Conference paper Open Access
Alison B Ma; Alexander Lerch
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">ismir</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">ismir2022</subfield> </datafield> <controlfield tag="005">20221113142625.0</controlfield> <controlfield tag="001">7316800</controlfield> <datafield tag="711" ind1=" " ind2=" "> <subfield code="d">December 4-8, 2022</subfield> <subfield code="g">ISMIR 2022</subfield> <subfield code="a">International Society for Music Information Retrieval Conference</subfield> <subfield code="c">Bengaluru, India</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Alexander Lerch</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">473956</subfield> <subfield code="z">md5:74184accb96b48b09c6361a41d1a4591</subfield> <subfield code="u">https://zenodo.org/record/7316800/files/000104.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="y">Conference website</subfield> <subfield code="u">https://ismir2022.ismir.net</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2022-12-04</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="o">oai:zenodo.org:7316800</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="a">Alison B Ma</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Representation Learning for the Automatic Indexing of Sound Effects Libraries</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a">Labeling and maintaining a commercial sound effects library is a time-consuming task exacerbated by databases that continually grow in size and undergo taxonomy updates. Moreover, sound search and taxonomy creation are complicated by non-uniform metadata, an unrelenting problem even with the introduction of a new industry standard, the Universal Category System. To address these problems and overcome dataset-dependent limitations that inhibit the successful training of deep learning models, we pursue representation learning to train generalized embeddings that can be used for a wide variety of sound effects libraries and are a taxonomy-agnostic representation of sound. We show that a task-specific but dataset-independent representation can successfully address data issues such as class imbalance, inconsistent class labels, and insufficient dataset size, outperforming established representations such as OpenL3. Detailed experimental results show the impact of metric learning approaches and different cross-dataset training methods on representational effectiveness.</subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.7316799</subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="g">866-875</subfield> <subfield code="b">ISMIR</subfield> <subfield code="a">Bengaluru, India</subfield> <subfield code="t">Proceedings of the 23rd International Society for Music Information Retrieval Conference</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.7316800</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">conferencepaper</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 110 | 110 |
Downloads | 92 | 92 |
Data volume | 43.6 MB | 43.6 MB |
Unique views | 100 | 100 |
Unique downloads | 85 | 85 |