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ABSTRACT

Despite the central role that melody plays in music per-

ception, it remains an open challenge in MIR to reliably

detect the notes of the melody present in an arbitrary mu-

sic recording. A key challenge in melody transcription is

building methods which can handle broad audio containing

any number of instrument ensembles and musical stylesÐ

existing strategies work well for some melody instruments

or styles but not all. To confront this challenge, we lever-

age representations from Jukebox [1], a generative model

of broad music audio, thereby improving performance on

melody transcription by 20% relative to conventional spec-

trogram features. Another obstacle in melody transcrip-

tion is a lack of training dataÐwe derive a new dataset

containing 50 hours of melody transcriptions from crowd-

sourced annotations of broad music. The combination of

generative pre-training and a new dataset for this task re-

sults in 77% stronger performance on melody transcription

relative to the strongest available baseline. 1 By pairing

our new melody transcription approach with solutions for

beat detection, key estimation, and chord recognition, we

build Sheet Sage, a system capable of transcribing human-

readable lead sheets directly from music audio.

1. INTRODUCTION

In the Western music canon, melody is a defining charac-

teristic of musical composition, and can even constitute

the very identity of a piece of music within the collec-

tive consciousness. Because of the significance of melody

to our music perception, the ability to automatically tran-

scribe the melody notes present in an arbitrary recording

could enable numerous applications in interaction [2], ed-

ucation [3], informatics [4], retrieval [5], source separa-

tion [6], and generation [7]. Despite the potential benefits,

reliable melody transcription remains an open challenge.

A closely-related problem that has received consider-

able attention from the MIR community is melody extrac-

tion [8±11], where the goal is to estimate the time-varying,

continuous F0 trajectory of the melody in an audio mix-

ture. In contrast, the goal of melody transcription is to out-

1 Examples: https://chrisdonahue.com/sheetsage
Code: https://github.com/chrisdonahue/sheetsage
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Figure 1. Our melody transcription approach involves

(1) extracting audio representations from Jukebox [1], a

generative model of music, (2) averaging these represen-

tations across time to their nearest sixteenth note (dashed

outlineÐuses madmom [12, 13] for beat detection), and

(3) training a Transformer [14] to detect note onsets (or

absence thereof) per sixteenth note. Outputs can be ren-

dered to MIDI (by mapping beats back to time) or a score.

put the notes of the melody, where a note is defined by an

onset time, a pitch, and an offset time. While F0 trajec-

tories are useful for several downstream tasks (e.g., query

by humming) and more inclusive of music which does not

use equal-tempered pitches, unlike notes, trajectories can-

not be readily converted into formats like MIDI or scores

which are more convenient for musicians.

The relative lack of progress on melody transcription

is perhaps counterintuitive when compared to the consid-

erable progress on seemingly more difficult tasks like pi-

ano transcription [15, 16]. This circumstance stems from

two primary factors. First, unlike in piano transcription,

melody transcription involves operating on broad audio

mixtures from arbitrary instrument ensembles and musical

styles. Second, there is a deficit of training data for melody

transcription, which particularly impedes the deep learning

approaches central to recent improvements on other tran-

scription tasks. Moreover, collecting data for melody tran-
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scription is difficult compared to collecting data for tasks

like piano transcription, where a Disklavier can be used to

create aligned training data in real time.

To overcome the challenge of transcribing broad audio,

in this work we leverage representations from Jukebox [1],

a large-scale generative model of music audio pre-trained

on 1M songs. In [17], Castellon et al. demonstrate that rep-

resentations from Jukebox are useful for improving perfor-

mance on a wide variety of MIR tasks. Here we show that,

when used as input features to a Transformer model [14],

representations from Jukebox yield 27% stronger perfor-

mance on melody transcription (as measured by note-wise

F1) relative to handcrafted spectrogram features conven-

tionally used for transcription. To our knowledge, this is

the first evidence that representations learned via genera-

tive modeling are useful for time-varying MIR tasks like

transcription, as opposed to the song-level tasks (e.g. tag-

ging, genre detection) examined in [17].

To address the data deficit for melody transcription, we

release a new dataset containing 50 hours of melody an-

notations for broad audio which we derive from Hook-

Theory. 2 The user-specified alignments between the au-

dio and melody annotations in HookTheory are crudeÐ

we refine these alignments using beat detection. To over-

come remaining alignment jitter, we resample features to

be uniformly spaced in beats (rather than time) and pass

these beat-wise resampled features as input to melody tran-

scription models. This procedure has a secondary benefit

of enabling simple conversion from raw model outputs to

human-readable scores (Figure 1).

By training Transformer models on this new dataset us-

ing representations from Jukebox as input, we are able to

improve overall performance on melody transcription by

70% relative to the strongest available baseline. A sum-

mary of our primary contributions follows:

• We show that representations from generative mod-

els can improve melody transcription (Section 6).

• We collect, align, and release a new dataset with 50
hours of melody and chord annotations (Section 4).

• We propose a method for training transcription mod-

els on data with imprecise alignment (Section 5.3).

• As a bonus application of our melody transcription

approach, we build a system which can transcribe

music audio into lead sheets (Section 7).

2. RELATED WORK

Melody transcription is closely related to but distinct from

the task of melody extraction, originally referred to as pre-

dominant fundamental frequency (F0) estimation [8, 9].

Melody extraction has received significant interest from

the MIR community over the last two decades (see [10,11]

for comprehensive reviews), and is the subject of an an-

nual MIREX competition [18]. Melody extraction may be

2 https://www.hooktheory.com/theorytab

a component of a melody transcription pipeline in combi-

nation with a strategy to segment F0 into notes [19±21]Ð

we directly compare to such a pipeline in Section 6.2.

Compared to melody extraction, melody transcrip-

tion has received considerably less attention. Ear-

lier efforts use sophisticated DSP-based pipelines [22±

25]Ðunfortunately none of these methods provide code,

though [24] provides example transcriptions which we use

to facilitate direct comparison. A more recent effort uses

ground truth chord labels as extra information to improve

melody transcription [26]Ðin contrast, our method does

not require extra information. Another line of work seeks

to transcribe solo vocal performances into notes [27±30].

As singing voice often carries the melody in popular mu-

sic, we directly compare to a baseline which firsts isolates

the vocals (using Spleeter [31]) and then transcribes them.

Polyphonic music transcription is another related task

which involves transcribing all of the notes present in a

recording (not just the melody). This task has its own

MIREX contest (Multiple Fundamental F0 Estimation)

alongside a growing collection of supervised training data

resources [7, 32±34]. The similarity of the polyphonic and

melody transcription problems motivates us to experiment

with representations learned by a polyphonic systemÐ

specifically, MT3 [35]Ðfor melody transcription.

3. TASK DEFINITION

In this work, melody transcription refers to the task of

converting a music recording into a monophonic (non-

overlapping) sequence of notes which constitute its domi-

nant melody. 3 More precisely, given a music waveform

a of length T seconds, our task is to uncover the se-

quence of N notes y = [y1, . . . ,yN ] that represent the

melody of a. For many MIR tasks, including transcrip-

tion, it can be convenient to work with features of audio

X = Featurize(a), rather than waveforms. Hence, a

melody transcription algorithm is a procedure that maps

featurized audio to notes, i.e. y = Transcribe(X).

Canonically, a musical note consists of an onset time, a

musical pitch, and an offset time. However, in this work we

disregard offsets and define a note to be a pair yi = (ti, ni)
consisting of an onset time ti ∈ [0, T ) and discrete musical

pitch ni ∈ V = {A0, . . . ,C8}. We ignore offsets for two

reasons. First, accurate offsets have been found to be con-

siderably less important for human perception of transcrip-

tion quality compared to accurate onsets [36]. Second, in

our dataset, a heuristically-determined offset is identical to

the user-annotated offset for 89% of notes. 4

Formally, a musical audio recording of length T sec-

onds sampled at rate fs is a vector a ∈ R
Tfs . A featur-

ization of audio X ∈ R
Tfk×d is a matrix of d-dimensional

features of audio, sampled uniformly at some rate fk ≪ fs
(for example, X could be a spectrogram). Intuitively,

the function Featurize : RTfs → R
Tfk×d defined by

3 Melody is difficult to precisely defineÐhere we adopt an implicit
definition based on a dataset of crowdsourced melody annotations.

4 The specific heuristic that we use sets the offset of one note equal to
the onset of the next, i.e., it assumes the melody is legato.
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a 7→ X maps raw audio to a feature representation more

conducive to learning. A melody of length N is a se-

quence of notes y = [y1, . . . ,yN ] ∈ Y
N consisting of

onset-pitch pairs yi = (ti, ni) ∈ Y = R
+ × V where

ti < tj if i < j. Given a featurization X , the melody

transcription task is to construct a transcription algorithm

Transcribe : RTfk×d → Y
N such that X 7→ y.

3.1 Evaluation

To evaluate a melody transcription method Transcribe,

we adopt a standard metric commonly used for evaluation

in polyphonic music transcription tasks, namely, ªonset-

only note-wise F-measureº [36]. This metric scores an

estimated transcript Transcribe(X) by first matching

its note onsets to those in the reference y with 50ms of

tolerance (default in [37]), and then computes a standard

F1 score where an estimated note is treated as correct if

it is the same pitch as its matched reference note. This

ªnote-wiseº metric represents a departure from the ªframe-

basedº metrics typically used to evaluate melody extrac-

tion algorithmsÐYcart et al. demonstrate in [36] that this

particular note-wise metric correlates more strongly with

human perception of transcription quality than any other

common metric, including frame-based ones.

We make a slight modification to this note-wise met-

ric specific to the melody transcription setting: an estimate

Transcribe(X) may receive full credit if it is off by a

fixed octave shift but otherwise identical to the reference.

In downstream settings, melody transcriptions are likely

to be used in an octave-invariant fashion, e.g., they may

be shifted to read more comfortably in treble clef, or per-

formed by singers with different vocal ranges. Hence, we

modify the evaluation criteria by simply taking the highest

score over octave shifted versions of the estimate:

max
σ∈Z

F1(OctaveShift(Transcribe(X), σ),y).

Henceforth, we refer to this octave-invariant metric as F1.

4. DATASET OVERVIEW

A major obstacle to progress on melody transcription is the

lack of a large volume of data for training. To the best of

our knowledge, there are only two datasets available with

annotations suitable for melody transcription: the RWC

Music Database [38±40] (RWC-MDB), and a dataset la-

beled by Laaksonen [26]. The former is larger but the

annotations are inconsistentÐRyynänen and Klapuri note

that only 8.7 hours (130 songs) are usable for melody tran-

scription [24], while the latter only contains 1.5 hours.

We derive a suitably large dataset for melody tran-

scription using crowdsourced annotations from HookThe-

ory. 5 HookTheory is a platform where users can eas-

ily create and share musical analyses of particular record-

ings hosted on YouTube, with Wikipedia-style editing.

The dataset contains annotations for 22k segments of 13k

unique recordings totaling 50 hours of labeled audio. The

5 HookTheory annotations are published under a CC BY-NC-SA 3.0
license, which our dataset inherits.

audio content covers a wide range of genresÐthere is a

skew towards pop and rock but many other genres are rep-

resented including EDM, jazz, and even classical. We cre-

ate an artist-stratified 8:1:1 split of the dataset for training,

validation, and testing. The dataset also includes chord an-

notations which may facilitate chord recognition research.

While HookTheory data has been used previously for

MIR tasks like harmonization [41, 42], chord recogni-

tion [43], and representation learning [44], making use of

this platform for MIR is currently cumbersome. One ob-

stacle is that the annotations are created via a ªfunctionalº

interface, i.e., one which uses scale degrees and roman nu-

merals relative to a key signature instead of absolute notes

and chord names. In contrast, most MIR research favors

absolute labels. Hence, we convert annotations from this

functional format to a simple (JSON-based) absolute for-

mat. One caveat is that the HookTheory annotation inter-

face uses a relative octave system, so there is no way to

reliably map annotations to a ground truth octave. Thus,

melodies in our dataset also contain only relative octave in-

formation, consistent with the octave-invariant evaluation

proposed in Section 3.1.

5. METHODS

Similar to state-of-the-art methodology used for poly-

phonic transcription [45], our approach to melody tran-

scription involves training Transformer models [14] to pre-

dict notes from audio features. However, to address the

unique challenges of melody transcription, our approach

differs in two distinct ways. First, because melody tran-

scription involves operating on broad audio, we lever-

age representations from pre-trained models as drop-in re-

placements for the handcrafted spectrogram features used

as inputs to other transcription systems. Secondly, because

alignments in our dataset are approximate, we propose a

new strategy for training transcription models under such

conditions.

5.1 Pre-trained representations

We explore representations from two different pre-trained

models for use as input features to transcription models.

In [17], Castellon et al. demonstrate that representations

from Jukebox [1]Ða generative model of music audio

pre-trained on 1M songsÐconstitute effective features for

many MIR tasks, though notably they do not experiment on

transcription. We adopt their approach to extract features

from Jukebox (fk ≈ 345 Hz, d = 4800), though we use a

deeper layer (53) than their default (36) which improved

transcription performance in our initial experiments.

We also explore features from MT3 [35], an encoder-

decoder transcription model pre-trained on a multitude of

different transcription tasks (though not melody transcrip-

tion). For this model, we use the encoder’s outputs as fea-

tures (fk = 125 Hz, d = 512). The two models have dif-

ferent trade-offs with respect to our setting: Jukebox was

pre-trained on audio similar to that found in our dataset

but in a generative fashion, whereas MT3 is pre-trained on

transcription but for different audio domains.
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Refined alignment

User-specified alignment

Figure 2. We refine the crude user-specified alignments

from HookTheory by using beat and downbeat tracking.

The first segment beat is mapped to the detected down-

beat nearest to the user-specified starting timestamp, and

remaining beats are mapped to subsequent detected beats.

5.2 Refined Alignments

The alignments between audio and HookTheory annota-

tions are crudeÐusers provide only an approximate start-

ing and ending timestamp of their annotated segment

within the audio. Because transcription methodology gen-

erally depends on precise alignments, we make an effort

to refine the user-specified ones. To this end, we make

use of the beat and downbeat detection algorithm from

madmom [12, 13]. Specifically, our approach aligns the

first beat of the segment to the detected downbeat which is

nearest to the user-specified starting timestamp. Then, we

align the remaining beats to the subsequent detected beats

(see Figure 2 for an example). This provides a beat-level

alignment for the entire segment, which we linearly inter-

polate to fractional subdivisions of the beat. Formally, we

construct an alignment function Align : [0, B) → [0, T )
that assigns each of B beats in the metrical structure to a

time t ∈ [0, T ) in the audio. In an informal listening test,

this produced an improved alignment for 95 of 100 seg-

ments, where the primary failure mode in the remaining 5
segments occurred when madmom detected the wrong beat

as the downbeat. We use these refined alignments for train-

ing and evaluation and release them alongside the dataset.

5.3 Beat-wise resampling

Here we outline our approach for training transcription

models in the presence of imprecise alignments. Existing

transcription methods were largely designed for domains

where perfect alignments are readily available, e.g., piano

transcription data captured by a Disklavier. Despite our

best efforts, the refined HookTheory alignments are still

imprecise when compared to alignments in the datasets

used to develop existing methods. Consequently, in ini-

tial experiments, we found that naively adopting existing

methods (specifically, [16, 45]) resulted in poor perfor-

mance on our dataset and task. Additionally, initial ex-

periments on training models with an alignment-free ap-

proach [46] also resulted in poor performance.

Accordingly, to sidestep small alignment deviations,

we perform a beat-wise resampling of audio features

X ∈ R
Tfk×d to yield features that are uniformly

spaced in subdivisions of the beat (using AlignÐsee Sec-

tion 5.2) rather than in time. For an audio recording with

B beats, we sample features X̃ ∈ R
4B×d at sixteenth-note

intervals. The value X̃i is constructed by averaging all fea-

ture vectors in X that are nearest to the i’th sixteenth note

into a single vector which acts as a proxy feature. For ex-

ample, if a recording has a tempo of 120 BPM, a sixteenth

note represents 125 ms of time, which would entail aver-

aging across 43 feature vectors from Jukebox (fk ≈ 345
Hz). The intuition is that, while our alignments may not be

precise enough to identify which of those 43 frames con-

tains an onset, we can be reasonably confident that it occurs

somewhere within them, and thus the relevant frame will

be incorporated into the proxy. A similar approach was

previously explored for song structure analysis in [47].

5.4 Modeling

Together with the beat-wise resampling X̃ ∈ R
4B×d, we

convert the sparse task labels y ∈ (R+ × V)N into a dense

sequence ỹ ∈ {{∅} ∪ V}4B , which indicates whether or

not an onset occurs at each sixteenth note. 6 Formally,

ỹi =

{

nj if Align( i
4 ) = tj for some note yj ,

∅ otherwise.

We formulate melody transcription as an aligned sequence-

to-sequence modeling problem and attempt to predict the

sequence ỹ given X̃ . Specifically, we train models of

the form fθ : R4B×d → R
4B×(|V|+1), which parameterize

probability distributions pθ(ỹi|X̃) = SoftMax(fθ(X̃)i)
over elements of the sequence ỹ. One unique aspect of

our dataset is that absolute octave information is absent

(see Section 4). Hence, we construct an octave-tolerant

cross-entropy loss by identifying the octave shift amount

that minimizes the standard cross-entropy loss (denoted

CE) when applied to the labels:

min
σ∈Z

4B−1
∑

i=0

CE(pθ(ỹi|X̃),OctaveShift(ỹi, σ)).

We require a thresholding scheme to convert the dense

sequence of soft probability estimates pθ(ỹi|X̃) into a

sparse sequence of notes required by our task (see Sec-

tion 3). Given a threshold τ ∈ R (in practice, tuned on

validation data), we define a sorted onset list

I = Sort({i ∈ {0, . . . , 4B−1} : pθ(ỹi = ∅|X̃) < τ}).

This should be interpreted as a list of N metrical positions

where an onset likely occurs. The timings of these onsets

are given by the alignment, and we will predict the note-

value with the highest probability. The sparse melody tran-

scription is thus defined for j = 1, . . . , N by

Transcribe(X̃)j = (tj , nj), where

tj = Align

(

Ij
4

)

,

nj = argmax
v∈V

pθ(ỹIj
= v|X̃).

6 This requires quantizing labels to the nearest sixteenth note. In prac-
tice, less than 1% of notes in our dataset are affected by this quantization.
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Features d F1

Mel 229 0.514
MT3 512 0.550
Jukebox 4800 0.615

Mel, MT3 741 0.548
Mel, Jukebox 5029 0.617
MT3, Jukebox 5312 0.622
Mel, MT3, Jukebox 5541 0.623

Table 1. HookTheory test set performance for Transform-

ers trained with different features (top) and combinations

(bottom). Features are complementaryÐcombining all

three yields highest performanceÐbut marginally so com-

pared to Jukebox alone.

6. EXPERIMENTS

Here we describe our experimental protocol for training

melody transcription models on the HookTheory dataset.

The purpose of these experiments is two-fold. First, we

compare representations from different pre-trained models

to handcrafted spectrogram features to determine if pre-

training is helpful for the task of melody transcription (Sec-

tion 6.1). Second, we compare our trained models holisti-

cally to other melody transcription baselines (Section 6.2).

All transcription models are encoder-only Transform-

ers with the default hyperparameters from [14], except that

we reduce the number of layers from 6 to 4 to allow mod-

els to be trained on GPUs with 12GB of memory. During

training, we select random slices from the annotated seg-

ments of up to 96 beats or 24 seconds in length (whichever

is shorter). We train using our proposed loss function

from Section 5.4 and perform early stopping based on max

F1 score across thresholds τ on the validation set, using the

best validation τ for testing. All models converge within

15k steps or about a day on a single K40 GPU.

6.1 Comparing input features

We compare representations from Jukebox [1] and

MT3 [35] (see Section 5.1) to handcrafted spectro-

gram features, which are commonly used by existing

transcription methods. Specifically, we compare to

log-amplitude Mel spectrograms using the formulation

from [16] (fk ≈ 31, d = 229). Because features may con-

tain complementary information, we also experiment with

all combinations of these three features. Note that our

beat-wise resampling strategy allows for trivial combina-

tion of these features (by concatenation) despite their dif-

fering rates. In Table 1, we report F1 (as described in Sec-

tion 3.1) on the HookTheory test set for all input features.

Overall, using representations from Jukebox as input

features results in stronger melody transcription perfor-

mance than using either representations from MT3 or

conventional handcrafted features. Representations from

both MT3 and Jukebox outperform conventional hand-

crafted features, implying that both pre-training strategies

are helpful for melody transcription. Note that these two

pre-training approaches are compared holisticallyÐthese

Approach F1 (All) F1 (Vocal)

MT3 Zero-shot [35] 0.133 0.085
Melodia [48] + Segmentation 0.201 0.268
Spleeter [31] + Tony [28] 0.341 0.462

DSP + HMM [24] 0.420 0.381

Mel + Transformer 0.631 0.621
MT3 + Transformer 0.701 0.659
Jukebox + Transformer 0.744 0.786

Table 2. Performance of different approaches on a sub-

set of RWC-MDB [38±40]. The bottom three approaches

were trained on the HookTheory dataset. For fair com-

parison to vocal transcription baselines, we also separately

report performance on the vocal portions of this dataset.

models differ on several axes (number of parameters, pre-

training data semantics, pre-training task), and thus it is

impossible to disentangle the individual contributions of

these different factors without retraining the models.

Qualitatively speaking, there is a noticeable difference

in performance across the three different input features

which correlates with quantitative performance (see foot-

note 1 for sound examples). Using representations from

Jukebox tends to result in fewer wrong notes than the other

features, and substantially reduces the number of egre-

giously wrong notes (e.g., notes outside of the key signa-

ture). Representations from Jukebox also appear to aid in

the detection of more nuanced rhythmic patterns. More-

over, using handcrafted features will often result in several

repeated onsets during a longer sustained melody noteÐ

in contrast, using representations from Jukebox appears to

mitigate this failure mode.

Different features also appear to complement one an-

other to a degree. The strongest performance overall is

obtained by combining all three features, though the im-

provement over Jukebox alone is marginal. The practical

downsides of combining all features outweigh the marginal

benefitsÐrunning both pre-trained models effectively dou-

bles the overall runtime, and the models have incompatible

software dependencies. Hence, in the remainder of this pa-

per we focus on models trained on individual features.

6.2 Comparison to melody transcription baselines

We compare overall performance of our proposed melody

transcription approach to several baselines. We eval-

uate all methods on a small subset of 10 songs from

RWC-MDB [38±40], another dataset which includes

melody transcription labels. We chose this specific sub-

set in an effort to compare to early DSP-based work on

melody transcriptionÐnone of the early approaches [22±

25] shared code, however [24] shared melody transcrip-

tions for this 10-song subset.

In addition to [24], we also compare to a baseline which

applies a note segmentation heuristic [19] to a melody

extraction algorithm [48]. We additionally compare to

MT3 in a zero-shot fashionÐthis model was not trained on

melody transcription but was trained on some tasks which

incorporate vocal transcription. Finally, because the vo-
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Any song Lead sheet

Jukebox
(Dhariwal et al. 20)

Beat detector
(Böck et al. 16)

Chord recognizer
(This work)

Melody transcriber
(This work) Key estimator

(Krumhansl 90)

Figure 3. Inference procedure for Sheet Sage, our proposed system which transcribes any Western music audio into lead

sheets (scores which depict melody as notes and harmony as chord names). The green, blue, and yellow boxes respectively

take audio, features, and symbolic music data as input. Green boxes are modules that we built as part of this workÐboth are

Transformers [14] trained on their respective tasks using audio features from Jukebox [1] and data from HookTheory [49].

cals often carry the melody in popular music, we compare

to a baseline of running the Tony [28] monophonic tran-

scription software on source-separated vocals isolated with

Spleeter [31]. Because this approach will only work for vo-

cals, we also separately report performance on a subset of

our evaluation set where the vocals represent the melody.

Scores for all methods and baselines appear in Table 2.

Overall, our approach to training Transformers with

features from Jukebox significantly outperforms the

strongest baseline in both the vocals-only and unrestricted

settings (p < 0.01 using a two-sided t-test for paired sam-

ples). Qualitatively speaking, the stronger baselines pro-

duce transcriptions where a reasonable proportion of the

notes are the correct pitches, but they have poor rhythmic

consistency with respect to the ground truth. In contrast,

our best model produces the correct pitches more often and

with a higher degree of rhythmic consistency.

7. SHEET SAGE

As a bonus demo, here we describe Sheet Sage, a sys-

tem we built to automatically convert music audio into

lead sheets (see footnote on first page for examples), pow-

ered by our Jukebox-based melody transcription model. In

Western music, a piece can often be characterized by its

melody and harmony. When engraved as a lead sheetÐa

musical score containing the melody as notes on a staff and

the harmony as chord namesÐmelody and harmony can

be readily interpreted by musicians, enabling recognizable

performances of existing pieces. Hence, for some music,

a lead sheet represents the essence of its underlying com-

position. Existing services like Chordify [50] can already

detect a subset of the information needed to produce lead

sheets (specifically, chords, beats, and keys) for broad mu-

sic audio. However, despite past research efforts [24, 25],

no user-facing service yet exists which can convert broad

music audio into lead sheets, presumably due to the poor

performance of existing melody transcription systems.

To build Sheet Sage, we also train a Jukebox-based

chord recognition model on the HookTheory data, using

the same methodology that we propose for melody tran-

scription (we simply replace the target vocabulary of on-

set pitches with one containing chord labels). Passing au-

dio through our Jukebox-based melody transcription and

chord recognition models results in a score like format

containing raw note names and chord labels per sixteenth

note. Engraving this information as a lead sheet requires

additional information: the key signature and the time

signature. We estimate the former using the Krumhansl-

Schmuckler algorithm [51, 52], which takes the symbolic

melody and chord information as input. For the latter, we

use madmom [12, 13]. Finally, we engrave a lead sheet us-

ing Lilypond [53]. See Figure 3 for a full schematic.

Subjectively speaking, Sheet Sage often produces high-

quality lead sheets, especially for the chorus and verse seg-

ments of pop music which have more prominent melodies.

Performance is fairly robust across styles and instruments,

even those which are less represented in the training dataÐ

one user reported particularly strong success on Bollywood

music. However, the system occasionally struggles, espe-

cially with quieter vocals, layered harmonies, unusual time

signatures, or poor intonation. Sheet Sage is also limited

to fixed time and key signatures due to limitations of its

downbeat detection and key estimation modules.

8. CONCLUSION

We present a new method and dataset which together im-

prove melody transcription on broad music audio. Our

method benefits from the rich representations learned by

generative models pre-trained on broad audio. This sug-

gests that further improvement in melody transcription

may be possible without additional data, i.e., by scaling

up or otherwise improving the pre-training procedure. By

open sourcing our models and dataset, we hope to spark

renewed interest for melody transcription in the MIR com-

munity, which may in turn reduce the gap between human

perception and machine recognition of a fundamental as-

pect of music.

9. ETHICAL CONSIDERATIONS

Our definition of melody transcription incorporates equal

temperament, a Western-centric tuning system. This could

lead to disparate treatment of non equal-tempered mu-

sic, e.g., if a streaming service were to use melody tran-

scriptions for recommendation. We therefore advocate for

the deployment of transcription only in contexts where

users are self-selecting music to listen or play along to.

Transcription may also be used to create training data for

generationÐas with any work on generation, there are

risks of plagiarism and labor displacement. We recom-

mend that any work on generation involve careful auditing

and mitigation of plagiarism. Due to the incomplete nature

of a melody, we argue that melody generation tools are

more likely to be incorporated into co-creation workflows

(see [54]) rather than used to displace musicians.
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