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ABSTRACT

An ideal music synthesizer should be both interactive and

expressive, generating high-fidelity audio in realtime for

arbitrary combinations of instruments and notes. Re-

cent neural synthesizers have exhibited a tradeoff between

domain-specific models that offer detailed control of only

specific instruments, or raw waveform models that can

train on any music but with minimal control and slow gen-

eration. In this work, we focus on a middle ground of

neural synthesizers that can generate audio from MIDI se-

quences with arbitrary combinations of instruments in re-

altime. This enables training on a wide range of transcrip-

tion datasets with a single model, which in turn offers note-

level control of composition and instrumentation across a

wide range of instruments. We use a simple two-stage

process: MIDI to spectrograms with an encoder-decoder

Transformer, then spectrograms to audio with a genera-

tive adversarial network (GAN) spectrogram inverter. We

compare training the decoder as an autoregressive model

and as a Denoising Diffusion Probabilistic Model (DDPM)

and find that the DDPM approach is superior both qualita-

tively and as measured by audio reconstruction and Fréchet

distance metrics. Given the interactivity and generality of

this approach, we find this to be a promising first step to-

wards interactive and expressive neural synthesis for arbi-

trary combinations of instruments and notes.

1. INTRODUCTION

Neural audio synthesis of music is a uniquely difficult

problem due to the wide variety of instruments, playing

styles, and acoustic environments. Among current ap-

proaches, there is often a trade-off between interactivity

and generality. Interactive models, such as DDSP [3,4], of-

fer realtime synthesis and fine-grained control, but only for
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specific types of instruments with domain-specific training

information. On the other hand, models like Jukebox [5]

are much more general and allow for training on any type

of music, but are several orders of magnitude slower than

realtime and offer more limited and global control, such

as lyrics and global style (though with some early MIDI

conditioning experiments).

Natural language generation and computer vision have

seen dramatic recent progress through scaling generic

encoder-decoder Transformer architectures [6,7]. MT3 [8,

9] demonstrated that such an approach can be adapted

to Automatic Music Transcription, transforming spectro-

grams to variable-length sequences of notes from arbitrary

combinations of instruments. This generic approach en-

ables training a single model on a wide variety of datasets:

anything with paired audio and MIDI examples.

In this paper, we explore the inverse problem: finding

a simple and general method to transform variable-length

sequences of notes from arbitrary combinations of instru-

ments into spectrograms. By pairing this model with a

spectrogram inverter, we find that we are able to train on

a wide variety of datasets and synthesize audio with note-

level control over both composition and instrumentation.

To summarize, our contributions include:

• Demonstrating that the generic encoder-decoder

Transformer approach used for multi-instrument

transcription can likewise be adapted for multi-

instrument audio synthesis.

• Realtime synthesis enabling interactive note-level

control over both composition and instrumenta-

tion, by pairing a MIDI-to-spectrogram Transformer

model with a GAN spectrogram inverter, and train-

ing on a wide range of paired audio/MIDI datasets

(synthetic and real) with diverse instruments.

• Adapting DDPM decoding for arbitrary length syn-

thesis without edge artifacts, through additional au-

toregressive conditioning on segments (∼5 seconds)

of previously generated audio.

• Quantitative metrics and qualitative examples

demonstrating the advantages of segment-wise dif-

fusion decoders over frame-wise autoregressive de-

coders for continuous spectrograms.
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Figure 1. Training configuration for our spectrogram diffusion model. The architecture is an encoder-decoder Transformer

that takes a sequence of note events as input and outputs a spectrogram. We train the decoder stack as a Denoising Diffusion

Probabilistic Model (DDPM) [1], where the model learns to iteratively refine Gaussian noise into a target spectrogram

(Figure 2). We generate ∼5 second spectrogram segments, and to ensure a smooth transition between these segments we

(optionally) encode the previously generated segment in a second encoder stack. At inference time, a generated spectrogram

is inverted to a waveform using a model similar to MelGAN [2]. “P.E.” means Positional Encoding.

• Source code and pretrained models 1 .

2. RELATED WORK

Neural audio synthesis first proved feasible with autore-

gressive models of raw waveforms such as WaveNet and

SampleRNN [10, 11]. These models were adapted to han-

dle conditioning from latent variables [12, 13] or MIDI

notes [14–17], but suffer from slow generation due to need-

ing to run a forward pass for every sample of the waveform.

Real-time synthesis often requires the use of specialized

CPU and GPU kernels [18, 19]. These models also have

limited temporal context due to the high sample rate of au-

dio (e.g., 16kHz or 48kHz), where even the largest recep-

tive fields (thousands of timesteps) can equate to less than

a second of audio.

Approaches to overcome these speed limitations of

waveform autoregression have focused on generating au-

dio directly with a single forward pass. Architectures

commonly either use GANs [20–23], controllable differen-

tiable DSP elements such as oscillators and filters [3,4,24–

27], or both [28, 29]. These models often focus on limited

domains such as generating a single instrument/note/voice

at a time [4, 15, 16, 30]. Here, we focus our search on ar-

chitectures capable of both realtime synthesis, note-level

control, and synthesizing mixtures of multiple polyphonic

instruments at once.

Researchers have also overcome temporal context lim-

itations of waveform autoregression by adopting a multi-

stage approach, first creating coarser audio representations

at a lower sample rate, and then modeling those representa-

tions with a predictive model before decoding back into au-

dio. For example, Jukebox and Soundstream [5,31,32] use

1 https://github.com/magenta/

music-spectrogram-diffusion

a Transformer to autoregresively model the discrete vector-

quantized codes [33] of a base waveform autoencoder.

Tacotron architectures [34–36] have demonstrated that

straightforward spectrograms can be an effective audio

representation for multi-stage generation, first autoregres-

sively generating continuous-valued spectrograms, and

then synthesizing waveforms with a neural vocoder. The

success of this approach led to a flurry of research

into spectrogram inversion models, including streamlined

waveform autoregression, GANs, normalizing flows, and

Denoising Diffusion Probabilistic Models (DDPMs) [1, 2,

18,37–39]. Our approach here is inspired by Tacotron. We

use an autoregressive spectrogram generator paired with a

GAN spectrogram inverter as a baseline, and further im-

prove upon it with a DDPM spectrogram generator.

DDPMs and Score-based Generative Models (SGMs)

have proven well-suited to generating audio representa-

tions and raw waveforms. Speech researchers have demon-

strated high-fidelity spectrogram inversion [38, 39], text-

to-speech [40, 41], upsampling [42], and voice conver-

sion [43, 44]. Musical applications include singing syn-

thesis of individual voices [45, 46], drums synthesis [47],

improving the quality of music recordings [48], sym-

bolic note generation [49], and unconditional piano gen-

eration [50]. Similar to singing synthesis, here we inves-

tigate DDPMs for spectrogram synthesis, but focusing on

arbitrary numbers and combinations of instruments.

3. ARCHITECTURE

We approach the problem of audio synthesis using a two-

stage system. The first stage consists of a model that pro-

duces a spectrogram given a sequence of MIDI-like note

events representing any number of instruments. We then

use a separate model to invert those spectrograms to au-
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Figure 2. Our decoder stack is trained as a Denoising Diffusion Probabilistic Model (DDPM) [1]. The model starts

with Gaussian noise as input and is trained to iteratively refine that noise toward a target, conditioned on a sequence of

note events and the spectrogram of the previously rendered segment. This figure illustrates the diffusion process for one

example segment.

dio samples. Our model for the first stage is an encoder-

decoder Transformer architecture, shown in Figure 1. The

encoder takes in a sequence of note events and, optionally,

a second encoder uses an earlier part of the spectrogram as

context. These embeddings are passed to a decoder, which

generates a spectrogram corresponding to the input note

sequence. Here, we explore training the decoder autore-

gressively (Section 3.1) or as a Denoising Diffusion Prob-

abilistic Model (DDPM) [1] (Section 3.2).

Our architecture uses the encoder-decoder Transformer

from T5 [51] with T5.1.1 2 improvements and hyperpa-

rameters. We use the same note event vocabulary and note

sequence encoding procedure as MT3 [8]. We find that

training on a full song is prohibitive in terms of memory

and compute due to the quadratic scaling of self-attention

with sequence length, so we split note sequences into seg-

ments. Specifically, we train models with 2048 input posi-

tions for note events and 256 output positions for spectro-

gram frames. Each spectrogram frame represents 20 ms of

audio, so each segment is 5.12 seconds.

Rendering audio segments independently introduces the

problem of how to ensure smooth transitions between the

segments once they are eventually concatenated together to

form a full musical piece. We address this problem by pro-

viding the model with the spectrogram from the previously

rendered segment, meaning that this model is autoregres-

sive at the segment level. This context segment has its own

encoder stack with 256 input positions. As seen in Fig-

ure 1, the outputs of both encoder stacks are concatenated

together as input for cross-attention in the decoder layers.

We use sinusoidal position encodings, as in the original

Transformer paper [52]. However, we found better perfor-

mance if we decorrelated the position encodings of each

network, as they have different meanings. We decorrelate

the encodings by applying a unique random channel per-

mutation and phase offset for the sinusoids used in each of

the encoder and decoder stacks.

3.1 Autoregressive Decoder

As an initial approach, we took inspiration from

Tacotron [34, 35], and trained the decoder as an autore-

2 https://github.com/google-research/

text-to-text-transfer-transformer/blob/main/

released_checkpoints.md#t511

gressive model on the continuous spectrograms. In this

setting, standard causal masking was applied throughout

the self-attention layers. The inputs and outputs are contin-

uous spectrogram frames, and the model was trained with

a mean-squared error (MSE) loss on those frames. Mathe-

matically, this is equivalent to training a continuous autore-

gressive model with a Gaussian output distribution with

isotropic and fixed variance. We also tried training models

using mixtures of several Gaussians, but they tended to be

unstable during sampling.

For sampling we use a fixed variance (0.2 in units of log

magnitude) that is added to the outputs of every inference

step. In practice, this “dithering” reduced strong audio ar-

tifacts due to overly smooth outputs.

Despite this, these baseline models still produce spec-

trogram outputs that tend to be blurry and contain jarring

artifacts in some frames. We hypothesized an approach

enabling incremental, bidirectional refinement, and model

dependencies between frequency bins, could help resolve

these issues.

3.2 Diffusion Decoder

Taking inspiration from recent successes in image gener-

ation such as DALL-E 2 and Imagen [53, 54], we investi-

gated training the decoder as a Denoising Diffusion Prob-

abilistic Model (DDPM) [1].

DDPMs are models that generate data from noise by

reversing a Gaussian diffusion process that turns an in-

put signal x into noise ǫ ∼ N (0, I). This forward pro-

cess occurs over diffusion timesteps t ∈ [0, 1] (not to be

confused with time for the audio) resulting in noisy data

xt = αtx + σtǫ, where αt ∈ [0, 1] and σt ∈ [0, 1] are

noise schedules that blend between the original signal and

the noise over the diffusion time. In this work, the decoder,

ǫθ with parameters θ, is trained to predict the added noise

given the noisy data by minimizing an L1 objective,

E
x,c,ǫ,t

wt||ǫθ(xt, c, t)− ǫ||1
1

(1)

where wt is a loss weighting for different diffusion

timesteps and c is additional conditioning information for

the decoder. Schedules for wt, αt and ǫt are hyperparam-

eters chosen to selectively emphasize certain steps in the

reverse diffusion process.
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During sampling, we follow the reverse diffusion pro-

cess by starting from pure independent Gaussian noise for

each frame and frequency bin and iteratively use noise es-

timates to generate new spectrograms with gradually de-

creasing noise content. Full details of this process can be

found in Ho et al. [1] and source code is provided for clar-

ity 3 . A visualization of the forward and reverse diffusion

process can be seen in Figure 2.

Because the diffusion process expects inputs to be in

the range [−1, 1], we scale spectrograms used for training

targets and audio context to that range before using them.

During inference, we scale model outputs back to the ex-

pected spectrogram range before converting them to audio.

During training, we used a uniformly-sampled noise

time step in [0, 1] for each training example and run the dif-

fusion process forward to that step with randomly sampled

Gaussian noise. The noisy example is then used for in-

put, and the model is trained to predict the Gaussian noise

component with Equation (1). During inference, we run

the diffusion process in reverse using 1000 linearly spaced

steps in [0, 1].
Based on the implementation of Imagen [54], we also

incorporated several recent DDPM improvements, includ-

ing using logSNR [55, 56], a cosine noise schedule [57]

of cos(t ∗ π/2)2, and Classifier-Free Guidance [58] dur-

ing sampling. In particular, we found that using Classifier-

Free Guidance during sampling led to samples that were

less noisy and more crisp sounding. After a coarse sweep

of values, we train with a conditioning dropout probability

of 0.1 and sample with a conditioned sample weight of 2.0.

Many diffusion models use a UNet [59] architecture,

but in order to stay close to the architecture used in MT3,

we used a standard Transformer decoder with no causal

masking. We incorporate the noise time information by

first converting the continuous time value to a sinusoid

embedding using the same method as the position encod-

ings in the original Transformer paper [52] followed by

an MLP block. That embedding is then incorporated at

each decoder layer using a FiLM [60] layer before the self-

attention block and after the cross-attention block. The

outputs of note events and spectrogram context encoder

stacks are concatenated together and incorporated using a

standard encoder-decoder cross-attend layer.

3.3 Spectrograms to Audio

To translate the model’s magnitude spectrogram output

to audio, we use a convolutional spectrogram inversion

network as proposed in MelGAN [2]. In particular, we

base our implementation on the more recent SEANet [61]

and SoundStream [31]. This model first applies a 1D-

convolution with kernel size 3 and stride 1. It then cas-

cades four blocks of layers. Each block is composed of

a transposed convolution followed by three residual units,

applying a dilated convolution with kernel size 3 and dila-

tion rate 1, 3, and 9 respectively. ELUs [62] are used after

each convolution. As in [31], the model is trained with a

3 https://github.com/magenta/

music-spectrogram-diffusion

mix of three loss functions. The first is a multi-scale spec-

tral reconstruction loss, inspired by [63]. The second and

third losses are an adversarial loss and a feature matching

loss, computed with two discriminators, one STFT-based

and one waveform-based. We train this spectrogram in-

verter on an internal dataset of 16k hours of uncurated mu-

sic with Adam [64] for 1M steps with a batch size of 128.

The spectrograms used for training both the spectro-

gram inverter and the synthesis models used audio with a

sample rate of 16 KHz, an STFT hop size of 320 samples

(20 ms), a frame size of 640, and 128 log magnitude mel

bins ranging in frequency from 0 to 8 KHz.

4. DATASETS

Our architecture is flexible enough to train on any dataset

containing paired audio and MIDI examples, even when

multiple instruments are mixed together in the same track

(e.g., individual instrument stems are unavailable). Thus,

we are able to use all the same datasets used to train

the MT3 transcription model: MAESTROv3 [14] (piano),

Slakh2100 [65] (synthetic multi-instrument), Cerberus4

[66] (synthetic multi-instrument), Guitarset [67] (guitar),

MusicNet [68] (orchestral multi-instrument), and URMP

[69] (orchestral multi-instrument).

We use the same preprocessing of these datasets as

MT3, including the data augmentation strategy used for

Slakh2100 where 10 random subsets of instruments from

each track were selected to increase the number of

tracks. We also use the same train/validation/test splits.

Our coarse hyperparameter sweeps (e.g., for selecting

Classifier-Free Guidance weighting) were done using only

validation sets. Results are reported on the test splits, ex-

cept for Guitarset and URMP which do not have a test split,

and so the validation split was used for final results.

The datasets used in these models contain a wide va-

riety of instruments, both synthetic and real. In order to

simplify training, we map all MIDI instruments to the 34

Slakh2100 classes plus drums. These mappings cover all

General MIDI classes other than “Synth Effects”, “Other”,

“Percussive”, and “Sound Effects”. As a result, the trained

model is capable of synthesizing arbitrary MIDI files while

retaining clear instrument identity.

We use the same note event vocabulary as MT3, which

is similar to MIDI events. Specifically, there are events

for Instrument (128 values), Note (128 values), On/Off (2

values), Time (512 values), Drum (128 values), End Tie

Section (1 value), and EOS (1 value). A full description

of these events can be found in Section 3.2 of the MT3

paper [8]. Because not all datasets include velocity infor-

mation, we do not currently include velocity events (as in

MT3) and rely on the model’s decoder to produce natural

sounding velocities given the music context.

Training on such a diverse set of examples gives the

model flexibility during synthesis. For example, we can

synthesize a track with realistic piano sounds learned from

MAESTRO, orchestral instruments from URMP, and syn-

thesizers and drum beats from Slakh.
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Figure 3. The “Small w/o Context” model (top) does not

receive the previously rendered segment as conditioning

input and exhibits clear artifacts at segment boundaries

(note the dip in RMS after the segment boundary). The

“Base w/ Context” model (middle) has access to the pre-

vious segment as conditioning information and achieves

smooth transition between segments. By repeating the pro-

cess of rendering a segment and then feeding that segment

in as context for the next segment, this model is capable of

rendering arbitrary length pieces.

5. EXPERIMENTS

We used the MT3 codebase as a starting point [72], and ex-

periments were implemented using t5x for model training

and seqio for data processing and evaluation [6].

We used the T5.1.1 “small” or “base” Transformer hy-

perparameters. For “small”, there are 8 layers on the en-

coder and decoder stacks, 6 attention heads with 64 dimen-

sions each, 1024 MLP dimensions, and 512 embedding di-

mensions. For “base”, there are 12 layers on the encoder

and decoder stacks, 12 attention heads with 64 dimensions

each, 2048 MLP dimensions, and 758 embedding dimen-

sions. We used float32 activations for all models.

Using the datasets described above, we trained four ver-

sions of the synthesis model: an 85M parameter “small”

autoregressive model with no spectrogram context, an

85M parameter “small” diffusion model with no context,

a 104M parameter “small” diffusion model with context,

and a 412M parameter “base” diffusion model with con-

text. Training used a batch size of 1024 on 64 TPUv4s

with a constant learning rate of 1e−3 for 500k steps with

the Adafactor [73] optimizer. Depending on model size

and hardware availability, training took 44–134 hours.

5.1 Metrics

We evaluate model performance on the following metrics:

Reconstruction Embedding Distance For this metric,

we pass an individual audio clip and a synthesis model’s

reconstruction of that audio into a classification network

and calculate the distance in the classification network’s

embedding between the two signals. Here, we report num-

bers from both VGGish [70] and TRILL [71]. To compute

the distance we use the Frobenius norm of the network’s

embedding layer, averaged over time frames. VGGish out-

puts 1 embedding per input audio second, and we use the

model’s output layer as the embedding layer. TRILL out-

puts ∼5.9 embeddings per input audio second, and we use

the network’s dedicated “embedding” layer.

Fréchet Audio Distance (FAD) FAD measures the per-

ceptual similarity of the distribution of all of the model’s

output over the entire evaluation set of note events to the

distribution of all of the ground truth audio [74].

MT3 Transcription This metric measures how well the

synthesis model is reproducing the notes and instruments

specified in the input data. We pass the synthesis model

output through a pretrained MT3 transcription model and

compute an F1 score using the “Full” metric from the MT3

paper as calculated by mir_eval [75]. A note is consid-

ered correct if has a matching note onset within ±50 ms, an

offset within 0.2 · reference_duration or 50 ms (whichever

is greater), and has the exact instrument program number

as the input data.

Realtime (RT) Factor This measures how fast synthesis

is compared to the duration of the audio being synthesized.

For example, an RT Factor of 2 means that 2 seconds of

audio can be created with 1 second of wall time compute.

Inference is performed on a single TPUv4 with a batch size

of 1. Here, we include both spectrogram inference and

spectrogram-to-audio inversion.

The reconstruction and FAD metrics require embedding

both model output and ground truth audio using a model

sensitive to perceptual differences. Following the orig-

inal FAD formulation, we use the VGGish model [70].

To avoid any biases from that particular model, we also

compute embeddings using the TRILL model [71]. Pre-

trained models for computing these embeddings were ob-

tained from the VGGish 4 and TRILL 5 pages on Tensor-

Flow Hub. Due to the large size of the datasets and the

high compute and memory requirements for these metrics,

we limit metrics calculation to the first 10 minutes of audio

for each example.

4 https://tfhub.dev/google/vggish/1
5 https://tfhub.dev/google/nonsemantic-speech-benchmark/trill/3
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Model
VGGish [70] TRILL [71]

Transcription F1 ↑ RT Factor ↑
Recon. ↓ FAD ↓ Recon. ↓ FAD ↓

Small Autoregressive 3.70 1.03 7.27 0.39 0.31 10.55

Small w/o Context 3.49 1.07 6.16 0.46 0.31 2.82
Small w/ Context 3.56 1.10 6.40 0.53 0.25 3.07
Base w/ Context 3.13 1.00 2.74 0.27 0.36 1.05

Ground Truth Encoded 2.14 0.51 1.54 0.05 0.36 12.25
Ground Truth Raw 0.00 0.00 0.00 0.00 0.63 –

Table 1. Synthesis model experiment results. Metrics are the mean across all evaluation datasets. “Small” and “Base”

refer to model capacity (Section 5). “Ground Truth Encoded” refers to the ground truth audio encoded by the spectrogram

inverter (Section 3.3) and represents an upper limit on synthesis model performance. “Ground Truth Raw” refers to the un-

processed ground truth audio and represents an upper limit on transcription model performance. Metrics are fully described

in Section 5.1 and results are discussed in Section 5.2.

5.2 Results

We first evaluated a “small” autoregressive model (Sec-

tion 3.1). Initial results were promising, but quantitative

and qualitative evaluation of results made it clear that this

approach would not be sufficient.

We then investigated using a diffusion approach (Sec-

tion 3.2). Results from a “small” model were impressive

(nearly maxing out the Transcription metric), but we no-

ticed abrupt timbre shifts and audible artifacts at segment

boundaries, as illustrated in Figure 3. This makes sense be-

cause the synthesis problem from raw MIDI is underspeci-

fied: input to the model specifies notes and instruments, but

the model has been trained on a wide variety of sources,

and the audio corresponding to a given note and instru-

ment combination could just as likely be synthetic or real,

played in a dry or reverberant room, played with or without

vibrato, etc.; the model has to sample from this large space

of possibilities independently for each segment.

To address this issue, we added a context spectrogram

input encoder to encourage the model to be consistent over

time. We first experimented with adding this context in-

put to a “small” model, but got poor results, possibly due

to insufficient decoder capacity for incorporating the addi-

tional encoder output. We then tried scaling up to a “base”

model that included context. The additional model capac-

ity resulted in generally higher audio quality and also did

not have segment boundary problems. This is reflected in

the metrics, where this model achieves the best scores by

far. Also, even with the larger model size, the synthesis

process is still slightly faster than realtime.

Qualitatively, we find that the model does an especially

impressive job rendering instruments where the training

data came from real audio recordings as opposed to syn-

thetic instruments. For example, when given a note event

sequence from the Guitarset validation split, the model not

only accurately reproduces the notes but also adds fret and

picking noises. Sequences rendered for orchestral instru-

ments such as the ones found in URMP add breath noise

and vibrato. The model also does a remarkably good job

of rendering natural-sounding note velocities, even though

no velocity information is present in our note vocabulary.

Results for these experiments are presented in Table 1.

Additional results, including audio examples demonstrat-

ing the ability to render out-of-domain MIDI files and

modify their instrumentation, are in our online supple-

ment 6 . Results on a per-dataset basis are in Appendix A.

These results are encouraging, but there is still plenty of

room for improvement. Particularly, the synthesized audio

has occasional issues with inconsistent loudness and audio

artifacts, and its overall fidelity does not match the training

data. However, in all our experiments, we observed no

overfitting on the validation sets, so we suspect that even

larger models could be trained for higher fidelity audio.

Another limiting factor of our approach is the spectro-

gram inversion process, which represents an upper bound

on audio quality. This is apparent in the Transcription F1

score, where our models have already achieved the maxi-

mum score possible, even though that score is only a little

over half of what is achievable with raw audio.

6. CONCLUSION

This work represents a step toward interactive, expressive,

and high fidelity neural audio synthesis for multiple in-

struments. Our flexible architecture allows incorporating

any training data with paired audio and MIDI examples.

Improved automatic music transcription systems such as

MT3 [8] point toward being able to generate high quality

MIDI annotations for arbitrary audio, which would greatly

expand the available training data and range of instruments

and acoustic settings. Using generic Transformer encoder

stacks also presents the possibility of utilizing condition-

ing information beyond note events and spectrogram con-

text. For example, we could add finer grained condition-

ing such as control over note timbre, or more global con-

trols such as free text descriptions. This model is already

slightly faster than realtime, but ongoing research into dif-

fusion models shows promising directions for speeding up

inference [56], giving plenty of room for larger and more

complicated models to remain interactive. This may be es-

pecially important as we explore options for higher quality

audio output than our current spectrogram inversion pro-

cess enables.

6 Online supplement and examples: https://bit.ly/3wxSS4l
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