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ABSTRACT

Fast and user-controllable music generation could enable

novel ways of composing or performing music. However,

state-of-the-art music generation systems require large

amounts of data and computational resources for training,

and are slow at inference. This makes them impractical

for real-time interactive use. In this work, we introduce

Musika, a music generation system that can be trained

on hundreds of hours of music using a single consumer

GPU, and that allows for much faster than real-time gener-

ation of music of arbitrary length on a consumer CPU. We

achieve this by first learning a compact invertible represen-

tation of spectrogram magnitudes and phases with adver-

sarial autoencoders, then training a Generative Adversarial

Network (GAN) on this representation for a particular mu-

sic domain. A latent coordinate system enables generating

arbitrarily long sequences of excerpts in parallel, while a

global context vector allows the music to remain stylisti-

cally coherent through time. We perform quantitative eval-

uations to assess the quality of the generated samples and

showcase options for user control in piano and techno mu-

sic generation. We release the source code and pretrained

autoencoder weights at github.com/marcoppasini/musika,

such that a GAN can be trained on a new music domain

with a single GPU in a matter of hours.

1. INTRODUCTION

Generating raw audio remains a difficult task to perform,

considering the high temporal dimensionality of wave-

forms. Recently, a number of techniques based on deep

learning architectures have been proposed: however, they

often present limitations such as low generated music qual-

ity, lack of general coherence between distant time frames

and slow generation speed. Regarding unconditional au-

dio generation, autoregressive models are able to gener-

ate high quality audio with long-range dependencies; how-

ever, the sampling process is extremely slow and ineffi-

cient, which hinders possible real-world applications. On

the other hand, non-autoregressive models can reach real-

time generation, while they struggle to synthesize samples
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with satisfactory sound quality and are only able to gener-

ate samples of a fixed duration.

Considering the current shortcomings of non-

autoregressive audio generation systems, in this work

we propose Musika, a GAN-based system that allows

fast unconditional and conditional generation of audio

of arbitrary length. We achieve this by combining the

following contributions:

• The use of a raw audio autoencoder which allows

to encode samples into lower-dimensional invertible

representations that are easier to model. We engineer

the autoencoder with the specific goal of maximiz-

ing inference speed and minimizing training time,

by relying on the generation of magnitude and phase

spectrograms with low temporal resolution and an

efficient adversarial training process

• The use of a latent coordinate system for the task of

infinite-length audio generation

• The addition of a global style conditioning which

allows the infinite-length generated samples to be

stylistically coherent through time

• The possibility to perform both unconditional and

conditional generation, with a variety of different

conditioning signals, such as note density and tempo

information

By avoiding auto-regression, generation can be fully paral-

lelized and works much faster than real-time even on CPU.

2. RELATED WORK

A popular family of generative models for audio consists in

autoregressive models, such as WaveNet [1], SampleRNN

[2] and Jukebox [3]. WaveNet was the first model to show

that autoregressive generation of raw audio waveforms is

possible, and uses dilated convolutions to acquire a large

receptive field over the input sample. SampleRNN is a

model consisting of a hierarchical stack of recurrent units

that are able to model the waveform at different resolu-

tions, and thus capture a larger context and reduce the com-

putational cost required to model the next sample. Juke-

box uses a hierarchical VQVAE [4, 5] to encode raw sam-

ples into a sequence of discrete codes at different levels.

It then uses autoregressive transformers [6] to both gener-

ate new top-level samples and upsample them to the lower
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levels, accepting different features, such as lyrics, as con-

ditioning. While autoregressive systems can achieve satis-

fying audio quality and long-range coherence, they suffer

from extremely slow generation, as audio samples are pro-

duced sequentially. For example, Jukebox requires more

than eight hours to generate one minute of audio on a V100

GPU. As an exception, RAVE [7] achieves real-time syn-

thesis by encoding raw audio of a specific domain with

a variational autoencoder [8] into a compact latent space

and using a lightweight autoregressive model to generate

codes: however, the short receptive field of the autoregres-

sive model does not allow to model dependencies over dis-

tant time windows in the generated audio.

Non-autoregressive models avoid the slow sequential

generation, but are mostly employed for conditional au-

dio synthesis. For example, several works focus on the

task of inverting a low-dimensional audio representation

(often a mel-spectrogram) back to the original waveform,

which constitutes a building block of modern text-to-

speech (TTS) systems [9±11]. In contrast, literature on

long-form non-autoregressive unconditional audio gener-

ation is scarce. Systems such as WaveGAN and Spec-

GAN [12], GANSynth [13], DrumGAN [14] and MP3Net

[15] attempt to generate audio of a fixed length using vari-

ous architectures of Generative Adversarial Networks [16]

(GANs). WaveGAN and SpecGAN represent the first

works in which a GAN is successfully applied to audio,

in the waveform and spectrogram representations, respec-

tively. GANSynth generates instantaneous frequency (IF)

and magnitude of spectrograms with high frequency reso-

lution of short monophonic instrument notes [17], show-

ing that generating IFs and magnitudes instead of wave-

forms is advantageous for highly harmonic sounds. Drum-

GAN synthesizes drum sounds using the real and imag-

inary components of a complex STFT spectrogram and

demonstrates the effectiveness of this audio representation,

first introduced in [18]. Finally, MP3Net achieves minute-

long coherent piano music generation using Modified Dis-

crete Cosine Transform (MDCT) spectrograms as audio

representations and Progressive GAN [19] as the model:

however, the generated samples suffer from low perceived

audio quality. To the best of our knowledge, UNAGAN

[20] is the only non-autoregressive GAN-based system ca-

pable of generating audio of arbitrary length. The model

takes a sequence of noise vectors as input and uses a hierar-

chical structure to achieve short-term coherence in the gen-

erated mel-spectrograms, which are then inverted to wave-

form using a pretrained MelGAN vocoder [9]. However,

the model only generates single-channel audio and the in-

dependent sampling of noise vectors cause the generated

samples to lack coherence through time.

Contrary to autoregressive models, the majority of

GAN-based unconditional audio generation models are

only able to synthesize audio samples of a fixed length.

However, in the field of computer vision, several recent

works propose models capable of generating images of ar-

bitrary size, by synthesizing single image patches in paral-

lel and assembling them into the final image. This process

results in a fast and efficient generation of images on mod-

ern hardware. The two most notable contributions to this

line of work are InfinityGAN [21] and ALIS [22]. Infinity-

GAN generates in parallel single patches that are coherent

with each other by disentangling global appearance, local

structures and textures, which are then fed into a genera-

tor, together with coordinate information, to synthesize the

final patch. ALIS proposes the use of latent vectors as an-

chor points for the coordinate system of the model: the

resulting generator is equivariant and can thus produce co-

herent patches from interpolations of different latent codes.

However, both of the methods rely on prior knowledge re-

garding the particular image domain that is being gener-

ated: the experiments are conducted on a dataset of images

of landscapes, where the image features of a single patch

are spatially invariant on the horizontal dimension and thus

permit infinite length generation along the horizontal axis.

The process of generating sequences of encoded repre-

sentations has been explored in different previous works

[4, 5, 23] for both image and audio data. However, these

works focus on encoding samples to a discrete set of codes

using vector-quantized variational autoencoders, and pro-

pose to model sequences of codes using autoregressive

models. On the other hand, [24] proposes to autoencode

molecules with a basic autoencoder, to then generate se-

quences of continuous-valued latent vectors with a GAN.

This approach manages to circumvent the problematic be-

haviour of GANs when applied on discrete data [25], in

this case molecules in the SMILES format. Similarly to

this work, we propose to generate latent representations of

audio with the aim of making the generation and training

process faster, and achieving coherent generated samples

over long time windows.

3. METHOD

Let x = {x1 , ..., xT} be the waveform of an audio sample.

We aim to encode a waveform x into a sequence of latent

vectors c = {c1 , ..., cT/rtime
} with time compression ratio

rtime, sampled at a lower sampling rate than the original

waveform. We use an autoencoder model to perform this

task, such that a reconstruction of the original waveform

can be obtained from the encoded latent vectors.

We then aim to model the distribution p(c) with a Gen-

erative Adversarial Network (GAN). We employ a latent

coordinate system that is used as conditioning for the gen-

erator G to generate sequences of latent vectors of arbi-

trary length. We additionally condition the generator with

a variety of conditioning signals, such that the generation

process can be guided by human input. Finally, the gener-

ated sequence of latent vectors is inverted to a waveform

with the previously trained decoder.

3.1 Audio Autoencoder

Considering the inherent high dimensionality of wave-

forms, generating long sequences of raw audio samples is

prohibitively expensive. A frequently used audio represen-

tation in the field of speech processing and music informa-
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Figure 1. The proposed 2-level audio autoencoder. A log-magnitude spectrogram is used as the encoder input, while

the decoder outputs magnitude and phase spectrograms which are then inverted with iSTFT to the waveform domain. A

discriminator evaluates the magnitude spectrogram of two adjacent excerpts passed through the autoencoder. This training

process removes both phase errors (which would manifest after the iSTFT and STFT) and boundary artifacts.

tion retrieval is the Short-Time Fourier Transform (STFT)

spectrogram: while the phase component of the spectro-

gram is usually discarded, in case of audio synthesis ap-

plications both magnitude and phase components are nec-

essary to perform the inverse STFT (iSTFT) and obtain a

waveform.

We design an audio autoencoder with the aim of mini-

mizing inference and training time while maximizing the

compression ratio allowing to reconstruct samples with

reasonable accuracy. Our proposed autoencoder takes a

log-magnitude STFT spectrogram as input, and outputs

magnitude and phase spectrograms which can be inverted

to a waveform. Parallel to our work, iSTFTNet [26] also

proposes to improve the inference speed of the model by

generating magnitude and phase of a STFT spectrogram:

however, they only report experiments using spectrograms

with very high temporal resolution and low frequency res-

olution, while our proposed autoencoder reconstructs spec-

trograms with low temporal resolution and high frequency

resolution. This should result in an even higher inference

speed for similarly-sized models. In practice, we sepa-

rately train two stacked autoencoders; this allows a higher

compression ratio with satisfactory reconstruction quality,

especially for more complex music domains. Similarly to

RAVE [7], we utilize a two-step training process:

3.1.1 First training phase

We first train the model to autoencode log-magnitude spec-

trograms, not producing phases for now. We use a L1 loss

function for the reconstruction task:

L(Enc,Dec),rec = Es∼p(s)||Dec(Enc(s))− s||1

where Enc and Dec are the encoder and decoder, and s is

a log-magnitude spectrogram of a waveform w.

3.1.2 Second training phase

In the second phase, we freeze the encoder weights and

have the decoder produce a phase spectrogram as well,

such that we can reconstruct a waveform through an

iSTFT. We add an adversarial objective to aid the model-

ing of both the magnitudes and phases, ensuring the wave-

form is of perceptually satisfactory quality. Since directly

modeling phase spectrograms with deep learning models

is known to be difficult [13, 18], we propose to model the

phases indirectly, by encouraging waveforms whose mag-

nitude spectrogram must appear realistic. Specifically, we

compute a log-magnitude spectrogram s̃ from the recon-

structed waveform w̃:

w̃ = iSTFT (Dec(Enc(s)))

s̃ = log(|STFT (w̃)|2 + ϵ)

The reconstructions s̃ are fed to a discriminator D, using

the hinge loss [27] to distinguish them from originals s:

LD =− Es∼p(s)[min(0,−1 +D(s))]

− Es∼p(s)[min(0,−1−D(s̃))]

The decoder is trained to fool the discriminator:

LDec,adv =− Es∼p(s)D(s̃)

Note that we can calculate spectrograms from the recon-

structed waveforms with different hop size and window

length than used for the spectrograms fed to the autoen-

coder. We leverage this by including the multi-scale spec-

tral distance [7, 28] in the objective of the decoder:

LDec,ms = Ew∼p(w)

N∑

hop

log(|| |STFThop(w)|

− |STFThop(w̃)| ||1)

where hop indicates a choice of hop_size and fft_size.

In total, we train the discriminator with LD, and the

decoder with a linear combination of three losses:

LDec = LDec,adv + λrecLDec,rec + λmsLDec,ms

3.2 Latent Coordinate System

We use a GAN to model sequences of latent vectors pro-

duced by a trained audio encoder. In order to generate in-

dependent audio samples that can be seamlessly concate-

nated with each other along the temporal axis, we condi-

tion the generator with the latent coordinate system pro-

posed by [22], originally introduced to generate landscape
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Figure 2. The proposed latent GAN training process. Two adjacent latent coordinate sequences are randomly cropped

from the linear interpolation between three anchor vectors. They are then used as input to the generator, together with a

shared style vector and a conditioning signal in the case of a conditional model. The discriminator takes as input the two

concatenated generated sequences and a real sequence of latent vectors.

images of infinite width. Specifically, during training we

sample three noise vectors wl ,wc ,wr with dimension d

that are used as anchor points (left, center, right anchors)

to guide the generation process. With seq_len being the

length of the sequence of latent vectors that is produced by

the generator, we linearly interpolate the three anchor vec-

tors to create a sequence of coordinate vectors of length

equal to 4 · seq_len+ 1:

w = [wl , ..., (1−k)wl+kwc , ...,wc , ...,wr ] ∈ R
4seq_len+1×d

To generate sequences that are temporally coherent with

each other, we follow [22]: we randomly crop a sequence

w12 of 2·seq_len coordinate vectors from w, divide it into

two sequences w1,w2 with length seq_len, generate two

patches using each sequence as conditioning, concatenate

the two patches along the time axis, and feed the resulting

generated sample of length 2 ·seq_len to the discriminator.

This process is illustrated in Figure 2. It allows the genera-

tor to align the sequence of latent coordinates with the gen-

erated sequence of latent vectors. Specifically, the discrim-

inator forces the generator to learn that adjacent sequences

of latent coordinates must result in adjacent sequences of

latent vectors, which can be temporally concatenated re-

sulting in a coherent final sample without artifacts at the

boundaries of the generated patches.

Similarly to InfinityGAN [21], when generating adja-

cent sequences of latent vectors, we also condition both

generations on a single random vector zsty : during the

learning process, this vector serves as conditioning for the

global style of the generated samples. Specifically, while

the latent coordinate vectors allow the generator to produce

sequences of latent vectors that can be seamlessly concate-

nated along the temporal axis, the global style vector al-

lows the final concatenated sequence of possibly infinite

length to be stylistically coherent throughout. Without the

global style vector, any temporal context available to the

generator would completely change every 4 ·seq_len sam-

ples of a sequence, resulting in a final generated sample

which continuously changes style through time.

Formalized, we have

ĉ = concat[G(w1, zsty), G(w2, zsty)],

where ĉ is a stylistically and temporally coherent sequence

of latent vectors of length 2 · seq_len, and G is the gener-

ator model.

At inference time, a latent coordinate sequence of the

desired length is created. The coordinate sequence is pre-

pared in the same way as during the training phase, by

placing a latent anchor vector at positions that are mul-

tiples of 2 · seq_len, and by linearly interpolating these

anchor vectors to calculate in-between vectors. A single

random global style vector is also sampled. Each genera-

tion considers a seq_len crop and the global style vector

as conditioning, and finally all generated latent vectors are

concatenated together in the appropriate order. This pro-

cess can be performed in a parallel manner, thus resulting

in a fast generation on modern hardware.

4. IMPLEMENTATION DETAILS

4.1 Audio Autoencoder Architecture

We first train an audio autoencoder with a relatively low

compression ratio, then train a second-level autoencoder

that encodes the first-level latent vectors, as shown in Fig-

ure 1. During the training of the second-level autoencoder,

we utilize the same training strategy and objective as ex-

plained in section 3.1, by propagating gradients through

the frozen weights of the previously trained first-level de-

coder and adversarially discriminating between samples

reconstructed by both decoders and samples reconstructed

by only the first-level decoder. Both model architectures

are fully convolutional, and we do not use any padding

in both encoders, such that possible boundary artifacts in

the encoded representations are avoided. We utilize 1d-

convolutions considering the frequency bins as different

channels for both encoders and decoders: this is usually

not efficient regarding total number of model parameters

when compared to using 2d-convolutions across the two

spectrogram dimensions, but can result in a much faster

inference time. We use 2d-convolutions for the discrim-

inator, as inference time for this model is not a priority.

We use tanh as the activation for the bottleneck layer of

both encoders. Regarding the multi-scale spectral distance

loss, we use hop_size ∈ [64, 128, 256, 512] and we always

choose fft_size = 4 · hop_size, while the discriminator

takes as input log-magnitude spectrograms calculated with
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Figure 3. Log-melspectrograms of generated piano and techno samples from the conditional models. For the piano samples

(top row), we indicate the corresponding note density conditioning with a green line. Note density signals were generated

using a random walk algorithm. The tempo used as conditioning for the techno samples (bottom row) is 120 bpm and 160

bpm, respectively. Each sample is 23 seconds long. Visit marcoppasini.github.io/musika to listen to the examples.

hop_size = 256 and fft_size = 6 · hop_size. As pro-

posed by [29, 30], two consecutive reconstructed spectro-

grams are concatenated along the temporal dimension and

fed to the discriminator, such that concatenated reconstruc-

tions do not suffer from boundary artifacts. During train-

ing, spectrograms calculated from 0.76 s of audio are used

as input to both autoencoders. We use spectral normaliza-

tion [31] on the weights of the discriminator. Regarding

the training loss weights, we use λrec = 1 and λms = 4.

We choose Adam [32] as the optimizer with learning rate

of 0.0001 and β1 = 0.5, and train the first-level autoen-

coder for 1 million iterations with batch size of 32 for both

training phases, and the second-level autoencoder for 400k

iterations with batch size of 32 for both training phases.

4.2 Latent GAN Architecture

We choose to adapt the FastGAN [33] architecture to our

specific task. The FastGAN architecture promises fast con-

vergence with limited amounts of data. To achieve this,

it proposes a Skip-Layer channel-wise Excitation (SLE)

module in the generator, for more direct propagation of

gradients, and proposes to strongly regularize the discrim-

inator with an added self-supervised reconstruction ob-

jective. We adapt the proposed architectures to use 1d-

convolutions instead of 2d-convolutions and we simplify

the added reconstruction objective of the discriminator, by

using a single lightweight decoder which reconstructs the

whole input of the discriminator. Differently from Fast-

GAN, we do not use Batch Normalization [34] in both the

generator and discriminator, while we apply the variation

of Adaptive Instance Normalization [35] (AdaIN) called

Spatially Aligned AdaIN (SA-AdaIN), originally proposed

in [22], after each convolutional layer in the generator. To

generate stereo samples, the generator produces two la-

tent vectors at each timestep, one for each audio channel,

stacked on the channel axis. We use Cross Channel Mixing

(CCM), first introduced in [36], to randomly mix channels

of the stereo stacked latent vectors before being fed to the

discriminator. In our experience, this technique helps re-

ducing collapses during training. Both anchor and style

vectors are sampled from a normal distribution with zero

mean and unit variance, and have dimension d of 64. We

use R1 gradient penalty [37] as regularization, and Adam

with learning rate of 0.0001 and β1 = 0.5 as the optimizer.

We train for 1.5 mio iterations with a batch size of 32 for all

experiments. Training takes 23 h on a RTX 2080 Ti GPU.

Model (Faster than real-time) GPU CPU

Musika Uncond. Piano 972x 40x

Musika Cond. Piano 921x 40x

UNAGAN [20] Piano 28x 11x

Musika Uncond. Techno 994x 39x

Musika Cond. Techno 917x 39x

Table 1. Comparison of generation speed between the dif-

ferent models. For the Musika models, we include both

the generation of the latent vectors and the decoding step

to the waveform domain. We use a RTX 2080 Ti and a

Ryzen 3950x as the GPU and CPU, respectively. We re-

port the average of 100 trials.

Model FAD

Musika Uncond. Piano 1.641

Musika Cond. Piano Rand. 2.150

Musika Cond. Piano Const. 0.15 2.584

Musika Cond. Piano Const. 0.30 3.400

Musika Cond. Piano Const. 0.45 4.389

Musika Cond. Piano Const. 0.60 4.839

Musika Cond. Piano Const. 0.75 5.434

UNAGAN [20] Piano 11.183

Table 2. FAD evaluation for generated piano music. We

evaluate conditional Musika models using different con-

stant values of note density as conditioning. We notice that

FAD increases with higher note density.

5. EXPERIMENTS

Considering the relatively low compression ratio of the

first autoencoder and thus its need to only encode low-level

audio features, we find it possible to train a single universal

model which we can later use for different music domains.

As training data, we choose to use songs released and made

freely available by South by SouthWest 1 (SXSW) in oc-

casion of their yearly conference. The current collection

consists of 17k songs of various genres, and for this rea-

son it represents a fitting choice for training our univer-

sal model. We use the LibriTTS corpus [38] as additional

training data, to steer the universal model into accurately

synthesizing human voices, which are notoriously hard to

model. Even though LibriTTS only contains speech, in-

1 https://www.sxsw.com/festivals/music/
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cluding it improves reconstructions of singing voice. We

resample audio to 22.05 kHz for all experiments. We use

single channel audio to train the audio autoencoders, as the

latent GAN is able to generate stereo samples by using la-

tent representations of the two mono samples stacked in the

channel dimension as training data. We use r1time = 256
as the time compression ratio, which results in a sampling

rate of the first-level latent representations of 190.22 Hz.

Each of the encoded latent vectors has a dimension of 128.

5.1 Piano Music

We use the MAESTRO dataset [39], consisting of 200

hours of piano performances, to train a second-level au-

toencoder and a latent GAN. The final time compression

ratio achieved by both autoencoders is rtime = 4096,

which results in a sampling rate of the second-level latent

representations of 11.89 Hz. The dimension of each latent

vector is 32. We train both an unconditional and a condi-

tional latent GAN. For both models, the generator outputs

latent vectors with seq_len = 64, which results in about

12 s of audio after decoding. For the conditional model, we

apply the CNN-based onset detector [40] of the madmom

Python library [41] to all audio files in the dataset. We then

use Gaussian Kernel Density Estimation (KDE) with band-

width of 0.004 on the detected onsets to estimate a contin-

uous note density signal for each sample. This signal is

log-scaled between 0 and 1 and serves as a conditioning

signal for the conditional (and thus controllable) GAN.

5.2 Techno Music

To evaluate the performance of the system on a more mu-

sically varied domain, we scrape 10,190 songs categorized

with the ªtechnoº genre from jamendo.com and use them

as training data. Considering the wide diversity of sounds

that are present in the dataset, we train the second-level au-

toencoder with the same SXSW data used to train the first-

level universal autoencoder. Comparing to what is achiev-

able when training an autoencoder on a single and limited

domain, such as piano music, a lower compression ratio

is needed to reach a satisfactory reconstruction accuracy.

However, this solution allows users to directly train a la-

tent GAN on a new audio domain using the universal latent

representations, without the need to train an autoencoder

on the domain of interest. The final achieved time com-

pression ratio is rtime = 2048, which results in a sampling

rate of the second-level latent representations of 23.78 Hz.

The dimension of each latent vector is 64. We train an

unconditional and a conditional latent GAN model, both

generating stereo latent vectors with seq_len = 128, re-

sulting in about 12 s of decoded audio. We use the Tempo-

CNN framework 2 [42] to estimate the global tempo of

each song in the dataset. Tempo information is then used

as conditioning for the conditional model.

2 https://github.com/hendriks73/tempo-cnn

6. RESULTS

A comprehensive collection of generated audio samples

is available on marcoppasini.github.io/musika. Since cur-

rent quantitative evaluation metrics are not able to assess

the overall compositional and musical quality of generated

music, we strongly encourage the reader to listen to the

provided samples while reading the paper.

We report the generation speed of the system trained

on the MAESTRO and on the techno datasets in Table 1,

on both GPU and CPU. We also use the Frechét Audio

Distance [43] (FAD) metric to quantitatively evaluate the

quality of the generated piano samples in Table 2. A UN-

AGAN [20] model that was trained on the same dataset is

used as comparison. While our system is capable of gen-

erating stereo audio, UNAGAN can only produce single-

channel audio. The unconditional model obtains the lowest

FAD, while the conditional system results in higher FADs

when using more intense note density values as condition-

ing. This is expected, since samples with low note density

are more common than samples with high note density in

the MAESTRO dataset. However, considering that audio

is split in short 1 s samples to calculate embeddings, FAD

is not designed to evaluate overall musical and composi-

tional quality of samples, and to the best of our knowledge

there are no available quantitative metrics to evaluate these

characteristics. Piano and techno samples generated by the

system seem to often demonstrate long-range coherence

and successfully keep a fixed general music style through

time. Both conditional models successfully generate sam-

ples that are coherent with the conditioning signal, as can

be seen in Figure 3.

7. CONCLUSION

We proposed Musika, a non-autoregressive music genera-

tion system that generates raw-audio samples of arbitrary

length much faster than real-time on a consumer CPU.

An efficient hierarchical autoencoder allows to encode au-

dio to a sequence of low-dimensional latent vectors, from

which a waveform can be reconstructed. A GAN is then

used to generate new sequences of latent vectors, using a

latent coordinate system that allows for generation of sam-

ples of infinite length. A style conditioning vector is in-

troduced to force the samples to be stylistically coherent

through time. We successfully use the system to gener-

ate piano and techno music, and show that the generation

process can be conditioned on note density and tempo in-

formation for piano and techno music, respectively. We

finally show that the system achieves lower FAD than com-

parable systems on piano music generation while being

faster. We release the source code and pretrained mod-

els, enabling users to generate samples of different music

domains and test new conditioning signals with ease and

using consumer hardware. We see our system as solving

an important technical challenge ± real-time music gener-

ation of sufficient quality, conditioned on user input ± and

hope it can serve as a basis for interactive real-world appli-

cations and for research into human-AI co-creation.
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