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ABSTRACT

In this work, we provide a broad comparative analysis of

strategies for pre-training audio understanding models for

several tasks in the music domain, including labelling of

genre, era, origin, mood, instrumentation, key, pitch, vo-

cal characteristics, tempo and sonority. Specifically, we

explore how the domain of pre-training datasets (music or

generic audio) and the pre-training methodology (super-

vised or unsupervised) affects the adequacy of the resulting

audio embeddings for downstream tasks.

We show that models trained via supervised learning on

large-scale expert-annotated music datasets achieve state-

of-the-art performance in a wide range of music labelling

tasks, each with novel content and vocabularies. This can

be done in an efficient manner with models containing less

than 100 million parameters that require no fine-tuning or

reparameterization for downstream tasks, making this ap-

proach practical for industry-scale audio catalogs.

Within the class of unsupervised learning strategies,

we show that the domain of the training dataset can

significantly impact the performance of representations

learned by the model. We find that restricting the do-

main of the pre-training dataset to music allows for training

with smaller batch sizes while achieving state-of-the-art

in unsupervised learningÐand in some cases, supervised

learningÐfor music understanding.

We also corroborate that, while achieving state-of-the-

art performance on many tasks, supervised learning can

cause models to specialize to the supervised information

provided, somewhat compromising a model’s generality.

1. INTRODUCTION

In this work, we consider a broad array of classification and

labelling tasks under the umbrella of music understanding.

Such tasks include the labelling of genre, origin, mood,

musical key, instruments, era, emotion and pitch present

in music. These tasks have many applications in industry,
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particularly in music streaming and recommendation ser-

vices where automated understanding of audio can assist

in a range of tasks such as organizing, filtering and person-

alizing content to a listener’s taste and context.

Recent research in automated audio understanding has

focused on training convolutional [1±12] and / or atten-

tion based [13±21] networks on moderately large collec-

tions of frequency-domain audio [2,5±8,12±14,18,20,21],

time-domain audio [3, 10, 11, 19] or multi-format / multi-

modal [4, 9, 21, 22] data. Such models are often trained on

tags encompassing some of the musical labels listed above,

achieving promising results [1,3,6,11,13±15,22]. More re-

cent works propose unsupervised strategies for music un-

derstanding such as contrastive learning [2, 4, 5, 8±10, 21]

or predictive / generative approaches [7, 20, 21, 23]. Unsu-

pervised strategies are appealing because they require no

annotated data and generalize well to new tasks [2, 21],

but lag the performance of supervised learning at a simi-

lar scale [2,10]. Generative learning strategies [7,23] have

been shown to achieve competitive, and sometimes state-

of-the-art (SOTA), performance in several music under-

standing tasks [24], although, currently there is no evalua-

tion demonstrating the effectiveness of this approach to any

of the aforementioned approaches, at comparable scale.

Modern music streaming services have very large mu-

sic catalogs that amount to many petabytes of audio data

if uncompressed. Due to the scale of this data it is de-

sirable to build models that are efficiently scalable, and

understand audio in a general enough way that, as needs

or requirements change, they may be used to solve novel

problems without reprocessing such data. Models in the

order of 10M or 100M parameters are currently relatively

cost-effective to both train and apply inference to industry-

scale catalogs, whilst models consisting of billions of pa-

rameters, e.g. that evaluated in [24], are typically imprac-

tical, or very expensive, for both training and inference.

More recently, research has adopted approaches pro-

ducing generalized audio embeddings [2, 4±10, 12, 18, 19,

25] in a supervised or unsupervised way, by training mod-

els on large amounts of labelled or unlabelled audio. When

such models are applied to novel audio, the internal state of

the models has been found to contain much of the informa-

tion necessary for previously unseen tasks. This is demon-

strated by training shallow classifiers (probes) on embed-

dings consisting of the activations of a given model layer,

that map these values to a downstream task. Such an ap-

proach achieves competitive results using either unsuper-
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vised [25] or supervised [6] learning. Most importantly,

the embeddings on which the probes are trained are many

orders of magnitude smaller than the audio itself and only

need to be computed once per audio file. Such embeddings

can be stored efficiently, and downstream classifiers can be

trained with significantly less resources. The excellent per-

formance, generality, and scalability of this approach are

crucial factors for its utility in industry.

This approach to audio understanding has been high-

lighted in recent benchmarks such as HARES [2] and

HEAR [26], where embeddings are evaluated across a

number of audio understanding tasks pertaining to a range

of content types. Any score aggregation across these

benchmarks to determine a "best" embedding is difficult

due to the disparate range of metrics employed and further-

more, may obfuscate the strengths and weakness of any

given approach. However, evaluating across a common

range of tasks can be useful in comparing such strengths

and weaknesses. We find that the current tasks evaluated in

the HEAR and HARES benchmarks are lacking in evalua-

tion on music content. Wrt. polyphonic music, the HARES

benchmark includes only the Magnatagatune dataset, and

the HEAR benchmark includes only GTZAN genre and

music / speech datasets. While other public music datasets

exist, such benchmarks are somewhat limited by the re-

quirement to provide access to the audio of all datasets.

Here, we do not intend to establish a new open bench-

mark, but investigate the effectiveness of supervised and

unsupervised learning for audio embeddings employed

specifically for music understanding, across as broad an

array of tasks as is available within time and resource

constraints. For supervised learning we train models on

large scale datasets of annotated magnitude log-mel spec-

trograms both in the music domain and in the general au-

dio domain. For unsupervised learning we train contrastive

models using SimCLR loss [27, 28] on the same sets of

magnitude log-mel spectrograms, excluding annotations.

The contributions of this work are as follows: we

provide a broad analysis of supervised and unsupervised

learning strategies for pre-training audio models for mu-

sic understanding; we show that for multilabel / multiclass

classification of music, large-scale supervised learning on

music data achieves SOTA performance, in many cases

outperforming both prior SOTA and unsupervised learn-

ing by significant margins; we show that supervised learn-

ing on labelled music data does not generalize as well as

unsupervised learning to novel tasks not covered in those

labels; finally, we show that the domain of pre-training au-

dio datasets has a significant impact on the performance of

embeddings, particularly for unsupervised learning.

2. PRE-TRAINING METHODOLOGY

To achieve the objectives outlined in Section 1, we fol-

low a familiar transfer learning paradigm (Figure 1) where

models are pre-trained using supervised or unsupervised

learning. Thereafter, the frozen activations from a layer of

that model, forming embeddings, z, are mapped to a down-

stream task using a simple network p(z).

CNN CNN

PROJECT PROJECT

PROBE

SUPERVISED
PRETRAINING

UNSUPERVISED
PRETRAINING EVALUATION

FEATURE 
SAMPLING

Figure 1. System diagram of both pre-training approaches

employed in this paper, and evaluation.

2.1 Supervised and Unsupervised Training

In the supervised setting we learn a function f(X) ⇒ ŷ

mapping features X (log-mel spectrograms) to binary la-

bels, y, by applying Adam optimization [29] to the binary

cross-entropy loss function,

Ls(y, ŷ) =
−1

NK

N−1∑

i=0

yi log(ŷi) + (1− yi) log(1− ŷi),

where batch size N = 512, and K is the number of labels.

In the unsupervised setting, we employ the SimCLR ob-

jective [27, 28], which has been shown to provide promis-

ing results for both music and audio understanding [2, 10].

The SimCLR objective employs correlated (positive) pairs

of samples by mapping each feature to an embedding

space, f(X) ⇒ z ∈ R
m, with embedding dimensional-

ity m = 1728. A projector, then maps the embedding

space to a loss space h(z) ⇒ v ∈ R
n, with dimen-

sionality n = 1024. Here, each element is then com-

pared to all other elements in a batch via distance function,

d(vi,vj) = vi · vj/∥vi∥∥vj∥. The loss is then computed

as the normalized temperature-scaled cross entropy,

Lu(vi,vj) = − log
exp (d(vi,vj)/τ)∑2N−1

k=0 1[k ̸=i] exp (d(vi,vk)/τ)
,

which is summed across 2N examples in N = 1920 posi-

tive pairs, where i = j, for all values of both i ∈ [0, N −1]

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

257



and j ∈ [0, N − 1]. Here, 1[k ̸=i] is an indicator func-

tion evaluating to 1 for k = i, otherwise evaluating to 0.

τ = 0.1 denotes a temperature hyper-parameter.

SimCLR loss can be interpreted as a one hot classifi-

cation problemÐfor each example, identifying its positive

pair amongst all other (negative) examples in the batch.

Because the batch-size determines the number of negative

examples in the batch, and hence, the likelihood of non-

trivial negatives, a large batch size of N pairs is crucial

to this learning strategy, with larger batch sizes resulting

in notable performance improvements [9]. However, batch

sizes are limited to the memory of the available compute

resources (e.g., of GPUs / TPUs). Hence, when consider-

ing compute costs, it is desirable to reduce batch size.

The primary objective of this work is to provide a com-

parative analysis of the utility of supervised and unsuper-

vised learning strategies for a range of music understand-

ing tasks under different data sources. As such we do

not propose to investigate or innovate on the model ar-

chitecture defining f(X) itself, and employ the Short-Fast

Normalizer-Free Net F0 (SF-NFNet-F0) of [2]. This archi-

tecture was chosen due to its demonstrated excellent per-

formance in audio understanding, its design intent specif-

ically for audio, and its use of efficient operations such as

grouped convolutions. Furthermore, this architecture does

not employ batch-normalization, improving training time

and resource requirements, particularly when using Sim-

CLR loss, by removing the need to globally synchronize

data between GPU devices at each batch-normalization

layer. Our intent was to reproduce this model as accu-

rately as possible. However, due to the information avail-

able to us at the time of publication, there may be some

discrepancies between our implementation and that in [2].

To ensure reproducibility, we release a Tensorflow imple-

mentation of the model used in this paper with SCOOCH

configurations 1 for each of the models trained 2 . Our SF-

NFNet-F0 implementation contains 62.4M parameters.

In both supervised and unsupervised settings we em-

ploy mixup [30] directly on the sampled log-mel spectro-

grams in real-time during training for data augmentation.

We acknowledge that additively combined audio sources

do not result in additively combined magnitude spectro-

grams due to both constructive and destructive interfer-

ence. However, such an augmentation is an efficient oper-

ation to perform in real-time data sampling pipelines, mit-

igating data bandwidth bottlenecks that may be caused by

more complex operations. We employ mixup by shuffling

features within each batch and additively combining the

shuffled features (and labels for supervised learning) to the

original batch. Mixup gains are sampled from a beta dis-

tribution with parameters α = 5.0 and β = 2.0, for each

feature in a batch.

In all pre-training contexts, we use an Adam optimizer

with a learning rate following a warm-up cosine decay

schedule, first increasing to 0.0002 over 5k steps, then

decreasing to 0.0 over 195k steps. While dense projec-

1 https://github.com/PandoraMedia/scooch
2 https://github.com/PandoraMedia/music-audio-representations

tors, h(z) are an inherent part of the unsupervised SimCLR

learning approach, we find projectors to also be useful in

the supervised setting, adding a non-linear transformation

between the learned embeddings, z, and the supervised la-

bels, ŷ = h(f(X)). We notice such an approach has also

been useful in computer vision [31]. Hence, in all contexts

we employ a projector consisting of 3 × 4096 node hid-

den layers with ReLU activation. Supervised models were

trained on 8 v100 GPUs taking approximately 30 hours,

while unsupervised models were trained on 16 A100 GPUs

taking approximately 80 hours.

2.2 Datasets

Pre-training datasets can have a significant impact on su-

pervised and unsupervised model performance. In the su-

pervised context, there has been evidence that models are

less generalizable to unseen tasks [2], perhaps due to the

information present in the supervised labels. In the un-

supervised context, less investigation has been conducted

into the effect of the content of pre-training datasets. In this

context, the problem of sampling positive and non-trivial

negative examples within a dataset is closely tied to the di-

versity of content in that dataset. Furthermore, when em-

ploying mixup as a data augmentation strategy, the content

of the pre-training dataset also defines the additive noise

that is applied to features during training.

We compare pre-training on two large datasets, namely

Musicset and a version of Audioset [32]. The Audioset

training set contains ≈ 1.7M distinct labelled content

pieces, and Musicset ≈ 1.8M. Audioset consists of 10 sec-

ond snippets of various audio sources: music, speech and

environmental audio (4,791 hours, ≈ 602 GB of audio fea-

ture data). Musicset, in contrast, focuses solely on music;

it consists only of labelled complete songs, each up to sev-

eral minutes in length (117,497 hours, ≈ 14.7 TB of audio

feature data). Musicset is, to our knowledge, the largest

dataset of expert-annotated audio ever trained on. While

it is not publicly available, we believe it valuable to report

the results of models trained on this dataset to communi-

cate the effectiveness of supervised learning at this scale.

For supervised learning, in addition to the features

themselves, the labels differ. Each dataset’s vocabulary

is distinct but similar in size (527 labels for Audioset and

500 labels for Musicset), however, Figure 2 shows the label

density and distribution of both datasets differs.

2.3 Feature Sampling

The features, X, are log-magnitude log-mel spectrograms

produced from waveforms sampled at 16 kHz. We use 96

HTK-log-mel spaced, power normalized, frequency bins

with center frequences from 0 Hz to 8 kHz, analyzed with

a window size of 25 ms, a Fourier transform size of 2048

bins and a hop size of 10 ms. We sample 3 s snippets of

each content piece in real-time (during training) across the

pre-training dataset, forming features, X ∈ R
96×300. Sam-

pling features in real-time from full-length tracks has the

benefit of a high ratio of distinct features per static dataset

size by reducing redundant (overlapping) data storage. For
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Figure 2. Label density distributions for Musicset and Au-

dioset. (a), (b) plots the sorted Musicset label counts on a

linear (in millions) and logarithmic scale, respectively. (c),

(d) plots the same data for Audioset, respectively.

example, a 183 second song (6.8MB) results in 18k distinct

features (each 112kB) with the above parameters.

To build a batch from a dataset, we first select a uniform

random sample of tracks (with replacement); then, from

each selected track, we choose a random 3-second spectro-

gram snippet, without padding. In the unsupervised con-

text, we need to select positive and negative pairs for each

selected snippet. Positive pairs are sampled from the same

10 second "track" for Audioset; for Musicset, positive ex-

amples are also sampled from the same track, although we

require positive pairs to be centered on frames less than

5 seconds apart in the track’s timeline. As negative exam-

ples, the SimCLR objective implicitly uses all other sam-

ples in a batch. We also tried forcing examples from the

same track, but further away from the anchor than the pos-

itive, into every batch as hard negatives. Such an approach

has shown promising results in music segmentation [33],

however, we found that for music labelling at the averaged

track-level this did not change our results significantly. As

such, we omit this approach from our evaluation.

3. EVALUATION

To evaluate embedding performance, we take the global

average pooled activations of the final convolutional layer

in the SF-NFNet-F0 architecture for 3 second feature snip-

pets sampled along the length of each audio timeline at a

frequency of 0.5 Hz, then average these sampled embed-

dings along the length of the timeline (with the exception

of NSynth datasets as described later in this section). We

found similar results training probes on both the timeline-

averaged embeddings, and individual embeddings sampled

directly from track timelines, with slight improvements

when using timeline-averaged embeddings in some cases.

Each of the embeddings derived from pre-trained mod-

els have different levels of predictive power and will under-

fit / overfit with different parameters for each downstream-

dataset / pre-trained model combination. To demonstrate

the potential of embeddings, and to investigate whether

a given embedding can achieve SOTA performance on a

given dataset, it is important to optimize the probe param-

eters for each dataset. However, in cases where such a

transfer learning methodology is SOTA, it is important to

constrain the probe to the limitations imposed in previous

works so that it is the quality of embeddings that are evalu-

ated, and not that of the probes. With these considerations,

we adopt a hybrid strategy based on the prior SOTA for

each dataset. We optimize the parameters of probes in all

cases except where the prior SOTA adopts a similar trans-

fer learning methodology, in which case, we constrain the

probes to the parameter ranges investigated in those prior

works. Regardless of prior works, we restrict all probes

to simple multi-layer perceptron (MLP) classifiers which

can be trained on a single 32 core CPU in less than 1 hour

to maintain the aforementioned benefits of efficiency and

scalability that such a transfer learning approach provides.

In all cases, we train probes using Adam optimization

with a cosine learning rate schedule with 1,000 steps of

warmup followed by a decay to zero over the remainder of

the steps. We optimize the learning rate, number of train-

ing steps, and l2-regularization of each probe to achieve

best performance / prevent overfitting.

In total we evaluate the performance over annotations

of 7 distinct collections of audio, comprising 15 distinct

datasets in total. An overview of datasets is shown in Ta-

ble 1, and probe configurations in Table 2. We also publish

more detailed SCOOCH configurations for probes, tag-

level results, and model weights for the Musicset-ULarge

model as a baseline for future research. 3 The remainder

of this section covers specific notes on each dataset.

Dataset Task #Items #Labels Avg. secs Hours

MSDS tagging 242k 50 46 3.08k
MSD50 tagging 36k 50 46 464

MSD100 tagging 115k 100 47 1.50k
MSD500 tagging 156k 500 47 2.05k

AMM mood 67k 188 45 840
MuMu genre 147k 250 47 1.92k
MTT tagging 26k 50 29 171

NSynthP pitch 306k 112 4 340
NSynthI instrument 306k 11 4 340
GTZAN genre 930 10 30 7.8

Emo emotion 744 N/A 45 9.3
GSKey key 2.1k 24 120 116
Jam-50 tagging 54k 50 244 3.69k
Jam-All tagging 56k 183 244 3.76k
Jam-MT mood/theme 18k 56 219 1.10k

Table 1. Overview of evaluation datasets. The sizes for

MSD50 and MSD500 disagree with [22]. The published

MSD50 splits include 35,745 IDs, and we exclude any

tracks in MSD500 without any tags in the vocabulary.

Magnatagatune: Magnatagatune (MTT) [34] annota-

tions include genre, instrumentation / vocal, mood, per-

ceptual tempo, origin and sonority features. We adopt the

common approach using the published splits and top 50

tags 4 . Some research removes tracks without tags in the

most common 50 tags. To make results comparable to the

3 https://github.com/PandoraMedia/music-audio-representations
4 https://github.com/jongpillee/music_dataset_split
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Dataset Layers Dropout Batch (N ) Constraint

MSDS 2×1024 0.5 256 None
MSD50 1×512 0.5 256 None

MSD100 2×2048 0.5 256 None
MSD500 3×4096 0.5 256 None

AMM 1×1024 0.5 256 None
MuMu linear 0.3 256 None
MTT 1×512 0.5 256 [24]

NSynthP linear 0.0 64 [2]
NSynthI linear 0.0 64 [2]
GTZAN linear 0.0 2560 None

Emo 1×1024 0.5 512 None
GSKey 1×512 0.8 512 None
Jam-50 1×512 0.75 256 None
Jam-All 2×1024 0.5 256 None
Jam-MT 1×512 0.75 256 None

Table 2. Probe parameters

most recent SOTA on this dataset [24], we keep items with-

out tags in both training and evalution sets.

GTZAN: This dataset addresses the problem of genre

classification in a single-label context [35]. We employ the

fault-filtered version of this dataset 4 .

NSynth: Here we evaluate detecting the pitch

(NSynthP) and instrument (NSynthI) of individual musi-

cal notes. Following [2], in the case of NSynthP we ana-

lyze the average of embeddings from four non-overlapping

consecutive snippets of 1 second feature windows, and for

NSynthI we analyze a single embedding for each note pro-

duced using a 4 second feature window.

Million Song Dataset: The Million Song Dataset

(MSD) contains labels pertaining to era, instrumentation,

sonority, genre, mood, origin and activity. Because of

the size of this dataset and variation in label quality

throughout we adopt several different splits and vocabu-

laries for the dataset. For comparability with the previ-

ous SOTA, we adopt the vocabulary of the 50 most com-

mon labels, and the splits employed in [15] 4 , namely

MSDS. We also take advantage of the several cleaned and

artist-separated datasets available for this collection [22]Ð

MSD50, MSD100 and MSD500, for which the splits and

vocabularies are available publicly 5 .

All Music Moods: The All Music Moods dataset

(AMM) [36], focuses on mood prediction for the MSD au-

dio data. Because the mood labels are heavily correlated

with the artists in the dataset, we find it important to adopt

the artist-seperated split 6 . With no previously published

result on this split, we additionally provide results for em-

beddings produced by the MusiCNN model [37].

Jamendo: This dataset contains genre, instrument and

mood / theme tags for audio from Jamendo [38]. We eval-

uate on all tags (Jam-All) and the 50 most common (Jam-

50). Because very few of the mood / theme tags are in

Jam-50, we also evaluate the mood / theme category (Jam-

MT). We use the official splits 7 and full-length audio.

GiantSteps Key: This dataset (GSKey) concerns ma-

jor/minor key classification in electronic musicÐa 24-way

classification problem. It combines two datasets: the first,

5 https://github.com/minzwon/tag-based-music-retrieval
6 https://github.com/fdlm/listening-moods
7 https://github.com/MTG/mtg-jamendo-dataset

604 2-minute samples of electronic music tracks collected

from beatport.com [39]; the second 8 , consists of 1486

tracks from the same source. Consistent with previous

work [23, 40], we use the former 604 samples for test-

ing, and the latter for training / validation, selecting high-

confidence annotations partitioned into train and valida-

tion sets according to [23]. For evaluation we compute a

weighted accuracy score common in key classification 9 .

EmoMusic: This dataset (Emo) concerns emotion

recognition [41], and provides continuous annotations for

valence and arousal. Following [23], we consider the static

version of this dataset, where target values are averaged for

each clip, and use the artist-based train / test partitioning

provided in their work. This poses a regression problemÐ

we use the coefficient of determination as the evaluation

metric for both valence (EmoV) and arousal (EmoA).

MuMu: The Multimodal Music dataset (MuMu) [42],

focuses on multilabel genre predictions for the MSD au-

dio data, with genre annotations from the Amazon Reviews

dataset. We evaluate using the official splits 10 .

4. RESULTS

In order to derive conclusions on the potential performance

of supervised models trained using binary labels on music

data, we train a supervised model on the complete Music-

set dataset, namely Musicset-Sup. To compare these re-

sults to supervised learning on a large-scale public dataset

covering music, environmental, and speech audio, we pro-

vide results for a model trained on ≈1.7M items from Au-

dioset, namely Audioset-Sup. To compare supervised and

unsupervised learning at a similar scale, we provide results

for a model trained using the unsupervised methodology

discussed in Section 2 on the same Musicset dataset audio

data and the Audioset audio data, namely Musicset-ULarge

and Audioset-ULarge using a batch size of 1920 pairs.

In addition, we train two further unsupervised mod-

els using a batch-size of 256. One trained on Audioset

(Audioset-USmall), and one on ≈1.8M randomly sampled

10 second snippets from Musicset, one per content piece

(Musicset-USmall). The reasoning for this is two-foldÐ

firstly by sampling short snippets from Musicset we mit-

igate the confounding variable of dataset size when com-

paring the two, secondly this allows us to investigate the

effect of batch size in the unsupervised learning paradigm.

For convenience, we also include results for the recent

evaluations in [2, 24], and those for any other previous

SOTA, excluding these two evaluations. The results for

each of these models is shown in Table 3 for all datasets ex-

cluding annotations of MSD, which are shown in Table 4.

There, we note that for all multilabel music tagging tasks,

the Musicset-Sup model achieves SOTA performance by

significant margins. This is encouraging given that the Mu-

sicset training dataset was created naively, and the super-

vised information therein opens the door to improvements

such as label-balanced sampling which has been shown to

8 https://github.com/GiantSteps/giantsteps-mtg-key-dataset
9 https://www.music-ir.org/mirex/wiki/2021:Audio_Key_Detection

10 https://zenodo.org/record/1236906#.YoPIAhNBx0s
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Model
MTT GTZAN NSynthP NSnythI EmoV EmoA GSKey Jam-50 Jam-All

mAP ROC Acc Acc Acc r2 r2 W. Acc mAP ROC mAP ROC

Musicset-Sup 0.413 0.917 0.835 0.793 0.731 0.566 0.726 0.286 0.321 0.843 0.162 0.839
Audioset-Sup 0.386 0.904 0.748 0.819 0.676 0.341 0.545 0.210 0.284 0.822 0.135 0.813

Musicset-ULarge 0.404 0.914 0.735 0.892 0.740 0.577 0.700 0.667 0.317 0.839 0.159 0.833
Audioset-ULarge 0.391 0.906 0.672 0.805 0.721 0.438 0.624 0.287 0.285 0.826 0.131 0.816

Musicset-USmall 0.389 0.905 0.686 0.824 0.714 0.389 0.668 0.508 0.292 0.828 0.138 0.817
Audioset-USmall 0.375 0.897 0.648 0.777 0.698 0.386 0.609 0.197 0.268 0.817 0.127 0.809

Jukebox [23] 0.414 0.915 0.797 - - 0.617 0.721 0.667 - - - -
Prev. SF-NFNet-F0 [2] 0.395 - - 0.880 0.782 - - - - - - -

SOTA Excl. [2, 23]
0.384 0.92 0.821 - 0.741 0.556 0.704 0.796* 0.298 0.832 - -
[37] [12] [11] - [43] [44] [45] [46] [47] [47] - -

Table 3. Results for models on all datasets, excluding MSD annotations and Jam-MT. Models within 0.01 of SOTA are

bold. *The SOTA for GSKey has no publicly available implementation details and is specialized for this dataset, e.g., [48].

Model
MSDS MSD50 MSD100 MSD500 MuMu AMM Jam-MT

mAP ROC mAP ROC mAP ROC mAP ROC mAP ROC mAP ROC mAP ROC

Musicset-Sup 0.363 0.903 0.459 0.913 0.346 0.906 0.169 0.898 0.257 0.908 0.180 0.791 0.161 0.786
Audioset-Sup 0.308 0.880 0.375 0.883 0.278 0.877 0.128 0.874 0.191 0.867 0.156 0.760 0.137 0.749

Musicset-ULarge 0.351 0.900 0.438 0.908 0.321 0.897 0.152 0.891 0.235 0.893 0.174 0.784 0.158 0.781
Audioset-ULarge 0.311 0.885 0.377 0.886 0.276 0.878 0.121 0.873 0.162 0.855 0.156 0.763 0.142 0.765

Musicset-USmall 0.319 0.888 0.384 0.892 0.283 0.881 0.129 0.878 0.190 0.871 0.155 0.762 0.138 0.757
Audioset-USmall 0.286 0.876 0.353 0.878 0.251 0.870 0.110 0.868 0.152 0.850 0.151 0.753 0.136 0.753

SOTA
0.348 0.897 0.386 0.921 0.185 - - - - 0.888* 0.163 0.773 0.161† 0.781†

[15] [15] [14] [14] [22] - - - - [42] [37] [37] [49] [49]

Table 4. Results for all models on MSD annotations and Jam-MTT. Models within 0.01 of SOTA are bold. *The previ-

ous SOTA for MuMu evaluated artist-level predictions rather than track-level. †The SOTA for Jam-MT is trained on an

expanded within-taxonomy set (≈ 16k tracks), here we restrict probe training to Jamendo tracks (≈ 10k).

realize further performance gains [6]. We leave this inves-

tigation for future work.

It is also encouraging to see that unsupervised learning

on music audio (Musicset-ULarge) achieves SOTA perfor-

mance compared to previous unsupervised models, in ad-

dition to some supervised models (specifically, for models

trained on Jam-50 and all MSD datasets).

Comparing to recent transfer learning approaches [2,

24], we see that in all cases either Musicset-Sup or

Musicset-ULarge outperform or are on par with these, with

the exception of NSynthI. This is a promising result es-

pousing the value of music only audio datasets consider-

ing that previously reported results for unsupervised learn-

ing on Audioset [2] used more than double the batch size

of those in this paper. Wrt. the Jukebox model, models

trained for this paper use approximately 1% of the param-

eters and take less than 1% of the GPU flop hours to train.

We see that the supervised models evaluated demon-

strate shortcomings in performance on pitch (NSynthP) and

key (GSKey) tasks. This corroborates the findings in [24]

that models trained on tags do not perform well in this task,

and the findings in [2] that supervised pre-trained models

do not generalize as well to novel tasks. We note that there

are no pitch or key labels in the Musicset dataset, and in

fact, many of the labels employed (e.g., genre, mood, etc.)

require the model to be somewhat agnostic to such infor-

mation. It is yet to be seen whether including such infor-

mation in the labels of a pre-training dataset would im-

prove the generalizability of such models, though this is

outside of the scope of the current work. Interestingly, we

see that unsupervised models trained specifically on music

data show significant improvements in key estimation.

When comparing the domain of the pre-training dataset

features in the models of Musicset-USmall and Audioset-

USmall we see that in all cases, in-domain data (music)

results in a better performing model. We conjecture that

this may be due to (a) increasing the chances of non-trivial

negative examples within each batch relative to each pos-

itive pair, due to the homogeneity of the dataset, and (b)

music is more spectrally dense and correlated than other

common noise sources employed in mixup augmentation,

such as speech or various environmental noises.

5. CONCLUSIONS

In this work we investigated both unsupervised and super-

vised learning strategies, to produce compact audio rep-

resentations that may be deployed across industry-scale

audio catalogs for a range of downstream use cases. We

observed that supervised training on large scale expert-

annotated music data achieves SOTA results in music tag-

ging. We see that unsupervised learning on datasets of the

same scale also achieves excellent performance, across a

wider range of tasks than supervised learning, particularly

on those that involve information not represented in the

supervised dataset. Finally, we see that for unsupervised

learning, restricting the domain of the pre-training dataset

to music results in improvements in model performance.
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