Conference paper Open Access

Representation Learning for the Automatic Indexing of Sound Effects Libraries

Alison B Ma; Alexander Lerch


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.7316800</identifier>
  <creators>
    <creator>
      <creatorName>Alison B Ma</creatorName>
    </creator>
    <creator>
      <creatorName>Alexander Lerch</creatorName>
    </creator>
  </creators>
  <titles>
    <title>Representation Learning for the Automatic Indexing of Sound Effects Libraries</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2022</publicationYear>
  <subjects>
    <subject>ismir</subject>
    <subject>ismir2022</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2022-12-04</date>
  </dates>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/7316800</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.7316799</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Labeling and maintaining a commercial sound effects library is a time-consuming task exacerbated by databases that continually grow in size and undergo taxonomy updates. Moreover, sound search and taxonomy creation are complicated by non-uniform metadata, an unrelenting problem even with the introduction of a new industry standard, the Universal Category System. To address these problems and overcome dataset-dependent limitations that inhibit the successful training of deep learning models, we pursue representation learning to train generalized embeddings that can be used for a wide variety of sound effects libraries and are a taxonomy-agnostic representation of sound. We show that a task-specific but dataset-independent representation can successfully address data issues such as class imbalance, inconsistent class labels, and insufficient dataset size, outperforming established representations such as OpenL3. Detailed experimental results show the impact of metric learning approaches and different cross-dataset training methods on representational effectiveness.</description>
  </descriptions>
</resource>
110
93
views
downloads
All versions This version
Views 110110
Downloads 9393
Data volume 44.1 MB44.1 MB
Unique views 100100
Unique downloads 8686

Share

Cite as