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ABSTRACT

Music emotion recognition has been a growing field of

research motivated by the wealth of information that these

labels express. Recognition of emotions highlights music’s

social and psychological functions, extending traditional

applications such as style recognition or content similar-

ity. Once musical data are intrinsically multi-modal, ex-

ploring this characteristic is usually beneficial. However,

building a structure that incorporates different modalities

in a unique space to represent the songs is challenging. In-

tegrating information from related instances by learning

heterogeneous graph-based representations has achieved

state-of-the-art results in multiple tasks. This paper pro-

poses structuring musical features over a heterogeneous

network and learning a multi-modal representation us-

ing Graph Convolutional Networks with features extracted

from audio and lyrics as inputs to handle the music emo-

tion recognition tasks. We show that the proposed learning

approach resulted in a representation with greater power to

discriminate emotion labels. Moreover, our heterogeneous

graph neural network classifier outperforms related works

for music emotion recognition.

1. INTRODUCTION

Music is intrinsically connected to human emotions. At the

same time that a songwriter expresses emotions in the com-

posed songs, we can use music’s emotional information to

characterize the listener’s moments and feelings. Music

emotion recognition (MER) is a task that highlights social

and psychological functions comprised by recordings, ex-

tending traditional applications in the area of music infor-

mation retrieval [1]. According to the literature, mapping

the spectrum of emotions can be done by analyzing the

values in arousal and valence domains [2]. Besides, the

emotions can be represented by labels that indicate nega-

tive, positive, and neutral values of arousal and valence and

labels that point to emotional expressions, such as happi-

ness, anger, or satisfaction [3]. Each label may be defined
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according to the significance of valence and arousal simul-

taneously, as illustrated in Figure 1. The MER task aims to

use a musical representation to estimate these significances

or predict discretized labels.
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Figure 1: Emotions mapped in the arousal and valence

domains.

Textual information is the most used data type in tasks

involving emotion labels [4]. When emotion recognition

is performed on music data, lyrics are commonly used as

input [5, 6]. However, some studies emphasize the im-

portance of acoustic features for the same task [7]. The

fact that both modalities complement musical perception

is well-known [8±10]. However, there is no consensual ap-

proach for incorporating multiple modalities into a unified

representation.

Defining the structure to deal with different data types,

such as text and audio, is a preliminary step to generate a

unified multi-modal representation of musical data. Build-

ing this structure is an open problem in the literature. Tech-

niques based on feature fusion are the most explored ap-

proach in the literature [11, 12]. Fusion of features can be

performed by simply concatenating text and audio features

or even learning embeddings via multimodal deep learn-

ing. However, these existing methods have limitations re-

garding incomplete modalities, deal with modalities of dif-

ferent dimensionality, and the interpretability of the gener-

ated representations [13].

Heterogeneous networks are a well-known representa-

tion for manipulating multiple modalities of unstructured

data [14, 15]. This resource has been explored due to the

ability to map data on graphs, representing connections be-

tween objects (nodes) through edges. Therefore, this pro-

cess produces a graph that can be used as input in Graph
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Neural Network models [16]. Structuring data on hetero-

geneous networks has been widely studied in varied data

such as text and images [17,18], but there are still few stud-

ies for musical data.

This work introduces a novel model for music emotion

recognition that uses a heterogeneous network to struc-

ture audio and lyrics features and build a new multi-modal

graph-based representation of musical data using the graph

convolutional network (GCN). Our proposed model, de-

scribed in detail in Sec. 3, uses content-based features

(audio descriptors) together with features extracted from

lyrics (embeddings from the language model). The mu-

sic graph topology is based on relations defined by cluster

information from audio e textual metadata. Some music

nodes have labels with emotional information. Therefore,

the proposed structure is composed of a heterogeneous net-

work, and GCN can predict the emotion of unlabeled mu-

sic nodes.

We apply a network regularization framework to prop-

agate and refine information between neighboring nodes

from different modalities. The matrix resulting from this

regularization, along with the graph connections, is used

as input for training our GCN. In this embedding space,

music with similar emotions are close to each other, while

dissimilar ones are further apart.

To evaluate our approach, we used the publicly avail-

able dataset PMEmo [19], which has 794 songs repre-

sented by audio descriptors and lyrics with annotations for

arousal and valence domains. We measured the relevance

of the learning process of a multi-modal graph-based rep-

resentation for MER. Our proposal was compared with two

different methods and other works from the literature that

reproduced a similar experiment.

Our method was able to obtain a meaningful embed-

ding representation that unifies different audio and text mu-

sic features across the heterogeneous network. In addi-

tion to the heterogeneous network enabling interpretabil-

ity of the relationships between text and audio features,

our method outperforms other existing methods for music

emotion recognition tasks.

2. RELATED WORK

The construction of methods to learn representations for

unstructured data aims to reduce the work for features ex-

traction and selection to describe the data and make learn-

ing algorithms less dependent on these processes [20].

Learning a representation for musical data involves manip-

ulating features obtained by multiple modalities and pro-

jected in different spaces [21, 22].

Learning to represent music to recognize the comprised

emotion involves exploring different features [1, 23]. We

can observe most applications using the lyrics to represent

the music [5, 6, 24] justified by the direct association we

can make with the meaning of words and emotion labels.

However, we have evidence that acoustic features also con-

tain information that characterizes emotions [11,12,25]. In

summary, there is no consensus on representing music us-

ing multiple modalities for the MER task, although we note

that audio and lyrics features are relevant.

Recent work about music representation learning has

explored strategies based on deep neural networks, such

as early and late fusion [26, 27] and evaluating combi-

nations between different input features [13]. This strat-

egy advances and presents successful results that justify

the representation learning process. However, there is a

demand for approaches that explain the semantic comple-

mentarity existing between the features that justify the ob-

tained results [28]. We explore the heterogeneous network

resources to embed multiples music features and explicit

the latent relationships among nodes, similar to [29, 30].

Moreover, we learn a graph-based representation that con-

centrates information from related music.

The complementarity between distinct features in mu-

sical perception justifies the motivation to build a multi-

modal representation [31]. For the emotion recognition

problem, [7] describes what semantic information exists

in various acoustic features and which emotions each fea-

ture can emphasize. We note that lyrics are also associ-

ated with emotions and must be used for the recognition

task [32]. Therefore, we aim to build a multi-modal repre-

sentation that integrates features obtained through the au-

dio and lyrics and compares its performance against uni-

modal scenarios.

The construction of multi-modal embeddings requires

that distinct features be mapped in a unified space. Graph-

based methods have been applied in recent years when

nodes and edges have different types [33]. We can ex-

ploit the relationships between neighboring nodes to build

an embedding space that aggregates information from the

node features even in different spaces. Significant ad-

vances are observed in multi-modal and unstructured data

applications [34].

For musical data, [35] explores the task of similarity

between artists. Authors use data previously structured to

create the graph and apply it in GCN to build music em-

beddings with acoustic characteristics and tags. Finally,

the embeddings are used to predict links to new artists. In

contrast, [36] introduces a proposal of graph-based repre-

sentation learning with the graph being constructed from a

co-occurrence matrix obtained by the presence of pairs of

songs in playlists.

Our proposal aims to create a heterogeneous network

with multiple musical features and connect nodes that

share cluster information. This network produces the fea-

tures input for GCN to build a multi-modal representa-

tion and handle the music emotion recognition task. Our

learned representation does not depend on previous infor-

mation to structure the graph. Although we do not extend

the approach to the multi-task scenario, it can be easily

adapted for different tasks, maintaining the same heteroge-

neous network.

3. MODELLING

Our goal is to recognize emotions present in songs, such

as a classification problem Y = f(X), where Y represents

the set of emotion labels, X represents the songs, and f(.)
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denotes the function responsible for predicting emotions

from a multi-modal musical representation given as input.

The proposed method for handling the MER is divided

into three steps. The first step is to construct a heteroge-

neous network to structure songs in nodes and organize

the acoustic and lyrics features available in the PMEmo

dataset into different layers and build the relationships.

Then, in sequence, we regulate the network to propagate

information between nodes of different layers and explore

the semantic complementarity between features of both

modalities. Finally, we use the regularized network as

input our multi-modal network embedding method using

Graph Convolutional Network (GCN). The generated em-

beddings are also used by GCN to classify the emotion of

the songs.

3.1 Heterogeneous network to structure music data

Musical data are intrinsically multi-modal, formed by fea-

tures semantically complementary. Therefore, building a

representation that incorporates multiple features demands

manipulating modalities organized in different spaces. In

this sense, heterogeneous networks offer resources for

structuring data as nodes, with each modality projected on

a layer and forming relationships between nodes for infor-

mation sharing.

Mapping unstructured data on graphs has been gain-

ing attention in the literature, motivated by the success of

GNN-based learning models. For musical data, [37, 38]

proposes to build a graph relating nodes from a distance

function where nearby nodes are connected, while [39] as-

sumes that all nodes are connected by adding weights in

the edges, and as the works aforementioned [35, 36] that

employing existing information to create a graph structure.

We propose constructing the graph topology by using clus-

ters for each modality as network nodes. Thus, we model

the relationships between music, audio and texts from the

cluster labels for each modality. Figure 2 illustrates this

process, where songs are initially clustered according to

their audio features. In this work, we use the k-means al-

gorithm; however, the modeling is not dependent on a spe-

cific clustering algorithm. Then both clusters and songs

are considered network nodes. The links indicate associ-

ation between songs and clusters formed with audio fea-

tures. This process is repeated for textual features, thereby

allowing to obtain a heterogeneous network with three lay-

ers as shown in Figure 3.

Music 
dataset

Clustering Algorithm 
(K-means)

Music
Audio

Figure 2: Illustration of mapping songs and respective au-

dio features in a bipartite graph using clustering. This pro-

cess is repeated for text features to generate the proposed

heterogeneous network.

The heterogeneous network is formally defined as N =
(O,R,W ), where O represents the set of objects, R rep-

resents the relationships and W represents the weights.

Let oi ∈ O as the notation for an object, r_o_i, o_j =
(oi, oj) ∈ R indicates whether there is a connection be-

tween the objects oi and oj , where the weight of roi,oj is

given by woi,oj with w ∈ W . Currently, our propose use

binaries relationships, woi,oj ∈ {0, 1}, for example, if a

music node oi is associated to a cluster with textual infor-

mation, or audio information, oj .

The benchmark dataset used has textual and acoustic

features so that the set of objects O = {OM ∪ OA ∪ OT }
is organizing each feature modality in the heterogeneous

network proposed for musical data. OM are objects rep-

resenting each music in the dataset, OA are objects repre-

senting acoustic features formed by audio descriptors, and

OT are objects representing textual features extracted from

the lyrics.

3.2 Network regularization

In the proposed heterogeneous network, the objects o ∈ O

have one or more initial features vectors. For example, an

object om ∈ OM that represents a music might contain

an acoustic feature vector x
(A)
om ∈ R

dA , as well as a tex-

tual feature vector x
(T )
om ∈ R

dT . The vectors are in their

respective spaces R
dA (e.g. melspectrogram or chroma-

gram) and R
dT (e.g. word2vec or BERT). However, ob-

jects in sets OA and OT exclusively have the initial fea-

tures of their modalities. Still, we highlight that objects in

OM may contain absent modalities, such as missing lyrics

for some musics. Thus, inspired by the concept of em-

bedding propagation from networks [40], we integrate a

regularization framework capable of propagating informa-

tion between objects of different modalities according to

the network topology.

The regularization process exploits the network topol-

ogy to propagate information between objects to comple-

ment missing information and adjust existing features ac-

cording to the object label. The process is represented in

Figure 3. The music is the input data, where each feature

modality composes a layer in the heterogeneous network.

Objects in the central layer are in OM and are connected

to objects of other types, having their feature vectors. The

objects in OA contain audio descriptors, and objects in OT

contain lyrics features. When finish regularization process,

all objects will have feature vectors from objects of differ-

ent modalities.

The proposed method to perform the network regular-

ization is an instance of label propagation methods [41].

This step aims to propagate the object’s features, assuming

two constraints: neighboring objects must have similar fea-

tures; the final feature vector must be similar to the initial

features for objects. Formally, network regularization can

be associated with a representation learning problem. We

define as learning a mapping function f : oi → zoi ∈ R
d

, where zoi is the learned vector of object oi ∈ O in net-

work N(O,R,W ). The equation 1 defines the function to

be minimized to learn the new space Z ∈ R
d, in which all
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Figure 3: The heterogeneous network regularization aims

to fill in missing modalities in objects. Objects on the cen-

tral layer have relationships with objects on other layers.

After regularization, all nodes receive information from

neighbors nodes (highlights in red) with different modal-

ities from the network topology.

heterogeneous network objects are mapped.

Q(Z) =
1

2

∑

om∈OM

∑

oa∈OA

wom,oa(zom − zoa)
2

+
1

2

∑

om∈OM

∑

ot∈OT

wom,ot(zom − zot)
2

+µ
∑

oi∈OX

(zoi − xoi)
2

(1)

The two initials terms of the regularization function are

responsible for computing the proximity between the fea-

ture vectors for each pair of related objects in the network,

indicating the weight of the relationship between the ob-

jects. The last term is responsible for computing the dis-

tance between the features of objects that had initial fea-

tures, OX , and the features learned in the space Z. The pa-

rameter µ determines the level of preservation in the initial

features. The high value indicates the more preservation

of the features, while low values allow adjusting the fea-

tures according to the network topology. The Equation (1)

is applied for each modality, textual and acoustic. There-

fore, at the end of the regularization process, we obtained

Zaudio and Ztext for all nodes in the network. Finally, we

concatenate both spaces, Z⊕ = Zaudio ⊕ Ztext.

3.3 Graph Convolutional Networks

The general idea of graph learning methods is to iteratively

update object representations, combining them with rep-

resentations of their neighbors. In this context, initially,

the objects are represented by Z⊕ resulting from the reg-

ularization. The neighboring nodes are obtained from the

heterogeneous network N , indicated by an adjacency ma-

trix A. In particular, we used a GCN to learn the final

representation and handle the MER task. The represen-

tation obtained by the GCN is represented by the matrix

F ∈ RT×D, where T is the number of nodes and D is the

dimension of the new unified space learned. In general, a

GCN can be described according to Equation 2,

H(l+1) = f(H(l), A) = α(AH(l)W (l)) (2)

where H(0) = X , l, represents the current layer, A repre-

sents the adjacency matrix, W (l) represents the weight in

l-th layer in a neural network, and α(., .) defines the acti-

vation function. The layer H(l+1) = H(L) = U contains

the new learned space by GCN.

We pre-process the adjacency matrix A in the GCN.

First, we need to add self-loops on each node to consider its

features in the learning process. Then, we add A to identity

matrix I , which result in Â. In addition, we normalize A to

maintain the representation vectors scale in each layer. We

did the matrix normalization by multiplying A with D−1,

where D indicates a diagonal matrix formed by the degrees

of each node in the network, or A by D−
1

2 , for symmet-

ric normalization. Thus, the adjacency matrix used in the

GCN is defined by Equation 3,

Â = D−
1

2SD−
1

2 (3)

where S = A + I , I represents the identity matrix, and

Dii =
∑

j Sij indicates the node degree.

The proposed GCN architecture comprises three graph

convolutional layers combined with a hyperbolic tangent

activation function. The dimensionality of vector input for

each layer is indicated by the previous layer’s output. The

first layer receives the learned matrix Z⊕ to produce vec-

tors with 512, 256, and 128 dimensions in next layers. Fur-

thermore, we computed a softmax cross-entropy as the last

layer to indicate the probability that each music is associ-

ated with emotion labels. Finally, we train the networks

using the ADAM optimizer with a learning rate of 0.0001

and 3000 epochs.

4. EXPERIMENTS

Our experiments aim to evaluate the construction of a het-

erogeneous network to structure musical data and learn and

evaluate a multi-modal graph-based representation in the

music emotion recognition task. The k parameter defines

the number of clusters used to connect objects in the het-

erogeneous network. This parameter is the main target of

the analysis during network construction. The number of

clusters allows us to create new connections between ob-

jects that initially have different labels, exploit regulariza-

tion to propagate information and refine their representa-

tions.

We evaluated the representation learned with the GCN

by comparing using two classifiers that utilize as input the

representations formed by features provided in the dataset,

including combinations between them. Finally, our results

are relationships with similar works of literature. In all

evaluation scenarios, our proposal presented the best re-

sults.

4.1 Dataset and features

The PMEmo is a popular music dataset with emotional an-

notations as a benchmark in music emotion retrieval and

recognition [19]. PMEmo dataset containing emotion an-

notations of 794 songs in arousal and valence domains with

audio and lyrics features. For acoustic features, PMEmo

has a pre-computed vector composed of audio descriptors,

which represent the music chorus information. In addition,
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there are the lyrics and a source code for textual features

to pre-process it and build the feature vector based on Bag-

of-Words (BoW).

In addition to the representations of each modality, the

authors of the PMEmo dataset [19] also presented compet-

itive approaches that explore emotion classification based

on fusion features, which were explored for comparison

with our proposed method.

Besides these two representations, we build another

textual feature on the lyrics using a pre-trained language

model based on BERT models 1 fine-tuned to sentence

similarity tasks, to have a more robust representation than

the BoW. The model uses a triplet network structure to pro-

duce lyrics embeddings. Thus, we explored five strate-

gies to represent the music that varies between isolated

features and concatenation between them, as indicated

in the PMEmo baseline scenario: Audio, Bert, BoW,

Audio+BoW, Audio+Bert. Therefore, we have re-

sources to build uni-modal and multi-modal scenarios to

evaluate the emotion recognition task.

We have discretized the annotations in arousal and va-

lence domains to transform the values in the labels, accord-

ing to the works [42, 43]. First, we remove instances with

missing information, and normalize the values of both do-

mains with a range between 1 and 9. So, we assign the

labels according to the values. An instance is negative if

the normalized value is < 4.5; neutral if value >= 4.5 and

< 5.5; or positive if value >= 5.5. The table 1 summarize

the number of instances distributed for each label, as well

as the dimensionality for all feature vectors.

Feature size Instances in each label

Audio 6373 Arousal Valence

Bert 512 Negative 151 145

Bert 7670 Neutral 100 96

Positive 354 364

Total 605

Table 1: Summary of dataset properties

4.2 Experimental setup

The representation learning with a GCN is done through a

transductive process, where we need to know the complete

dataset. As our goal is to recognize the emotions present

in the music, we divided the dataset into stratified ten folds

and masked the labels in test folds. As comparison ap-

proaches, we reproduce another transductive classification

method based on label propagation (LPA). The instance la-

bels in the test set are changed during the learning process

and must converge to the original labels. We also repro-

duce an inductive scenario using a multilayer perceptron

classifier (MLP). In this scenario, the test set is unknown,

and the labels are predicted according to patterns learned

during training 2 . In both scenarios, the features were nor-

1 https://huggingface.co/sentence-transformers/distiluse-base-
multilingual-cased-v1

2 The LPA and MLP algorithms used are implementations available in
the sklearn library using default parameters.

malized for each split according to train and test folds.

We evaluated a variation in the number of clusters that

structure the objects represented by acoustic and textual

features such that k ∈ {3, 7, 13, 20, 30}. The smallest

value represents the original number of labels, while the

largest value is defined by
√
N , where N indicates the

samples in the dataset. We assume the hypothesis that by

increasing the number of clusters, we can relate objects in

the network with similar content but do not share the same

label or objects that share a label and can be associated

with objects with more similar content.

4.3 Results and discussions

We reported the mean and standard deviation for the F1-

score and Accuracy metrics for each musical data repre-

sentation strategy for the three evaluated methods. We

refer to our representation as MRLGCN, an acronym for

Music Representation Learning using GCN. Emotion la-

bels are commonly explored in conjunction with text-based

representations, so acoustic features are proposed to com-

plement the representation. We can notice in Figure 4 that

representations that concatenate both features do not lead

to performance improvement. Observing the performance

obtained by our approach, we can highlight the relevance

of a learning process to incorporate the information of the

different features.

Audio Audio + Bert Audio + BoW Bert BoW MRLGCN

Representation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
1
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c
o
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Approaches
MLP

LPA

MRLGCN

Audio Audio + Bert Audio + BoW Bert BoW MRLGCN

Representation

0.0

0.1

0.2
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F
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MLP

LPA

MRLGCN

Figure 4: In the uni-modal scenario, textual features are

more associated with emotion labels than acoustic features.

In the multi-modal scenario, concatenating acoustic and

lyrics features did not result in a more efficient represen-

tation, showing that exploring the semantic complemen-

tarity demands more robust strategies. Our representation

presented the best result in both domains, evidencing the

presence of relevant information in all the features used.

Figure 5 shows the results obtained by our method when

the number k of clusters varies. We can notice that the

performance of MRLGCN increases when k increases. It

validates the hypothesis that we have objects with similar

content that must be related, even those that do not share

labels. Although it shows an upward trend, it is expected
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that the performance stabilizes and decreases after a cer-

tain k. This behavior is explained by the appearance of

disconnected graphs that influence the regularization of the

network, affecting the propagation of information between

objects.

F1-score Accuracy
Clusters µ σ µ σ

3 0.4530 0.096 0.6421 0.050

7 0.5231 0.087 0.6701 0.051

13 0.6010 0.107 0.7224 0.059

20 0.6612 0.120 0.7589 0.073

30 0.7018 0.131 0.7833 0.084

(a) Arousal domain

F1-score Accuracy
Clusters µ σ µ σ

3 0.4820 0.089 0.6659 0.055

7 0.5300 0.099 0.6945 0.062

13 0.6095 0.127 0.7386 0.079

20 0.6399 0.137 0.7564 0.078

30 0.6873 0.151 0.7842 0.095

(b) Valence domain

Table 2: Results obtained with average (µ) and standard

deviation (σ) for F1-score and accuracy metrics for each k

value.

3 7 13 20 30
Clusters (k)

0.4

0.6

0.8

1.0

F1
-s

co
re

Arousal domain

3 7 13 20 30
Clusters (k)

0.4

0.6

0.8

1.0

F1
-s

co
re

Valence domain

Figure 5: Performance in arousal and valence domains ac-

cording to increase k value. The variation in the number

of clusters highlights that the contents of the objects have

similar relationships that may not be presented only by the

label information.

Due to the unbalanced data distribution, we report a

confusion matrix for each k to validate that the values pre-

sented for both metrics result from a learning process with-

out bias towards the majority label. We can see that the in-

crease in the metrics shown in Table 2 is accompanied by

a proportional increase in the percentage of correct predic-

tions for three labels, as seen in Figure 6.

5. CONCLUDING REMARKS

This work presents a new proposal to structure musical

data using heterogeneous networks and build a graph-

based multi-modal representation using Graph Convolu-

tional Network to handle music emotion recognition tasks.

We map acoustic and textual features as objects in differ-

ent layers on a heterogeneous network, using cluster in-

formation to build relationships among objects, and insert

a network regularization framework to propagate informa-

tion between objects of other modalities. The embeddings
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Figure 6: We highlighted the behavior of balanced growth

of correct predictions across all labels, without bias for the

majority label. This matrix evidences the learning process

during the increase in the number of clusters.

resulting are used as input for GCN to learn a new music

representation, with application in music emotion recog-

nition task. Our proposal presented superior results in all

evaluation scenarios and an significant improvement ratio

concerning works in the literature. The results reinforce

the applicability of graph-based representations in unstruc-

tured and multi-modal data.

Our proposal can be seen as a strategy that exploits a

welcome trade-off for musical data representation. First,

heterogeneous networks show explicit relationships be-

tween audio and text features and facilitate interpretability.

Second, a GCN-based deep neural network learns embed-

dings that map the heterogeneous network into a promising

representation for music emotion recognition.

In future work, we want to add other features as lay-

ers in the heterogeneous network and propose the inclu-

sion of an importance matrix during representation learn-

ing. We will define criteria for determining optimal pa-

rameters for building the heterogeneous network and GCN

architecture. In addition, we want to identify semantic rel-

evance for each feature, measure the discriminative capac-

ity’s impact on learned representation, and evaluate the ef-

fect of the regularization step, like an ablation study. Fi-

nally, we can integrate the regularization process and GCN

in an end-to-end framework for emotion music classifica-

tion. The source code, datasets, and heterogeneous net-

works used in this paper are publicly available at https:

//github.com/AngeloMendes/Heterogeneou

s-Graph-Neural-Network-for-Music-Emoti

on-Recognition.
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