithm on different rendered sequences of the same pieces;
we only seek to discover how the pitches are distributed structurally and
temporally.

3 We simply follow the human annotations from the original analyzed
sheet music and copy these exactly at the time of their occurrence (in
seconds, i.e., Part B with phrase d occurring at 15.27 seconds would be
written as "15.270 B, d"), of course omitting the implicit labels as well.

focal loss [31] or imposing fairness in terms of model per-

formance across each pair of classes can also be used [32].

In our implementation, we use the TreeGrad approach

by [33], which implements Gradient Boosted Decision

Trees as Neural Networks and has been shown to have a

small computational footprint. TreeGrad is an extension

of Deep Neural Decision Forests (DNDF), which treats the

node split structure of a decision tree as a neural network

architecture search problem. Similar to DNDF, they have

three layers: a decision node layer, a routing layer, and a

prediction layer [34]. The decision layer consists of de-

cision stumps, each of which computes the probability of

routing the data node x to (left/positive or right/negative)

child nodes for a node n and is formulated as (shown here

only for the positive route) d+n (x; θ+) = σ(θT
+x+b), where

θ+ are the learnable parameters and σ is a temperature-

controlled softmax function. These routing probabilities

(both positive and negative) of all nodes are then concate-

nated to yield D(x; θ̃), which is the output of the first layer.

The parameter vector in θ̃ forms the linear decision bound-

ary that results in how each node is routed. This is followed

by the routing layer, which computes the probability that

each node uses to route a data point to a particular leaf.

For this step, we use a binary preconstructed matrix Q of

size l × 2n, where l is the number of leaves, and n is the

number of internal nodes. This allows for enumerating the

relationship between nodes and leaves. This layer com-

putes µl which indicates the probability of reaching a leaf

l and can be written as

µl(x|θ) =
∏n

j=1
(D(x; θ̃j)⊙Ql + (1−Ql)) (1)

= exp(QT
l log(D(x; θ̃))

where Ql is the l-th row of Q and ⊙ is the Hadamard Prod-

uct [33]. We then pass it through a softmax activation func-

tion to produce the output of the second layer. The final

output layer is the leaf layer which is a fully connected

layer. The activation function used here is exp(x). See

Figure 2 for an illustration of the network architecture.

Training Data

Form Predic�on

Average
Input 

Layer

Rou�ng 

Layer

Node 

Layer

Predic�on 

Layer

TreeGrad Forest

Figure 2. Architecture diagram of Form Analyzer

3.3 Phrase Analyzer Architecture

Recall that phrase analysis is a significantly more challeng-

ing task than form. To be able to learn phrase analysis sim-

ilar to a musician, the model must be able to differentiate

between musical events that can be labeled as having only

the part label (CODA, Episode 1, Middle Entry, etc.), or

only the phrase label (a, a′, b, transition, melodic (varia-

tion), etc.) or both part and phrase labels. This presents

several problems ± the first deals with making the subtle

distinction of when to assign both labels or just one, as

well as choosing a suitable metric that captures the simi-

larities correctly. Moreover, labels for varied phrases are

also extremely difficult to grade, as a phrase (or part) may

be repeated with a different harmonic goal (phrase a to a′
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or Parts A and A′). Variations of a can be either the same

variation a′ or a new variation a′′ or a′′′ (these varied rep-

etitions sometimes continue beyond 3, such as a4 and so

on). Since scoring such variations can be different based

on the annotator, for experimentation on our dataset, we

simply reduced the label set to remove prime marks and re-

tain the phrase/part letter(s). Likewise, large and/or hybrid

forms (such as Sonata-allegro form) in our dataset which

have their own unique labels are simplified (during experi-

mentation) to the letter label set with parts A,B,A′.

The task of Phrase Analysis requires labels to be pro-

vided with the form of the piece as well as the knowledge

of where the musical phrase starts Ð a problem potentially

solved using Onset or Peak Detection [25]. To do this, we

implement a simple algorithm for peak-picking based on

existing literature which is described next. The timestamps

of the peaks, along with the output of the Form Analyzer

(which is added as a feature), are provided as input to the

Phrase Analyzer, where labels are classified sequentially

(shown in Figure 4). We describe its components next.

3.3.1 Onset Detection ± Peak-Picking for Phrase Events

To find the timestamps (in seconds) of the musical phrases,

we use a reduced version of the peak-picking algorithm

described in [35]. This algorithm computes the Mel Spec-

trogram and Self-Similarity Lag Matrix (SSLM) Chroma-

gram (a group of pitch class distributions over time) to per-

form the onset detection. The Chromagram SSLM is com-

puted using the Mel Spectrogram, which is clustered by

pitch-class using k-Nearest Neighbors. The audio frames

captured by the Short-Time Fourier Transform (STFT) are

represented as a computed vector of peaks, which is re-

turned as an array of timestamps. The choice of this

scheme was based on preference for ideas that are com-

mon in the community, and we verified that it was com-

parable to other CNN architectures [36] and also greatly

reduced system design time, given that training was not

needed (since the approach was unsupervised).

Novelty Vector

ChromagramMel Spectrogram

Predicted

Event

Timestamps

Chromagram SSLM

Training Data

Data

Preprocessing

Figure 3. Schematic diagram of Peak-Picking algorithm

3.3.2 Bidirectional LSTMs for Phrase Classification

Using the onset detection method, the musical piece is es-

sentially segmented into smaller phrases (i.e., the musical

content between timestamps t and t+ 1 is denoted as fea-

ture vector xt). Therefore, we think of a piece X as a col-

lection of phrases {x1, ..., xT }, which occur in sequence.

The task is to tag each phrase with a label for the phrase

and/or the part. In all, we use 9 phrases, 9 parts, and 5 vari-

ations (phrase labels used for Theme & Variation pieces)

for the labeling; specific names of these are provided in

the Supplement. Clearly, the specific labeling associated

with a phrase is dependent on what came before it, as well

as what comes after. Therefore, we propose to use Bidirec-

tional LSTMs to capture the dependence in such sequence

data and replicate segment-segment similarity analysis.

Decision

Nodes

Decision

Nodes

Phrase Label Predic�ons

Predicted

Event

Timestamps

Mel Spectrogram

Root

Node

ℙ(Class 1) ℙ(Class 2)

Feature Generator

Onset/Peak Detec�on

Form Predic�on

Form Analyzer

ℙ(Class 3) ℙ(Class n)

Phrase Analyzer

Decision

Tree

Figure 4. Architecture diagram of Phrase Analyzer

We now discuss the network architecture. X is passed

as input to a Bidirectional Long Short-Term Memory

(LSTM) [37] network. LSTM networks can capture long-

term dependencies in temporal data and have been suc-

cessfully used for a number of time series classification

problems. LSTM (similar to Recurrent Neural Networks

(RNNs) [38]) contains loops in its architecture that allow

it to memorize previous states such that the network can

effectively process temporal data. A typical LSTM layer

consists of a set of recurrently connected blocks, known

as memory blocks. Each block contains one or more re-

currently connected memory cell (ct) and three multiplica-

tive units - the input (it), output (ot), and forget gates

(f t) which regulate the extent to which data is propagated

through the LSTM unit. The operations inside an LSTM

block can be formulated using:
ft = ρ(Wfxt + Ufht−1 + bf )

it = ρ(Wixt + Uiht−1 + bi)

ot = ρ(Woxt + Uoht−1 + bo) (2)

ĉt = ϕ(Wcxt + Ucht−1 + bf )

ct = ft ◦ ct−1 + it ◦ ĉt

ht = ot ◦ ϕ(ct)
Here ρ and ϕ are activation functions, ◦ denotes the

element-wise product operation, xt is the input vector, W
and U are weights, and ht is the hidden state vector Ð also

known as the output vector of the LSTM unit. Because of

the dependence on both past and future phrases, we use

a Bidirectional LSTM (Bi-LSTM), which includes both

a forward and backward layer of LSTMs. Both the for-

ward and backward layer outputs are calculated by using

the standard LSTM update equations (2). Then, Bi-LSTM
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connects the two hidden layers to the same output layer.

More details about Bi-LSTMs can be found in [39, 40].

To perform the final classification, the Bi-LSTM is con-

nected to a Decision Tree to provide the label(s) for each

timestamp. To accomplish this, we used the feature vec-

tor output from the (Time Distributed) Dense layer as the

training set for the tree, which is fit along with the original

set of labels. Once the tree is combined with the Bi-LSTM,

it can be used to provide the final prediction for new times-

tamps. Using this approach also helped greatly decrease

the training time of the Phrase Analyzer model and reduced

the overfitting that the LSTM would suffer from by itself.

4. EXPERIMENTS

We evaluate each component of our system individually as

well as a whole for the Phrase Analyzer, which utilizes all

the components. For all the experiments, we utilize the

entire augmented dataset, where 85% of the data was used

for training, and the rest is used for testing.

4.1 Form Analyzer Evaluation

Setup: The Form Analyzer model takes in the features

as described in Section 3.1 (the duration and Mel Spectro-

gram SSM) and outputs the predicted classification, which

is compared against the ªground truthº label in the dataset.

To turn the Mel Spectrogram SSM into a usable feature

vector, we calculate the mean of the SSM to obtain a 1D ar-

ray, which the model receives with the duration appended.

Note that we can use the Form Analyzer architecture as a

standalone model to identify the form of the musical piece.

This can be useful to search a musical database by forms or

for a musicologist to understand when and why a composer

may choose a particular form over another. On the other

hand, it can also be used to provide input to the Phrase An-

alyzer. Therefore, we evaluate its efficacy independently to

evaluate its performance compared to other methods. The

augmented dataset was split into 85% training and 15%
testing for cross-validation, 4 and the analysis model was

evaluated using the classification accuracy in addition to

other metrics such as Precision, Recall, and F1 scores.

Parameters: The TreeGrad model was tuned to 31 leaves

per tree, an unbound max depth, 100 estimators (trees in

the forest) with refit splits enabled, and the learning pa-

rameters include α = 0.1 and a batch size of 32.

Results: The final Form Analyzer model achieved a clas-

sification accuracy of 83.9% Ð a surprisingly good per-

formance given the subjective nature of the form classifi-

cation, as many of the "inaccurate" classifications may be

subjectively true based on personal bias. We compared our

model with a number of other classification methods Ð 2D

CNN [41], 2D CNN Ensemble [42], 1D CNN [43], Autok-

eras [44], Neural-SVM [45], XBNet [46], DJINN [47], and

an implementation of Neural Decision Trees [48]. In the

plot in Figure 5 (left), our model outperforms other meth-

ods significantly. The next closest approach is the decision

tree method, illustrating that the decision tree-based ap-

proaches indeed works better for this data. Note that the

4 The dataset is sorted alphabetically by form per augmentation; other
permutations typically performed the same or worse.

model can be further fine-tuned by using a different boost-

ing method. Furthermore, our method reported a Precision

value of 85%, whereas both Recall and F-Score were 84%.

In addition to numerical accuracy, we wanted to study

the mistakes in our method and how others performed in

identifying the forms, and whether some specific forms

were commonly misclassified as others. For this, we com-

pared the confusion matrices from each approach. To

compare the confusion matrices numerically, we compute

the confusion entropy [49] for each Ð this is shown in

Figure 5 (center and right). Confusion entropy is com-

puted by exploiting the class distribution information

of misclassifications of all classes as other classes (off-

diagonal elements of the confusion matrices) and is an ap-

propriate measure for this purpose. The results show over-

all, our method has the lowest entropy. The confusion en-

tropy for each class (Figure 5 (right)) shows which classes

were harder to classify. Here we found that our method

has an entropy of .24 even for the worst-performing class.

In addition, by quantitative analysis, a common theme we

found is that most models tended to confuse forms that are

typically similar in length (binary/unary, theme & varia-

tion/sonata, etc.) or hybrid/compound forms and their de-

rived form (e.g., sonata/binary) even though for our model,

such misclassifications are minimal.

4.2 Peak-Picking Algorithm Evaluation

Results: While the onset detection algorithm was not eval-

uated by a formal metric, it was tested against the training

data, and the output timestamps were found to be nearly

identical or had a low enough difference to be subjectively

true (similar to the bias of a human analyst). The output

of the algorithm was compared to numerous hand-labeled

pieces from the dataset, and the difference was found to

be negligible for most pieces (around ≈ ±5.269 seconds

on average), with the greatest absolute time difference be-

ing ≈ ±14.823 seconds for pieces much greater than 6

minutes in duration. This metric was based on the ap-

proach found in [25]. The algorithm was also found to

be comparable to other machine learning approaches such

as SOMs [23] and CNNs [24]. Our result was based on

a comparison between the ªground truthº and predicted

timestamps in the validation dataset by index pairs rather

than by the pair of closest timestamps since the algorithm

may report more or fewer events than our own analysis.

4.3 Phrase Analyzer Evaluation

This model is much more difficult to evaluate using a

classification evaluation metric due to numerous factors

that vary from conventional machine learning classifica-

tion models. First, the model gets the timestamps from the

Peak-Picking algorithm, which is difficult to compare to

human-annotated scores (our ªground truthº) due to inte-

grative disagreement (i.e., a group of analysts would need

to collectively agree on a ground truth as their analyses will

likely vary). The labels are also often highly subjective and

vary by the judgment of the annotator. In addition, some of

the labels are implicit (for example, Part A continues un-

til timestamp n but is only labeled at the first occurrence).
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Figure 5. Form Analyzer Architecture Comparison with other methods (left), Confusion Entropy calculated for each method (center),
and the class-wise Confusion Entropy for each method (right)

Therefore, we decided not to use a 0/1 accuracy metric but

a more realistic one based on how a music theory expert

would grade the labeling of other musicians (such as in a

music theory class) based on a rubric. Such rubric-based

grading is commonly used in case of challenging problems

such as automated essay and clinical note grading [50,51].

Setup: We design a rubric as follows: we score each la-

beling in [0, 1] giving a score of 1 if the part and/or phrase

match perfectly, but also have a variety of other values in

[0, 1) for partially correct labeling. These partial score sce-

narios cover a range of possibilities, such as if either the

part or phrase but not both has been guessed correctly, the

degree of similarity of the predicted phrase to the actual

phrase, and accounting for the fact that time stamping may

be off by a few seconds. These partial scores are ordered

from high to low depending on the extent and multiplicity

of the issues mentioned above. The rubric is presented in

the Supplement, and the code to do this grading on the out-

put of the system will be provided with the dataset [13].

Parameters: The LSTM-Tree model has 4 LSTM units

with a dropout rate of 0.2, a batch size of 10, sigmoid ac-

tivation, and the learning parameters use the binary cross-

entropy loss function, Adam optimizer, and 5 epochs.

Results: We evaluated the phrase analyzer using other

state-of-the-art methods such as 1D CNN, RNN, and Feed-

forward Neural Network and used the same rubric to

come up with a weighted assessment score of the pre-

dicted phrases. We found that our LSTM-Tree architec-

ture outperformed other NN architectures Ð our model re-

ported a weighted score of 79.16%, whereas the best of

the comparable methods reported a score of 77.75% (see

Supplement Figure 1 for a plot related to this). A qualita-

tive evaluation of the results reveals our LSTM-Decision

Tree method produced labels that are more consistent with

a human analyst (who is prone to some errors) even on one

attempt, whereas for some of the other methods, the label-

ings are more random and less interpretable. These results

show that the LSTM-Decision Trees not only substantially

increased accuracy quantitatively for the Phrase Analyzer

but also gave reasonably realistic phrase labels.

5. DISCUSSION

Here we briefly discuss some possible extensions and im-

provements to the dataset as well as methods presented in

the paper. On the dataset front, we hope to expand the

number of pieces as well as add additional annotators. The

current dataset also features class imbalance; anthologies

of classical music classified by form are lacking, 5 though

our system could be employed to assist in the compilation

of such a database. A more sophisticated system may also

greatly benefit from restructuring the analysis labels in the

database to the standards specified in [54]. On the method

front, an obvious area of improvement is the Peak-Picking

algorithm, which can be replaced by a deep learning ap-

proach such as CNN or LSTM so that the whole network

can be considered as one large deep learning system and

parameter weights learned jointly. The Phrase Analyzer

model can also benefit from the inclusion of Curriculum

Learning or a Human-in-the-Loop type of approach, much

like that of a traditional Form and Analysis class Ð though

a Sequence-to-Sequence or Autoencoder model may also

be useful in developing a faster/more accurate system.

6. CONCLUSION AND FUTURE WORK

In this paper, we introduce a new dataset, the SMFSA

Database, accompanied by deep learning benchmark

methods to analyze classical music forms and phrases. To

the best of our knowledge, this is the most comprehensive

study of a computational approach used toward classical

music structure analysis. While the current system is spe-

cific to classical music, it could be extended to classify nu-

merous additional forms (e.g., through transfer learning or

an extended architecture), such as those found in popular

music, ethnomusicology, and more complex hybrid forms.

Another difficult task lacking substantial research is Opti-

cal Music Recognition (OMR) Ð our methods could po-

tentially be extended to perform both visual music analy-

sis and the classification/segmentation on the score directly

(i.e., in the style of a human analyst). The system may also

be extendable for use in Forensic Musicology and Copy-

right Detection systems, using the output analysis from the

system to compare multiple pieces of music for potentially

similar or exact replications of musical phrases.

5 Green’s book on Form Analysis [52] was found to be the most use-
ful and accurate resource resembling such an anthology, whereas other
resources were presented as anthologies for analysis rather than classified
works. As such, our dataset was built primarily on the pieces (and mu-
sical forms) selected in this book (including some from [53] as well) to
serve as a common ground for analysis.
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