Conference paper Open Access
Alison B Ma; Alexander Lerch
<?xml version='1.0' encoding='utf-8'?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#"> <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.7316800"> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.7316800</dct:identifier> <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.7316800"/> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Alison B Ma</foaf:name> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Alexander Lerch</foaf:name> </rdf:Description> </dct:creator> <dct:title>Representation Learning for the Automatic Indexing of Sound Effects Libraries</dct:title> <dct:publisher> <foaf:Agent> <foaf:name>Zenodo</foaf:name> </foaf:Agent> </dct:publisher> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2022</dct:issued> <dcat:keyword>ismir</dcat:keyword> <dcat:keyword>ismir2022</dcat:keyword> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2022-12-04</dct:issued> <owl:sameAs rdf:resource="https://zenodo.org/record/7316800"/> <adms:identifier> <adms:Identifier> <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/7316800</skos:notation> <adms:schemeAgency>url</adms:schemeAgency> </adms:Identifier> </adms:identifier> <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.7316799"/> <dct:description>Labeling and maintaining a commercial sound effects library is a time-consuming task exacerbated by databases that continually grow in size and undergo taxonomy updates. Moreover, sound search and taxonomy creation are complicated by non-uniform metadata, an unrelenting problem even with the introduction of a new industry standard, the Universal Category System. To address these problems and overcome dataset-dependent limitations that inhibit the successful training of deep learning models, we pursue representation learning to train generalized embeddings that can be used for a wide variety of sound effects libraries and are a taxonomy-agnostic representation of sound. We show that a task-specific but dataset-independent representation can successfully address data issues such as class imbalance, inconsistent class labels, and insufficient dataset size, outperforming established representations such as OpenL3. Detailed experimental results show the impact of metric learning approaches and different cross-dataset training methods on representational effectiveness.</dct:description> <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/> <dct:accessRights> <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess"> <rdfs:label>Open Access</rdfs:label> </dct:RightsStatement> </dct:accessRights> <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/> <dcat:distribution> <dcat:Distribution> <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.7316800"/> <dcat:byteSize>473956</dcat:byteSize> <dcat:downloadURL rdf:resource="https://zenodo.org/record/7316800/files/000104.pdf"/> <dcat:mediaType>application/pdf</dcat:mediaType> </dcat:Distribution> </dcat:distribution> </rdf:Description> </rdf:RDF>
All versions | This version | |
---|---|---|
Views | 110 | 110 |
Downloads | 93 | 93 |
Data volume | 44.1 MB | 44.1 MB |
Unique views | 100 | 100 |
Unique downloads | 86 | 86 |