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ABSTRACT

Version identification (VI) has seen substantial progress

over the past few years. On the one hand, the introduc-

tion of the metric learning paradigm has favored the emer-

gence of scalable yet accurate VI systems. On the other

hand, using features focusing on specific aspects of mu-

sical pieces, such as melody, harmony, or lyrics, yielded

interpretable and promising performances. In this work,

we build upon these recent advances and propose a met-

ric learning-based system systematically leveraging four

dimensions commonly admitted to convey musical simi-

larity between versions: melodic line, harmonic structure,

rhythmic patterns, and lyrics. We describe our deliber-

ately simple model architecture, and we show in particu-

lar that an approximated representation of the lyrics is an

efficient proxy to discriminate between versions and non-

versions. We then describe how these features complement

each other and yield new state-of-the-art performances on

two publicly available datasets. We finally suggest that

a VI system using a combination of melodic, harmonic,

rhythmic and lyrics features could theoretically reach the

optimal performances obtainable on these datasets.

1. INTRODUCTION

The version identification (VI) problem has received much

attention over the last two decades. Pioneering works

showed promising accuracy on small audio datasets, but

remained difficult to scale to larger modern audio corpora.

The recent introduction of data-driven approaches based

on neural networks led to significant progress towards ac-

curate yet scalable VI systems [1].

Different paradigms are currently active: one approach

considers VI as a classification task, and intends to classify

versions into the same class [2], while another approach

formulates VI as a metric learning problem, and intends

to minimize (resp. maximize) a distance between versions

(resp. non-versions) [3, 4]. Recent works have also pro-

posed a combination of both [5]. Metric learning or classi-

fication approaches seem to yield similar performances, as
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it has been observed for other MIR applications [6]. These

systems also differ according to a perhaps more important

aspect: their input feature. Some use a generic audio rep-

resentation, such as the Constant-Q transform [7], and rely

on the expressivity of the network to disentangle relevant

musical features. Others use specialized features, such as

the melodic line, the harmonic structure and/or the lyrics,

and rely on input data to discriminate between versions and

non-versions [3, 4, 8, 9].

In this work, we pursue in the direction of a metric-

based approach using specialized features. We build upon

the system described in [8], conserving its principle and

architecture, and explore the use of new input features.

The reason is motivated by three practical considerations:

firstly, the metric learning approach yields a very com-

pact representation of audio (its embedding), which can

be conveniently stored, indexed and queried in very large

databases. Secondly, the embedding space and the musical

similarity measure that is obtained for each different spe-

cialized features is meaningful from a musical perspective,

and can be reused for other purposes, e.g. playlist gen-

eration. Thirdly, the use of specialized features requires

smaller models that are faster to train and less energy con-

suming than larger architectures [10].

It can reasonably be assumed that different versions of

the same musical work share at least one of these four fea-

tures: the melodic line, the harmonic structure, the rhyth-

mic patterns and sometimes the lyrics. The role of melody

and harmony in version similarity has been thoroughly in-

vestigated [8]. The role of the lyrics has also been studied

recently, albeit not from a metric learning perspective [9].

In this work, we present a systematic study of the con-

tribution of these four features to version similarity, and

describe a metric learning-based system combining all of

them. We show that this combination provides new state-

of-the-art performances on two publicly available datasets.

We also show that an oracle using these feature embed-

dings nearly achieves the maximum theoretical perfor-

mances on these datasets, suggesting that design of future

VI systems reaching these performances may be possible.

The rest of this paper is organized as follows: we briefly

review the previous studies inspiring our current work

(Section 2). We then describe how we extracted rhythmic

and lyrics features, and our metric learning-based architec-

ture (Section 3). We present our experiments, discuss our

results (Section 4), and illustrate them with some examples

(Section 5). We conclude this paper with our future work.
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2. RELATED WORK

In this section, we present a brief overview of the main

concepts that inspired our present work.

2.1 Metric learning

Learning a similarity metric that generalizes to unseen ex-

amples is a common objective in machine learning. The

goal is to learn how to map the data of interest into a com-

pact representation (its embedding), and to minimize (resp.

maximize) the distance between the embeddings of similar

(resp. dissimilar) examples. Various MIR applications rely

on a concept of musical similarity, e.g. music classifica-

tion [11], music recommendation [12], or VI systems [1],

among many others. Musical similarity between two tracks

is typically evaluated first deriving an intermediate feature

representation from the audio waveform and then comput-

ing a distance between feature pairs.

In the past few years, metric learning has proven its ef-

ficiency to build scalable yet accurate VI systems. These

modern architectures typically rely on a CNN-based model

trained with a triplet loss [13] to embed the musical infor-

mation contained in the input feature into a single vector

embedding that can be rapidly compared via Euclidean dis-

tance computation. However, these different systems have

made different choices regarding their input features: for

instance, Doras et al. [3] used a melodic line representa-

tion, Yesiler et al. [4] used a harmonic structure represen-

tation, and Du et al. [5] used a more generic CQT. The

choice between specialized or generic features seems to

have a non-negligible impact on the required size of the

models (the former uses a 5-layers CNN, while the latter

uses a ResNet50).

In this work, we choose the first alternative, and we pro-

pose to explore other specialized features beside melody

and harmony, in particular the rhythmic and lyrics features.

2.2 Rhythm patterns detection

Musical similarity based on rhythmic patterns has long

been investigated in MIR research, e.g. for audio re-

trieval [14] or music classification [15]. With the purpose

of analysis of musical style and recognition of musical

genres, Pampalk et al. introduced the fluctuation patterns

(FP), representing rhythmic patterns in different frequency

bands, and their evolution over time [16]. The basic as-

sumption is that similar songs exhibit similar characteristic

rhythmic patterns, and that comparing FP between tracks

shall give enough information about their similarity or dis-

similarity from a genre or mood perspective. We propose

here to extend this idea to VI context, and to use the fluctu-

ation patterns to discriminate versions from non-versions.

In practice, the FP is obtained computing the audio Mel

spectrogram, summing up the high Mel bands to high-

light the low frequencies and performing a second STFT

in each mel band along the time axis. This results in a

3-dimensional matrix with axes corresponding to the the

Mel bands, the frequency modulation and the time. The

frequency modulation axis therefore represents the period-

icity of the loudness in the corresponding Mel band: for

example, a drum kick playing at 120 bpm will be repre-

sented here with a frequency modulation at 2 Hz in the low

frequency bands. Finally, a perceptual filter is applied on

each frequency modulation band. This filter is supposed to

highlight the frequency modulations most perceived by the

human ear ; for example, a frequency modulation at 4 Hz

gives a more intense feeling of fluctuation strength. The

3-dimensional matrix is then averaged along the frequency

axis, resulting in a representation of the variations of the

frequency modulation over time.

One of the FP limitation is the use of a linear scale to

represent periodicities. This was addressed by Pohle et

al., who used a log scale to represent frequency modula-

tions [17]. The advantage is that the same onset structure

played at different tempi will have all its activations shifted

by the same amount along the frequency modulation axis.

Another way to achieve this tempo invariance is to com-

pute periodicities with a Constant-Q transform (CQT) in-

stead of a STFT [18].

2.3 Lyrics recognition

In automatic speech recognition (ASR), the traditional ap-

proach relies on a language model and an acoustic model,

typically implemented as a Hidden Markov Model, possi-

bly coupled with a neural network [19]. An alternative ap-

proach consists in implementing both language and acous-

tic models as a single neural network, trained in an end-to-

end fashion with a Connectionist Temporal Classification

(CTC) loss [20]. CTC-based models outputs the proba-

bility distribution of symbols at each time frame, which

can be decoded into the most likely sequence of symbols

via classical beam search. This approach has become very

popular since fully convolutional end-to-end architectures

have achieved performances comparable to those of the hy-

brid architectures [21].

Although singing voice has many obvious differences

with speech, automatic lyrics recognition (ALR) or align-

ment (ALA) systems are usually directly inspired by ASR

applications. Moreover, the recent introduction of large

lyrics annotated audio datasets, such as Dali [22], has fos-

tered the development of new ALR systems, whether they

are based on the traditional [23] or end-to-end [24] archi-

tectures. While the former seems to yield better results

[25], the latter has the advantage of its simplicity, both at

training and inference time.

However, very few attempts have been made to use

lyrics to assess audio track similarity. It was proposed to

improve a query-by-humming system [26], but to the best

of our knowlege, only Vaglio et al. proposed the use of

lyrics for version identification [9]. They used an existing

ALR system to extract lyrics from the audio, and estimate

track similarity via a string matching algorithm. However,

the comparison cost of such algorithm quickly becomes

prohibitive when querying large modern corpora, and lim-

its the scalability of this approach.
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Figure 1: Examples of the Constant Q Fluctuation Patterns (CQFP).

3. PROPOSED METHOD

In this section, we describe and motivate our design

choices. We first present how we extracted our rhythmic

and lyrics features, and publicly release our datasets 1 . We

then present our metric learning-based VI model.

3.1 Rhythmic features

Our assumption is that the FP representation described in

Section 2.2 displays both the local rhythmic patterns along

the frequency modulation axis, as well the global rhythmic

evolution of the piece over time. We therefore propose to

use this representation as our rhythmic feature for version

identification. However, we introduce a CQT to compute

the periodicities, and to achieve tempo invariance along the

frequency modulation dimension. We choose as minimum

frequency for the CQT 0.5 Hz (i.e. 30 bpm which we as-

sume would be the tempo of the slowest tracks), and to

cover up to 5 octaves i.e. 16Hz (960 bpm) with 10 bins per

octave to get all the rhythmic subtleties. We kept the same

other parameters as in the original implementation [16].

As an illustration, Figure 1 represents the CQ-FP ob-

tained for different tracks with characteristic time signa-

ture. The first example has a 4/4 time signature, and clearly

displays a rhythmic pattern present around 2 Hz (~120

bpm), as well as another periodicity around 4 Hz, which

corresponds to a clear binary rhythm. The second example

has a 3/4 time signature, and the rhythm of a waltz appears

clearly: one beat at 1 Hz (60 bpm) and another at about 3

Hz. Finally, the third example has a 5/4 time signature (ir-

regular), and we find this characteristic by observing bands

at 1, 2 and 3 Hz. It can also be observed on each example

that our rhythmic feature also represents the global struc-

ture of the piece over time, which is probably another rel-

evant aspect in a VI context. Finally, as the modulation

frequency dimension has a constant Q-factor, a change in

tempo would not change the spacing between activations.

3.2 Lyrics features

We argue that accurate lyrics recognition is not required for

version identification, and that identifying only a few com-

mon words, or even a few common character sequences,

between tracks shall be sufficient to determine whether

they are versions or not. We thus implemented a delib-

erately simple fully convolutional ALR system inspired by

recent ASR system [21, 27].

1 https://ircam-anasynth.github.io/papers/2022/abrassart

Model It is an 8-layers 2D-CNN with 3x3 kernels. Max-

pooling 2x2 is applied on the first 2 layers to decrease time

and frequency dimensions, and max-pooling 1x2 is applied

on the next 6 layers only for frequency dimension. The

first layer has 64 filters, doubled at each layer up to 512. A

dropout with rate 0.3 is applied.

Inputs/outputs We use no pre-processing on the audio (no

data augmentation, no voice separation). As classically

done in ASR, we use 40 band Mel-spectrogram with 10ms

timeframes as input feature. The model outputs a posteri-

orgram corresponding to the log-probabilities of the ’a...z’

letters, the space symbol and the CTC blank symbol, i.e.

28 bins in total. An output example is shown Figure 2.
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He's so fine (The Angels)

Figure 2: A posteriorgram obtained for 20 sec. of audio.

Training and inference The model is trained on the Dali

dataset, which provide 12k+ polyphonic audio with lyrics

annotations at the word level. We used audio chunks of

10 seconds, and used a CTC loss with Adam optimizer to

train the model to align between audio and text. We evalu-

ated its performances on a distinct Dali test subset using a

greedy beam search decoding with no language model, and

achieved a modest Character Error Rate (CER) of 0.496.

3.3 Convolutional architecture

The same simple architecture (with different configura-

tions) has shown its ability to capture relevant melodic or

harmonic similarity between versions [3,4]. It consists in a

plain 5-layers Convolutional Neural Network (CNN), en-

coding each input feature using time and frequency max-

pooling, while increasing the number of filters at each

layer. The CNN output feeds a gated temporal attention

mechanism [28], which was found to help the model to fo-

cus on relevant portions of the input features. We refer the

reader to our previous work [8] for implementation details.

In this work, we keep the exact same generic architec-

ture, and propose two new configurations to process also

the rhythmic and lyrics features. We summarize the con-

figuration used for each of the four features in Table 1.
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Features Melodic [3] Harmonic [4] Rhythmic Lyrics

Layers n k ks p ps d n k ks p ps d n k ks p ps d n k ks p ps d

1 64 3x3 1x1 2x2 2x2 0.0 256 180x12 1x1 1x12 1x1 0.0 64 3x20 1x1 1x2 1x2 0.4 64 10 1 5 2 0.3

2 128 3x3 1x1 2x2 2x2 0.1 256 5x1 1x1 1x1 1x1 0.0 128 3x3 1x1 1x2 1x2 0.3 128 10 1 5 2 0.2

3 256 3x3 1x1 2x2 2x2 0.1 256 5x1 1x1 1x1 1x1* 0.0 256 3x3 1x1 1x2 1x2 0.2 256 10 1 5 2 0.1

4 512 3x3 1x1 2x2 2x2 0.2 512 5x1 1x1 1x1 1x1 0.0 512 3x3 1x1 1x2 1x2 0.1 512 10 1 5 2 0.1

5 1024 3x3 1x1 2x2 2x2 0.3 512 5x1 1x1 1x1 1x1* 0.0 1024 3x3 1x1 1x2 1x2 0.0 1024 10 1 5 2 0.0

Table 1: Configuration of the 5-layers CNN used for the features. n : number of filters, k : kernel size, ks : kernel stride, p :

pool size, ps : pool stride, d : dropout. 1st dimension is time, 2d dimension is frequency. Convolutions are "same" for Me,

Rh and Ly, and "valid" for Ha. *Ha uses dilation rate of 20 and 13 along time dimension on 3
rd and 5

th layers respectively.

Rhythmic features Given the tempo invariance on the pe-

riodicity dimension explained in Section 3.1, the first layer

has a 20 bins kernel on this axis to capture all patterns

within 2 octaves (for instance quarter, eight and sixteenth

notes). All other layers have 3x3 kernel with max-pooling

of size 2 on the periodicity axis.

Lyrics features We conducted various experiments to find

the best kernel size to apply to the lyrics. It appeared that a

rather short receptive field of 10 bins yield the best results.

We kept it for all layers, with a mean-pooling of size 5.

Finally, a dense layer applied after the temporal atten-

tion block outputs a 512 bins embeddings, L2-normalized

so that each track becomes a point on the surface of the

unit hypersphere, bounding the distance between 2 points

within the [0,2] interval.

3.4 Embedding concatenation

In this work, we investigated only a late embedding fusion

scheme, which simply consists in concatenating each fea-

ture embedding, and to L2-normalize the concatenated re-

sult. It is straightforward to show that the distance between

a pair of normalized concatenation of n feature embed-

dings is the quadratic mean of the n distances between each

feature embedding pair. All feature combination scores in

Section 4 have been obtained using this method.

The practical advantage of this simple concatenated em-

bedding is twofold: it remains easy to store and to query

in an large index, and the lookup can be done for some

specific feature combinations only (zero masking the un-

wanted feature embeddings).

4. EXPERIMENT AND RESULTS

In this section, we present our experimental setup and

results. For brevity, we will denote melodic, harmonic,

rhythmic and lyrics features by their abbreviations Me, Ha,

Rh, and Ly, respectively.

4.1 Experimental setup

We use the exact same protocol as in our previous work [8].

Training We trained our four models on the publicly avail-

able dataset SHS5+
1 , which contains ~62k covers of ~7.5k

works. We used the provided features for Me and Ha, and

extracted Rh and Ly from the audio, as described in sec-

tions 3.1 and 3.2. We used a semi-hard triplet loss, using

an Adam optimizer, an initial learning rate of 1e−4 and a

batch size of 64. All other details are replicated from [8].

Test We tested our four models on SHS4-
1 , containing

~50k covers of ~20k works. We also retrained models on

SHS5+/4-and tested on Da-Tacos 2 , containing 13k covers

of 1k works and 2k confusing tracks [29]. As some sam-

ples overlap between Da-Tacos, SHS4-and Dali, we made

sure that none of these samples were used for scoring the

models, as done in [5].

For each feature, we used the corresponding trained

model to compute each track embedding, and computed

their pairwise distance matrix. For feature combinations,

distance matrix is computed using the quadratic mean of

each feature distance matrix, as described in Section 3.4.

4.2 Results

We summarize in Table 2 the performances obtained on

SHS4-and Da-Tacos by our models, reporting the metrics

classically used for VI: Mean Average Precison (MAP),

mean number of correct answers in the first 10 (MT@10)

and mean rank of first correct answer (MR1).

Train set SHS5+ Pruned SHS5+/4-

Test set Pruned SHS4- Pruned Da-Tacos

Input feature MAP MT@10 MR1 MAP MT@10 MR1

Me 0.427 0.822 1131 0.363 4.064 97

Ha 0.538 1.003 982 0.488 5.256 63

Rh 0.099 0.231 2921 0.055 0.689 244

Ly 0.672 1.190 968 0.393 4.596 199

Me+Ha 0.693 1.256 453 0.626 6.668 32

Me+Ha+Ly 0.800 1.396 291 0.602 6.480 33

Me+Ha+Rh 0.688 1.250 413 0.557 5.994 33

Me+Ha+Rh+Ly 0.785 1.378 286 0.560 6.054 33

Me+Ha (O) 0.879 1.521 97 0.837 8.709 4

Me+Ha+Rh (O) 0.939 1.607 21 0.905 9.303 1

Me+Ha+Ly (O) 0.963 1.637 14 0.918 9.398 1

Me+Ha+Rh+Ly (O) 0.978 1.658 4 0.951 9.657 1

Table 2: Performance metrics obtained on SHS4-and Da-

Tacos for input features and their combinations. O=oracle

We first examine the performances of each single feature.

Me and Ha results are in line with our previous work [8].

Rhythmic features The performances obtained using Rh

are clearly lower, which suggests that our rhythm feature is

not providing relevant VI information, or that the rhythm

patterns themselves are not specific enough to discriminate

between versions and non-versions. As a consequence,

adding Rh degrades our Me+Ha baseline. This is not en-

tirely surprising, as many non-versions might exhibit sim-

ilar rhythmic patterns (we will however see in Section 4.3

and Section 5 that Rh can be relevant in some cases).

2 https://github.com/MTG/da-tacos
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Lyrics features In contrast, the use of lyrics clearly out-

performs the other features on SHS4-. This confirms that

versions often share the same lyrics, and that even a very

inaccurate ALR system can be beneficial to VI. The combi-

nation Me+Ha+Ly improves by more than 10% the Me+Ha

performances, which will be explained in Section 5.1.

On Da-Tacos, we observe much less clear-cut results.

As already noticed by Vaglio et al. [30], Da-Tacos has

about 20% of instrumental songs. A closer look to our

results shows that these songs typically produce false pos-

itives. Following Vaglio et al., we pruned the instrumen-

tal songs from Da-Tacos, and recomputed the results for

Ly, obtaining MAP=0.674, MT@10=5.931 and MR1=59,

which is consistent with the values obtained for SHS4-.

4.3 Oracle results

We also present in Table 2 the results obtained by an ora-

cle. This oracle only considers the best performing feature

to compute each pairwise distance: for each pair of tracks,

it only uses the feature embeddings yielding the lowest

(resp. highest) distance for versions (resp. non-versions).

Interestingly, it appears that the performances of an or-

acle using three or four features approaches the theoretical

optimal values on our two datasets. This is particularly

clear with the Me+Ha+Ly and Me+Ha+Rh+Ly combina-

tions: the MAP tends to 1.0, i.e. most versions have been

ranked in the first answers for each query. The MR1 also

tends to 1, i.e. first answer is correct for most queries.

The MT@10 also tends to the theoretical optimal values

(in SHS4-, each track has 2, 3 or 4 versions, and its optimal

MT@10=1.695, while in Da-Tacos, each track has 0 or 12

versions, and its optimal MT@10=10).

The Figure 3 displays the contribution of each feature

to the oracle score, i.e. which feature is the most relevant

to determine if two tracks are versions ("Positive pairs") or

non-versions ("Negative pairs").
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Figure 3: Most relevant feature proportions to identify

positive and negative pairs on SHS4-.

It appears that Ha is usually the most efficient feature

to discriminate between versions or non-versions. How-

ever, both Me and Ly contribute importantly to identifica-

tion (e.g. resp. 25% and 21% of the positive pairs, 33%

and 28% of the negative pairs in the Me+Ha+Ly combi-

nation). Finally, and even though Rh alone yields poor

results, its contribution is not negligible when combined

with other features (e.g. 14% of the negative pairs in the

Me+Ha+Rh+Ly combination).

4.4 Comparison with state-of-the-art

Performances obtained by recent VI systems are summa-

rized in Table 3 (second column indicates the embedding

size used by each system).

Our system using Me+Ha+Ly improves the state-of-the-

art on SHS4-and on Da-Tacos (without instrumentals).

Test set SHS4- Da-Tacos

Model Emb. MAP MT@10 MR1 MAP MT@10 MR1

Doras et al. [8] 512 0.660 1.080 657 0.635 6.744 30

Vaglio et al. [30] n/a n/a n/a n/a 0.804* n/a n/a

Du et al. [5] 1536 n/a n/a n/a 0.791 n/a 19.2

Me+Ha+Ly (ours) 1536 0.800 1.396 291
0.818* 7.205* 16*

0.602 6.480 33

Table 3: Sota comparison on SHS4-and Da-Tacos. ∗results

obtained on Da-Tacos-Vocals (w/o instrumental tracks).

5. QUALITATIVE ANALYSIS

In this section, we illustrate qualitatively the previous

quantitative results. We encourage readers to listen to the

audio samples available on the paper companion website 1

as part of reading the paper.

5.1 Ly vs. Me+Ha examples

We intend here to illustrate how Ly improves the Me+Ha

system. Figure 4 plots the distance obtained for Me+Ha

and Ly between randomly sampled positive (green) and

negative (red) pairs.
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Figure 4: Pairwise distances for Me+Ha vs. Ly (500 pairs

from SHS4-).

This plot confirms that Me+Ha and Ly are complementary,

as already seen in Section 4.3. The dots situated away from

the diagonal correspond to track pairs scored correctly by

Me+Ha and incorrectly by Ly (or vice-versa). As certain

features yield better results for certain songs, their combi-

nation will statistically improve the results, as we will now

illustrate with some contrasted examples.

Ly > Me+Ha There are many versions whose musical

style, melody and harmony differ greatly from the original,

and where only the lyrics can help to identify them. This

is illustrated on Figure 5(a), which shows that the Jimmy

Noone’s and John Fogerty’s versions of "You Rascal You"

are very different musically while the lyrics exhibit enough

similarity to be correctly identified.
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You Rascal You

(a) Ly better than Me+Ha- dMe+Ha=1.470, dLy=0.238
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Nightshift

(b) Ly worse than Me+Ha- dMe+Ha=0.597, dLy=1.282
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(c) Rh better than Me+Ha - dMe+Ha=1.084, dRh=0.459
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Kenties, kenties, kenties

(d) Rh worse than Me+Ha - dMe+Ha=0.498, dRh=1.380

Figure 5: Examples for rhythm and lyrics : Rh > Me+Ha 5(c), Rh < Me+Ha 5(d), Ly > Me+Ha 5(a) and Ly < Me+Ha 5(b)

It also appears that our approximated ALR system is

efficient for different languages. For instance, the ver-

sions of Asta Kask and of The Hep Stars of the song

"I natt jag drömde", are very different in melody and

harmony (dMe+Ha=1.448) while the lyrics remain similar

(dLy=0.342), despite the fact that the lyrics are in Swedish.

Ly < Me+Ha As already mentioned, using Ly will yield

wrong results in presence of instrumental version (i.e. no

lyrics). In the example shown in Figure 5(b), the version

of "Nightshift" by the Commodores has lyrics while the

one of Jim Horn’s does not. We noticed that the system

sometimes considers lead instruments as voices. However,

this Ly false negative is correctly caught by the Me+Ha.

5.2 Rh vs. Me+Ha examples

Although less obvious than for Ly, combining Rh and

Me+Ha also appears to be complementary in some cases.

Rh > Me+Ha Even though Rh yields poor performances

in general, there are cases where it is the only feature avail-

able to identify versions. This is illustrated on Figure 5(c),

which shows the Rh, Me and Ha features for two versions

of "Pimpf". In this song, the melody is almost non-existent,

and the harmony is very different between both versions.

Only a few bass notes in the middle are salient enough to

identify the song, and this short bassline appears similarly

on the two FP features.

Rh might also be a good discriminating feature in other

cases, e.g. for live concert versions. One version of

"Mama’s Little Baby" is recorded in studio while the other

is a concert filmed from the audience. The Me+Ha distance

between these versions is high (dMe+Ha=1.329) because of

the bad live recording quality. But, the drums are distin-

guishable enough to find similarity (dRh=0.714).

Rh < Me+Ha But Rh often yields wrong results. This is

illustrated on Figure 5(d), which shows the features of two

versions of "Kenties kenties kenties". Although melody

and harmony are similar, the rhythm is very different, and

the use of Rh produces a false negative.

6. CONCLUSION

It was shown previously that VI systems combining

melody and harmony yields promising performances. In

this paper, we proposed to consider also rhythmic and

lyrics features to improve these results further. We showed

that an existing rhythmic feature commonly used for genre

classification is only helpful in a few cases, such as live

version identification. But we also showed that an approx-

imate lyrics representation can improve the performances

of existing melody and harmony-based systems. We ex-

plained these results by the fact that detecting correctly

only a few character sequences appears to be enough to

distinguish versions and non-versions. We showed that

our system combining these features establishes new state-

of-the-art on two public datasets. More importantly, we

indicated that these feature combinations provide enough

information to approach the theoretical optimal perfor-

mances obtainable on these datasets.

In our future work, we will investigate a more elabo-

rated fusion scheme in order to train our model to behave

as an oracle: our objective is to teach the system how to

choose between available features to pick only the most

relevant one for each pair of tracks. This might answer

the question of whether the concept of musical version can

be reduced to its melodic, harmonic, rhythmic, and lyrics

dimensions.
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