
GENERATING COHERENT DRUM ACCOMPANIMENT WITH FILLS
AND IMPROVISATIONS

Rishabh Dahale 1 Vaibhav Talwadker1 Preeti Rao1 Prateek Verma 2

1 Department of Electrical Engineering, Indian Institute of Technology Bombay, India
2 Stanford University

dahalerishabh1@iitb.ac.in, talwadkerv@gmail.com, prao@ee.iitb.ac.in, prateekv@stanford.edu

ABSTRACT

Creating a complex work of art like music necessi-

tates profound creativity. With recent advancements in

deep learning and powerful models such as transform-

ers, there has been huge progress in automatic music

generation. In an accompaniment generation context,

creating a coherent drum pattern with apposite fills and

improvisations at proper locations in a song is a chal-

lenging task even for an experienced drummer. Drum

beats tend to follow a repetitive pattern through stan-

zas with fills/improvisation at section boundaries. In

this work, we tackle the task of drum pattern gener-

ation conditioned on the accompanying music played

by four melodic instruments ± Piano, Guitar, Bass, and

Strings. We use the transformer sequence to sequence

model to generate a basic drum pattern conditioned

on the melodic accompaniment to find that improvisa-

tion is largely absent, attributed possibly to its expect-

edly relatively low representation in the training data.

We propose a novelty function to capture the extent of

improvisation in a bar relative to its neighbors. We

train a model to predict improvisation locations from

the melodic accompaniment tracks. Finally, we use a

novel BERT-inspired in-filling architecture, to learn the

structure of both the drums and melody to in-fill ele-

ments of improvised music.

1. INTRODUCTION

Songs in popular music genres like rock are typically split

into different sections such as the verse, bridge, and cho-

rus. While the primary task of a drummer is to play in time,

it is also important for the drummer to be consistent with

the song structure. Traditionally fills, or short groups of

notes, are played as the song transitions from one section

to another (say, verse to chorus). Thus, it can serve as an

indicator to the audience as well as the band, of an upcom-

ing transition in the song. The duration of fills generally

tends to be only a few beats long, no more than the length

© Rishabh Dahale, Vaibhav Talwadker, Preeti Rao and Pra-

teek Verma. Licensed under a Creative Commons Attribution 4.0 Inter-

national License (CC BY 4.0). Attribution: Rishabh Dahale, Vaibhav

Talwadker, Preeti Rao and Prateek Verma, ªGenerating Coherent Drum

Accompaniment with Fills and Improvisationsº, in Proc. of the 23rd Int.

Society for Music Information Retrieval Conf., Bengaluru, India, 2022.

of a bar. Even though they are rare events in a drum track,

fills are an important part of the overall aesthetics. Beyond

signaling transitions, drum fills can also be played in sec-

tions where the accompanying instrumentation is sparse.

Motivated by the above, we improve the quality of the

generated drum tracks from seq-to-seq models by incorpo-

rating fills/improvisations towards our overall goal of ac-

companiment generation. This is achieved via the follow-

ing three distinct stages:

1. Basic Drum Pattern Generation: Using a seq-to-

seq model to generate a drumbeat as the accompaniment

to given melodic instrument tracks of guitar, bass, strings,

and piano (i.e. the Melodic Accompaniment - MA).

2. Improvisation Location Detection: Detecting ex-

plicitly the position of improvisation from the MA using a

self-similarity function and mini BERT model.

3. Generating Improvised Bars: Generating the fills

in the previously detected bars.

Our main contributions are: (i) We show that traditional

attention-based transformer architectures fail to capture the

ªimprovisation" due to implicit data imbalance. (ii) We

also show that the sampling-based approaches fail to pro-

duce a variation of pattern at the right location. To mitigate

this, we learn to predict where to improvise directly from

the melody tracks using powerful self-attention-based ar-

chitectures. (iii) We propose a novel in-filling approach,

inspired by BERT that can look at the context of drums and

the context of melody and use it to generate the improvised

bars. (iv) We demonstrate an MLP-based synthesis module

for drum improvisation generation from a latent code. For

simplicity we have ignored the dynamic (velocities) in the

generated drum patterns of this work.

2. RELATED WORKS

Since the introduction of the Transformer architecture [1],

there has been a growing interest in this model for sequen-

tial task modeling like in NLP and music generation. The

architecture uses an attention mechanism to learn long-

term patterns and can easily surpass dilated convolutional-

based methods such as WaveNet [2]. They achieve state-

of-the-art performance in a variety of natural language

problems [3], music/audio understanding [4] and gener-

ation tasks [5, 6]. However, for generative models, the

decoding strategy still remains an open question. Even

though high-quality models can be obtained by the use of

likelihood as the training objective, likelihood maximiza-

264

Figure 1. System Overview - Pipeline used for training (left half) of each individual module; combined pipeline (right half)

for the evaluation phase.

tion methods like beam search lead to degeneration [7].

To solve this issue, many researchers use sampling-based

methods like temperature sampling, top-k sampling, and

nucleus sampling [7±9]. Despite all of the success of se-

quential modeling recently, there still exist many issues

that are relevant to our current work such as understand-

ing rare words or sparsely occurring events of interest [10].

Another major problem is the presence of biases in the gen-

erated output, as they mimic the distribution present in the

training datasets [11]. These issues are ubiquitous across

datasets and modalities and are implicit in our task due to

the low representation of improvised bars. We here show

how these constraints and biases affect the quality of drum

generation, and the steps we take to mitigate them.

Conditioned drum beat generation is an important sub-

task of music generation. Wei et al. [12] observed that the

polyphonic melody self-similarity matrix (SSM) is struc-

turally similar to the drum SSM. They used this to predict

the drum SSM from the melody SSM and used this inter-

mediate representation to generate the drumbeat. While

they used the audio form of the melody as the input, the

symbolic domain also offers opportunities for similar re-

search. An example is the work of [13] using symbolic

representation of the drum track to predict locations and

generate improvisations for the drum track. In this work,

we address drum generation conditioned on a melodic ac-

companiment track, bringing considerably more complex-

ity to the problem.

In the symbolic domain, systems use a discretized rep-

resentation such as MIDI tag and pianoroll representations

that capture the essential information at the semantic level.

Pianoroll is a score-like matrix representing a piece of

music. Note pitch and time are represented by the ver-

tical and horizontal axes, respectively. The velocities of

the notes are represented by the values. The time is gen-

erally quantized on a sub-beat level and each instrument

track is represented by a separate pianoroll matrix. Dong

et al. [14] used this representation along with CNN-based

GAN model for music generation. Another popular sym-

bolic domain representation is the MIDI tag representation

which we refer to as the ªserialized grid representation".

In this method, the input is represented by a sequence of

MIDI-like tags. Huang et al. [6] used this MIDI tag rep-

resentation with modified transformer architecture to gen-

erate long-duration piano music. Several modifications

have also been proposed to this representation. Huang et

al. [15] proposed a revamped MIDI (REMI) which intro-

duced DURATION, BAR and POSITION tags to improve

the quaity of generated music. Ren et al. [16] further mod-

ified this representation to include multi-track representa-

tion by introducing TRACK tag and used the Transformer-

XL model to generate multitrack songs. Nuttall et al. [17]

modified the MIDI tags of nine percussion instruments to

represent notes being played by a triplet of pitch, velocity,

and start time, and used it with the Transformer-XL model

to sequentially generate the drum pattern. Thorn et al. [18]

demonstrated three experiments with the Transformer-XL

model with varying input and output representation and

control. In two of the experiments, they tried to control

the drum machine while in the third experiment they tried

to generate the drum pattern directly.

While the Transformer-XL model facilitates the gen-

eration of longer duration (musical) sequences, they still

suffer from the same issues of biases in dealing with the

implicit data-imbalance that exists in the training dataset

[19, 20]. As the specific focus of this work is to find ways

to capture the rare events in the generated output, i.e., fills

and improvisations, we consider only the necessary con-

text for an improvised bar in the form of 11 bar segments

of the songs.

3. DATASET

In this work, we use the Lakh Pianoroll Dataset (LPD-5

cleansed) [14], derived from the Lakh Midi Dataset [21]

which is a collection of 21,425 multitrack pianorolls files

consisting of following tracks: Piano, Guitar, Bass, Strings

and Percussion. All the songs in this dataset are of 4/4-time

signature i.e., all the songs contain 4 beats in a bar and the

dimensionality of each bar in this dataset is 128 (pitch) x

96 (time steps) i.e. each beat is divided into 24 parts. Our

input, which we call melodic accompaniment (MA), con-

sists of notes played by the 4 melodic instruments and out-

put is a percussion instrument pattern conditioned on the

input which we call the percussion accompaniment (PA).

Evaluation of generative music systems faces harder

challenges than that of image generation systems [22]. We

expect our system to replicate the rhythmic consistency

and diversity of the dataset. Any drum beat generation

system must have correct onset locations in a beat. If the

onsets are not properly matched, it appears as if the drums

are lagging/leading the melody. We show that our model is

able learn this by capturing the onset location distribution.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

265

To compare generated samples with original drums in the

dataset, we use the following metric: Instrument Count -

Number of distinct percussion instruments used in a bar.

To evaluate our outputs in terms of rhythmic consistency,

we use the following objective metric: Percussion pattern

consistency in consecutive bars.

4. METHOD

The overview of the proposed system is shown in Figure 1.

Details of each of the models are provided in subsequent

sections. Our models are trained for 300 epochs with

Adam optimization [23] starting with a learning rate of 1e-

4 and decaying it till 1e-6. All the setup was carried out

using the Tensorflow [24] framework. The following two

modules are being used in all the models:

1. Embedding Module: As the pianoroll matrices are

highly sparse, we pass them through 2 layers with 1024

and 128 ReLU [25] activated dense layers to capture the

inter instrument and inter pitch dependencies. For the de-

coder branch of Basic Drum Pattern Generation model, we

use 128 dimensional token embedding layer.

2. Position Encoder: We concatenate the sinusoidal posi-

tional representations [1] with the 128 dimensional vectors

and use a dense layer to project them back in 128 dimen-

sion space.

4.1 Data Processing & Representation

To compress the input and output representation in our

work, we perform the following preprocessing steps: (i)

trim the track for start and end silence bars; (ii) resam-

ple the beats to 8 parts per beat, making each bar 32

timesteps long; (iii) keep only active MIDI pitches in all

melodic instruments, i.e. MIDI 21 to MIDI 83 (notes A0

to B5); (iv) combine similar instruments in the MIDI rep-

resentation of the percussion track. For example, under

the snare drum, MIDI 38, which corresponds to acoustic

snare, and MIDI 40, which corresponds to electric snare,

are clubbed together; (v) choose only 16 percussion instru-

ments as they capture 85.3% of all the percussion instru-

ment strokes: snare drum, open hi-hat, close hi-hat, kick

drum, ride cymbal, crash cymbal, low-floor tom, high-floor

tom, high tom, hi-mid tom, low tom, cowbell, pedal hi-

hat, tambourine, cabasa, and maracas; (vi) to decrease the

amount of training parameters, we binarize the percussion

track for seq-2-seq models and exclude velocities; (vii)

split the song in non-overlapping contiguous 11 bar sam-

ples. The finer grids are superior for representing drum

audio and fills [26]. We however opt for a quantized repre-

sentation, capturing most of the significant musical events,

allowing us to model longer duration dependencies by the

compressed representation. It will be interesting to com-

pare various representations as a future work.

We use a modified version of pianoroll representation

for MA representation. We concatenate the pianorolls

(Figure 2a) of different instruments instead of adding them

to different channels [14]. As our input is quantized to 8

parts per beat, we represent each 1

8

th
part of the beat by

a 256-dimensional vector split amongst the 4 melodic in-

struments. The first dimension of this 64-dimension vector

is the silence state. This is a binary state representing if the

instrument under consideration is silent. The rest of the 63

dimensions contain the velocities of the MIDI notes 21-83

being played.

Figure 2. Data representation methods used in this work

For the PA, we adopt a mixed representation. For our

Basic Drum Pattern Generation model, which is a trans-

former seq-2-seq model, we take advantage of the lan-

guage modeling tasks and use a serialized grid representa-

tion (Figure 2b). In this representation, only the active per-

cussion instruments which are being played are unfolded

into a sequence of tokens. We add a silence state token

and shift by one token making a total of 18 tokens for the

percussion track. For the final model, the improvisation

generation model, we give the MA and masked basic PA

pattern as the inputs. We use the pianoroll representation

for the PA representation for this model (Figure 2c) as only

a fixed number of timesteps needs to be masked in this rep-

resentation.

4.2 Train-Test Splits and Data Augmentation

We split the 21,425 songs in LPD-5 into 16,832 songs for

training and 4,593 songs for the validation set. As the num-

ber of songs is limited, we use the validation set as the test

set. We apply the following data augmentation strategies

(inspired by sensor dropout methods in robotics [27]) to

all of our models’ inputs to increase the robustness in the

training process:

1. Random instrument masking: We randomly mask

one of the instruments in MA for 40% of the samples in

every epoch. This 40% is equally split between the four

melodic instruments. Musically this implies that one of

the instruments has stopped playing. This encourages the

model to consider all the instruments in the MA while

making a prediction.

2. Random timestep masking: We randomly mask

20% of the timesteps in every sample. Musically this leads

to a small disruption in the rhythm of the song which helps

in better generalization of the model.

For the improvised bar generation model, which takes

in the MA and masked PA as inputs, (section 4.5), we use

the following additional augmentation methods:

1. Input masking: We randomly drop one of the inputs

(MA or PA) to the model in 20% of the input samples. This

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

266

ensures that the model is not dependent on only one input

for improvisation generation.

2. Drum noise: In the evaluation phase, the drum in-

puts are taken from the output of the basic drum pattern

generation model. As this process could be prone to er-

rors, we simulate this by adding the random noise to the

drum samples while training. The random noise can either

add new drum strokes or remove some old strokes. Our

analysis showed that the PA has a very low density in the

pianoroll format (average ≈ 5%). Hence we perturb the

PA density by a maximum of 1%

4.3 Basic Drum Pattern Generation

Figure 3. (a) Sequence to sequence model, used for basic

drum pattern generation; (b) Improvisation Location De-

tection Model

We use the Transformer encoder-decoder model [1] to

generate a basic drum pattern (Figure 3a). This is done by

giving the MA as the input to the encoder and the shifted

PA tokens to the decoder branch. Both the inputs are first

passed through the embedding module followed by the po-

sition encoder. The embedded inputs are passed through

2 layers of encoder/decoder module with 128 dimensional

latent space and 8 attention heads. At the output, we have

18 neurons corresponding to the 16 drum instruments, si-

lence token, and shift token.

4.3.1 Sub-module Evaluation

We evaluate the above model with the negative log-

likelihood (NLL) values over the train and the validation

set. As the model outputs a distribution over the 18 out-

put tokens, there are multiple ways to decode it. We test

the greedy method of decoding, where the token with the

maximum probability is selected at every step and simple

sampling method. The model is trained using categorical

cross-entropy loss, achieved a NLL of 0.108 and 0.112 on

the train and validation split, respectively.

4.4 Improvisation Location Detection

4.4.1 Novelty Function

Figure 4. Novelty Function plot for a given drum track

In order to extract locations in the MA that warrant a

fill, we propose the following method:

1. We use a 11-bar drum sample to calculate the Nov-

elty value of center bar. The 5 bars on it’s left and right

are the context bar. The novelty value of a bar is calculated

as the average weighted dissimilarity over all the context

bars. We use the following equation to calculate the dis-

similarity between 2 bars:

||bari − barj ||1 × k

||bari||1 + ||barj ||1
(1)

We utilize the hanning window to represent the weighting

parameter k.

2. This calculation is done for all the bars across a track,

except the first and the last 5 bars due to the lack of context

bars. From Figure 4 it can be seen that the novelty func-

tion peaks at the bar with a drum fill. These bars are then

extracted using a peak picking mechanism.

3. To generate the dataset for our task, we pick the bars

with a local maxima as the positive samples. To filter out

minor deviations, e.g., bar 18 in Figure 4, we put a thresh-

old of 0.1 on the peaks height difference from its neigh-

bours. Maximum of 10% of total bars in a song with these

characteristics are selected as the positive samples. Same

number of bars from the rest of the non peak regions are

selected as negative samples.

4.4.2 Model Architecture

We use a 2 layer BERT [28] (Figure 3b) to detect the lo-

cation of improvisations. The input to this model is an

11-bar MA and the prediction is done for the middle bar.

The MA is passed through an embedding layer followed

by the positional encoder. The embedded inputs are then

passed through 2 layers of transformer encoder with 64 di-

mension latent space and 12 attention heads, followed by

1024 neurons. These are finally passed to a 2 dimensional

softmax activated dense layer which acts as a classification

module. The above model is trained using Huber loss [29],

as it is robust to outliers and less sensitive to noise.

4.4.3 Sub-module Evaluation

We monitored the accuracy, precision, and recall of the

model in terms of detecting the improvised bars where the

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

267

target is the original drum track. The final results can be

found in Table 1. As the dataset is split equally between

positive and negative samples, we have balanced precision

and recall values.

Precision Recall Accuracy F1 Score

Train 92.3 92.3 92.3 92.3

Val 79.1 79.4 79.3 79.2

Table 1. Performance of the Improvisation Location De-

tection model. All the values are in %.

4.5 Improvisation Generation

Figure 5. Improvised Bar Generation Model

The final step in our system is the generation of impro-

vised bars. To achieve this we use the architecture shown

in Figure 5. We provide 11 bar MA and PA as the in-

put to the model. During the training phase, the PA is

the original percussion track, whereas, during the evalu-

ation/generation phase, the percussion track generated by

our first stage model (section 4.3) is used. The 6th bar in

the percussion sample (middle bar) is the target bar and is

masked while giving as the input.

We generate a summary vector of both the MA and the PA

inputs. Both are first passed through an embedding layer

followed by a position encoder module. This is then passed

through 2 layers of transformer encoders with 128 dimen-

sional latent space and 8 attention heads. Even though

larger/bigger models could potentially lead to better re-

sults, we have used the resources at our disposal. We note

that any further improved performance will only apply to

in-fill detection and synthesis.

We add skip connections to ease the flow of gradients

[30]. To generate the summary vector for each input, we

use a global averaging technique. These two vectors are

concatenated and passed through a decoder structure which

looks at the concatenated vector to generate the improvised

drum bar. We test the following decoder architectures with

our model:

1. MLP: A 3-layer dense network with 2048-2048-512

neurons is used. The final layer is sigmoid activated. The

outputs are reshaped to 32 (timesteps) × 16 (percussion

instruments) to get the improvised bar.

2. MLP mixer: MLP mixers [31] are simple alterna-

tives to convolution and self-attention. They are based on

multi-layered perceptrons applied across either temporal

dimension or feature dimension.

3. Conv1d: A simple conv1d architecture with blocks

of 2 layers of conv1d followed by upsampling.

We did not opt for an auto-regressive architecture, as

this work does not assume causality, and we incorporate

the right context as well as melody for the fill synthesis.

There have been other works for improvisation synthesis,

e.g. [32], also using the left and right context, even if only

using drums

4.5.1 Sub-module Evaluation

We treat the prediction of the improvised bars as a regres-

sion problem. We similarly train it with Huber loss as it is

less sensitive to outliers. We do not use cross-entropy loss

for generation firstly purely as a design choice, and intu-

itively each of the time step token in the prediction within

a bar lack probabilistic interpretation. We monitor and re-

port the accuracy, precision, and recall of the models. As

the distribution of 0s and 1s is not uniform in the predicted

sample, F1 score provides a better insight in the perfor-

mance of the models. From Table 2 it can be seen that a

simple 3 layered MLP decoder is able to perform better

than the complex MLP mixer and Conv1D architecture.

Precision Recall Accuracy F1 Score

MLP
Train 98.8 93.2 86.3 95.9

Val 82.9 70.3 79.0 76.0

MLP

Mixer

Train 97.5 45.0 88.7 61.6

Val 83.5 42.1 86.0 56.0

Conv1D
Train 55.2 70.6 86.2 61.7

Val 53.1 70.3 86.1 60.5

Table 2. Results for various decoders used in the Impro-

vised Bar Generation model (all the values are in %)

5. EVALUATION

To evaluate the quality of the generated PA pattern of the

proposed system, we conduct both objective and subjec-

tive tests 1 with: O: Original MIDI drum patterns from the

dataset; P1: The basic drum pattern generated by our Ba-

sic Drum Pattern Generation model (section 4.3); P2: The

final drum pattern with fills and improvisations generated

by the complete system.

We screen the generated samples to eliminate those with

more than 4 silent bars and those where the variation of bar

density is high as measured by the standard deviation of the

bar density. After applying the mentioned filtering to 8192

P1 drum samples generated by simple sampling method,

we are left with 3762 samples for further evaluation.

1 Note:Additional objective evaluation methods are reported in the
supplementary document https://bit.ly/2022ismirsupp

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

268

Figure 6. (a) Distribution of onset position in a bar (b)

Distribution of Percussion Pattern Consistency

A basic requirement that any drum pattern generation

system must fulfill is the rhythmic positioning of onsets.

Generally, in a bar of rock music, the first beat (downbeat)

and the third beat have similar instrumentation, featuring a

hi-hat and kick drum onset. Beats 2 and 4, commonly re-

ferred to as the backbeat, include a hi-hat and snare drum

onset. While the quarter notes are accented across the bar,

8th notes are accented within the beat interval. Figure 6a

shows the onset distribution present in the bar of both O

and P1 samples. We can observe that most of the drum pat-

terns are 8th note patterns and we find a larger proportion

of onsets at the accented locations within a beat interval.

This is particularly intriguing because the model is given

no explicit downbeat or subdivision information yet is still

able to emphasis the subdivisions required for an 8th note

pattern.

We also do a one-to-one comparison of the P1 outputs

against their target drum pattern to understand how closely

the patterns match with the original drum sample based on

the following metric:

Instrument Count (IC) is defined as the total number of

distinct instruments used in a bar. To see whether our

model is able to replicate the behavior of multi-instrument

dependency, we calculate the deviation of IC in the gen-

erated sample with reference to the original target drum

track for the same MA. We observe that in 75.8% of the

drum bars, we are able to replicate the IC, while in 99.3%

of the bars our model was off by at most 1 instrument.

Another important aspect that needs to be considered

while generating drum patterns is to have a rhythmic (pat-

tern) consistency across bars. We evaluate this aspects of

the generated drum pattern using the following metric:

Pattern Consistency: For consecutive bar pair, we cal-

culate the distance between the drum patterns using (1)

keeping k = 1. The distribution of the bar distances is

shown in Figure 6b. We can see that the generated drum

bars are more or less similar to each other with some mi-

nor deviations due to the sampling decoding method. The

overlapping area of the two distributions is 80.4%.

Next, on the improvised O and P2 bars, we used the

following evaluation methods to see how well our models

captured the fills/improvisations:

Onset Position: Figure 7a shows the distribution of onset

location of percussion instruments across the improvised

bars. We observe a slightly higher proportion of 16th note

patterns in the improvised O bars as compared to onset dis-

Figure 7. Improvised bars: Distribution of (a) onset loca-

tion (b) change in instrument count (w.r.t. previous bar)

tribution across the non-improvised bars seen in Figure 6a.

We can see that P2 system is largely able to capture this

behavior as well.

Instrument Count (IC) Change: Generally during a

fill/improvisation, some additional instrument are being in-

troduced. IC change is measures as the change in IC of im-

provised bar compared to its previous bar. Figure 7b shows

the distribution of IC change. The overlapping area of the

two distributions is 87.9%, This shows that our model was

able to capture the general trend of IC change.

Additionally, to evaluate the perceptual quality of the

generated outputs, we present the generated samples to

trained musicians. We created 3 pairs i.e. O & P1; P1 &

P2; O & P2 for each MA-PA track and presented them to

two guitarists and a multi-instrumentalist with experience

ranging from 5 to 10 years. They were asked to provide

detailed comments on the drum pattern in terms of timing,

appropriateness of fills and coherence of the PA with MA.

A common comment from the musicians was regarding the

monotonicity in P1 track. As a result when the O & P1 pair

was presented, majority of the times O was preferred, but

when P1 & P2 were presented, musicians were found to

appreciate the fills as it provided a lively feel to the PA.

6. CONCLUSION AND FUTURE WORK

We have successfully shown a method to produce coherent

drums accompaniment with improvised bars by condition-

ing on a given melodic accompaniment. A novel BERT

inspired infilling architecture is proposed, along with self-

supervised improvisation locator. By learning, where and

how to improvise, our evaluations indicate improved gen-

eration quality. Thus with a two step approach, we mit-

igate the biases intrinsic with data-imbalance, and short-

comings that exists with current machine learning archi-

tectures. The system can further be improved by learn-

ing optimal sampling techniques, which still remains an

open problem. As a future work, we could improve the

detection performance by employing larger and deeper ar-

chitectures. This work highlights a serious drawback of

traditional language-based generators, which have shown

promise in a lot of different fields, yet they fail to capture

subtle musical signals, where they are often sparsely oc-

curring in otherwise repetitive and common patterns.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

269

7. REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,

L. Jones, A. N. Gomez, è. Kaiser, and I. Polosukhin,

ªAttention is all you need,º Advances in neural infor-

mation processing systems, vol. 30, 2017.

[2] P. Verma and C. Chafe, ªA generative model for raw

audio using transformer architectures,º arXiv preprint

arXiv:2106.16036, 2021.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Ka-

plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-

try, A. Askell et al., ªLanguage models are few-shot

learners,º Advances in neural information processing

systems, vol. 33, pp. 1877±1901, 2020.

[4] P. Verma and J. Berger, ªAudio transformers:

Transformer architectures for large scale audio un-

derstanding. adieu convolutions,º arXiv preprint

arXiv:2105.00335, 2021.

[5] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford,

and I. Sutskever, ªJukebox: A generative model for

music,º arXiv preprint arXiv:2005.00341, 2020.

[6] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer,

I. Simon, C. Hawthorne, A. M. Dai, M. D. Hoff-

man, M. Dinculescu, and D. Eck, ªMusic transformer,º

arXiv preprint arXiv:1809.04281, 2018.

[7] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi,

ªThe curious case of neural text degeneration,º arXiv

preprint arXiv:1904.09751, 2019.

[8] J. Ficler and Y. Goldberg, ªControlling linguistic style

aspects in neural language generation,º arXiv preprint

arXiv:1707.02633, 2017.

[9] A. Fan, M. Lewis, and Y. Dauphin, ªHier-

archical neural story generation,º arXiv preprint

arXiv:1805.04833, 2018.

[10] T. Schick and H. Schütze, ªRare words: A major prob-

lem for contextualized embeddings and how to fix it by

attentive mimicking,º in Proceedings of the AAAI Con-

ference on Artificial Intelligence, vol. 34, no. 05, 2020,

pp. 8766±8774.

[11] E. Sheng, K.-W. Chang, P. Natarajan, and N. Peng,

ªThe woman worked as a babysitter: On biases in lan-

guage generation,º arXiv preprint arXiv:1909.01326,

2019.

[12] I.-C. Wei, C.-W. Wu, and L. Su, ªGenerating struc-

tured drum pattern using variational autoencoder and

self-similarity matrix.º in ISMIR, 2019, pp. 847±854.

[13] F. Tamagnan and Y.-H. Yang, ªDrum fills detection and

generation,º in International Symposium on Computer

Music Multidisciplinary Research. Springer, 2019,

pp. 91±99.

[14] H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, and Y.-H. Yang,

ªMusegan: Multi-track sequential generative adversar-

ial networks for symbolic music generation and accom-

paniment,º in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 32, no. 1, 2018.

[15] Y.-S. Huang and Y.-H. Yang, ªPop music transformer:

Beat-based modeling and generation of expressive pop

piano compositions,º in Proceedings of the 28th ACM

International Conference on Multimedia, 2020, pp.

1180±1188.

[16] Y. Ren, J. He, X. Tan, T. Qin, Z. Zhao, and T.-Y. Liu,

ªPopmag: Pop music accompaniment generation,º in

Proceedings of the 28th ACM International Conference

on Multimedia, 2020, pp. 1198±1206.

[17] T. Nuttall, B. Haki, and S. Jorda, ªTransformer neural

networks for automated rhythm generation,º 2021.

[18] O. Thörn, ªAi drummer-using learning to enhancearti

cial drummer creativity,º 2020.

[19] A. Caliskan, J. J. Bryson, and A. Narayanan, ªSeman-

tics derived automatically from language corpora con-

tain human-like biases,º Science, vol. 356, no. 6334,

pp. 183±186, 2017.

[20] P.-S. Huang, H. Zhang, R. Jiang, R. Stanforth, J. Welbl,

J. Rae, V. Maini, D. Yogatama, and P. Kohli, ªReducing

sentiment bias in language models via counterfactual

evaluation,º arXiv preprint arXiv:1911.03064, 2019.

[21] C. Raffel, Learning-based methods for comparing se-

quences, with applications to audio-to-midi alignment

and matching. Columbia University, 2016.

[22] J.-P. Briot, G. Hadjeres, and F.-D. Pachet, ªDeep learn-

ing techniques for music generation±a survey,º arXiv

preprint arXiv:1709.01620, 2017.

[23] D. P. Kingma and J. Ba, ªAdam: A method for stochas-

tic optimization,º arXiv preprint arXiv:1412.6980,

2014.

[24] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,

J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard

et al., ªTensorflow: A system for large-scale machine

learning,º in 12th {USENIX} symposium on operat-

ing systems design and implementation ({OSDI} 16),

2016, pp. 265±283.

[25] A. F. Agarap, ªDeep learning using rectified linear

units (relu),º arXiv preprint arXiv:1803.08375, 2018.

[26] J. Gillick, J. Yang, C.-E. Cella, and D. Bamman,

ªDrumroll please: Modeling multi-scale rhythmic ges-

tures with flexible grids,º Transactions of the Interna-

tional Society for Music Information Retrieval, vol. 4,

no. 1, 2021.

[27] G.-H. Liu, A. Siravuru, S. Prabhakar, M. Veloso, and

G. Kantor, ªMulti-modal deep reinforcement learning

with a novel sensor-based dropout.º

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

270

[28] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,

ªBert: Pre-training of deep bidirectional trans-

formers for language understanding,º arXiv preprint

arXiv:1810.04805, 2018.

[29] P. J. Huber, ªRobust estimation of a location parame-

ter,º in Breakthroughs in statistics. Springer, 1992,

pp. 492±518.

[30] L. Pepino, P. Riera, and L. Ferrer, ªEmotion recog-

nition from speech using wav2vec 2.0 embeddings,º

arXiv preprint arXiv:2104.03502, 2021.

[31] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer,

X. Zhai, T. Unterthiner, J. Yung, A. Steiner, D. Key-

sers, J. Uszkoreit et al., ªMlp-mixer: An all-mlp ar-

chitecture for vision,º Advances in Neural Information

Processing Systems, vol. 34, 2021.

[32] J. Gillick, A. Roberts, J. Engel, D. Eck, and D. Bam-

man, ªLearning to groove with inverse sequence trans-

formations,º in International Conference on Machine

Learning. PMLR, 2019, pp. 2269±2279.

[33] L.-C. Yang and A. Lerch, ªOn the evaluation of gener-

ative models in music,º Neural Computing and Appli-

cations, vol. 32, no. 9, pp. 4773±4784, 2020.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

271

