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ABSTRACT

Given the recent advances in music source separation and

automatic mixing, removing audio effects in music tracks

is a meaningful step toward developing an automated

remixing system. This paper focuses on removing distor-

tion audio effects applied to guitar tracks in music produc-

tion. We explore whether effect removal can be solved by

neural networks designed for source separation and audio

effect modeling.

Our approach proves particularly effective for effects

that mix the processed and clean signals. The models

achieve better quality and significantly faster inference

compared to state-of-the-art solutions based on sparse opti-

mization. We demonstrate that the models are suitable not

only for declipping but also for other types of distortion

effects. By discussing the results, we stress the usefulness

of multiple evaluation metrics to assess different aspects of

reconstruction in distortion effect removal.

1. INTRODUCTION

With the emergence of musical recordings, audio effects

have become indispensable in the music production pro-

cess. They are used by musicians as a creative tool to alter

the sound of their instruments, and by sound engineers to

craft a balanced mix from multiple recording tracks [1].

For the task of mixing and automatic remixing [2], the

dry (i.e., unprocessed) source tracks are required. Given

the recent advances in automatic mixing [3, 4] and mu-

sic source separation (MSS) [5], a system could facilitate

the adjustment of a stereo mixture to the taste and pref-

erences of the user similar to [6]. However, when sepa-

rating sources with a system trained on music stems (e.g.,

MUSDB18 [7]) the mixing process is not considered, and,

hence, the output of such a system contains the wet (i.e.,

processed) signal. As nonlinear distortion is one of the

most commonly used effects for electric instruments, this
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work focuses on musical distortion effects that are used

for aesthetic means (e.g., guitar overdrive/distortion ped-

als) and applied in the process of mixing (e.g., tape satu-

ration). These distortion effects result in added harmonics,

intermodulation distortion, and a compressed sound [8].

This paper investigates different deep neural network

(DNN) approaches regarding their applicability to the au-

dio effect removal problem. Our contributions can be sum-

marized as follows:

• We show that recovering the clean signal from

clipped or overdriven guitar signals can be effi-

ciently solved with neural networks designed for

source separation. The models achieve high qual-

ity and fast inference in contrast to solutions based

on sparse optimization.

• We found that the superior performance of the mod-

els evaluated on the de-overdrive task can be traced

back to superimposing the overdriven signal with the

clean signal. We show that the architectures are suit-

able not only for declipping but also for other types

of distortion effects.

• By discussing the results, we highlight that the met-

rics under evaluation prove beneficial in measuring

different aspects of the reconstruction and can be ad-

vised for further investigations.

This work is organized as follows: Sec. 2 gives a for-

mal introduction to audio effect removal and introduces the

types of distortions that were used throughout this study.

Sec. 3 briefly discusses previous work on iterative and

DNN-based declipping approaches. The methods under

evaluation are outlined in Sec. 4. Sec. 5 describes the data

that were used for training, reports details about the exper-

imental setup, and presents the chosen objective evaluation

metrics. In Sec. 6, we evaluate the results of the compara-

tive study of four different neural network architectures on

the task of distortion removal in guitar signals for the SoX

overdrive implementation. Then, we compare the same ar-

chitectures on the declipping task to one state-of-the-art

declipping algorithm using guitar signals as well as generic

music signals. Lastly, Sec. 7 gives a conclusion and

presents an outlook for future work. Audio examples are

available online at joimort.github.io/distortionremoval/ .
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Figure 1. Example of different distortion types applied to

a guitar signal. The input signal x(k) is amplified before

being modified by a wave-shaper function.

2. PROBLEM FORMULATION

We introduce audio effect removal as the task of recov-

ering the original discrete audio signal x ∈ R
n from the

processed discrete signal y ∈ R
n, which is obtained by

applying the possibly nonlinear and time-varying function

f to the signal x:

y = g(x) = αf(x) + (1− α)x, (1)

with α ∈ [0, 1] denoting the weight of the wet signal, and

g the summation function of the dry and wet signal. The

goal is to find an estimation of the original signal x̂ by

estimating the inverse function x̂ = ĝ−1(y).
Generally, distortion effects clip the input signal and

can be divided into systems that apply hard-clipping or

soft-clipping. As this work focuses on both types of dis-

tortion, we introduce the following generic formulation of

a wave-shaper that maps the amplified signal xγ = 10
γ

20x

to a fixed range:

f(x) = λ(xγ) with λ : R → [−θc, θc]. (2)

Here, γ denotes the gain in decibels, λ the arbitrary wave-

shaper function, and θc the fixed clipping threshold. For

the case of hard-clipping, λ is defined as:

λhc(xγ,k) =

{

xγ,k, if |xγ,k| ≤ θc

θcsgn(xγ,k) otherwise,
(3)

with sgn denoting the sign function, and xγ,k the k-th time

sample of the amplified signal. Fig. 1 highlights the dif-

ference between different distortion types. Hard-clipping

cuts off the amplitude when it exceeds a defined thresh-

old (as typical for saturation in digital signal processing).

Soft-clipping (e.g., λtanh(xγ,k) = tanh(xγ,k)) gradually

applies a smooth transition before reaching a fully satu-

rated state (as typical for saturation in analog amplifiers).

Modeling the characteristics of distortion pedals in re-

ality is more complex: [9] provides an overview on dif-

ferent methods and discusses DNN-based approaches. In

order to simplify the problem for our investigation, we fo-

cus on wave-shaping. The overdrive algorithm of the audio

editing software SoX [10] serves as an example of soft-

clipping (λsox) but, in contrast to (2), it is dependent on

previous samples. Furthermore, it blends the wet signal

with the dry one (α < 1).

3. RELATED WORK

To the best of our knowledge, there has been no previous

research on distortion audio effect removal. Therefore, this

section outlines the most relevant iterative and DNN-based

declipping approaches since declipping is a special case of

distortion audio effect removal.

3.1 Iterative Declipping Methods

Previous research on approaches to declipping has focused

mainly on unsupervised algorithms that recover the signal

under the assumption of a generic regularization such as

signal sparsity [11]. Usually, these approaches target the

hard-clipping case only (see (3)). While early approaches

were based on auto-regressive models, (e.g., [12]) recent

state-of-the-art methods evolved by combining ideas from

inverse problems and sparse regularization [13].

Recently, [11] and [13] discussed popular declipping al-

gorithms. One of the current state-of-the-art methods is A-

SPADE, which will serve as a baseline for this study. The

algorithm is briefly introduced in Sec. 4.

3.2 DNN-Based Declipping

In contrast to iterative algorithms, to date, there are only

few contributions comprising supervised DNNs.

Kashani et al. [14] introduced a declipping method

based on the U-Net architecture [15]. It operates on mag-

nitude spectrograms while the waveform of the output is

obtained by reusing the phase information from the dis-

torted input signal. The system is trained and evaluated on

pairs of hard-clipped and clean speech samples.

Mack and Habets [16] proposed an architecture com-

prising a BLSTM-based deep filtering method that works

on complex spectrograms and hence also considers phase

information. Similar to [14], they train the system on

speech data only. Unlike any other approach, they not only

investigate the system on the hard-clipping case but also

on the soft-clipping case.

Tanaka et al. recently proposed APPLADE [17], a de-

clipping method that takes advantage of the sparse opti-

mization techniques described above together with deep

learning. Accordingly, they embed a DNN in the itera-

tive algorithm to enhance the thresholding operation. They

report a slightly higher performance than previous algo-

rithms, better robustness to mismatches between training

and test data, and faster inference.

4. METHODS

This section describes four neural network architectures

that we selected from the literature and evaluated on the

distortion removal task. We approach the distortion ef-

fect removal problem from the perspective of filtering the

added harmonics and intermodulation distortion, similar

to [16]. Therefore, we include one model from the domain
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of audio effect modeling and three architectures originally

proposed for music source separation. 1 For the latter

models, instead of multiple output channels for different

sources, we use only one output channel and consider them

as general audio-to-audio transformation architectures.

CRAFx was proposed as a system for modeling time-

varying audio effects with a neural network [9, 18]. The

end-to-end model operates on the signal in the time do-

main and is divided into an adaptive front-end (encoder),

a bi-directional long-short-term-memory (BLSTM)-based

structure that applies the modeled effect in the latent space,

and a synthesis back-end (decoder). In contrast to the other

DNN-based models presented in this section, this architec-

ture employs architectural priors (e.g., learnable nonlinear

activations) in the context of audio effects.

Open-Unmix (UMX) was introduced as a reference

implementation for music source separation [19]. The ar-

chitecture is based on the BLSTM model from [20] and

uses magnitude spectrograms as input features. The es-

sential element of Open-Unmix is its three-layer BLSTM

network that enables to learn both long- and short-time de-

pendencies [21].

An element-wise multiplication of the input spectro-

grams with the estimated masks yields the final output.

Commonly, spectrogram-based source separation models

are compared with the oracle performance of an ideal ratio

mask (IRM) that is defined as the ratio between the refer-

ence and the test spectrogram [22] in decibels. For recon-

struction, the phase of the input signal is used. The model

was adapted for a sampling rate of fs = 16 kHz. We in-

clude this model in our evaluation as a standard frequency

domain MSS model that relates to the BLSTM-based de-

clipping model from [16] (cf. Sec. 3.2).

Wave-U-Net was proposed as one of the first end-to-

end approaches for music source separation based on time

domain signals [23]. Hence, it incorporates not only the

magnitude but also the phase of music signals. It adapts

the U-Net architecture [15] to one-dimensional audio sig-

nals. We decreased the models’ number of learnable pa-

rameters from 17M to approximately 1M by reducing the

number of layers from 12 to 8 resulting in a reduced recep-

tive field, as we experienced overfitting for our datasets.

Since the model was successfully employed not only for

source separation but automatic mixing as well [3], we as-

sume a general suitability for audio-to-audio transforma-

tion tasks. Moreover, the model is highly related to the

U-Net-based declipping model from [14] (cf. Sec. 3.2).

Demucs was initially designed to be an end-to-end

model for music source separation in the time domain [24].

While it builds on the Wave-U-Net model, it introduces

several improvements to the architecture. The model com-

prises a convolutional encoder, a BLSTM structure, and a

convolutional decoder. As for Wave-U-Net, we decreased

the number of trainable parameters from 66M to 1M by

reducing the number of blocks from 12 to 6 resulting in a

1 Two of the methods under evaluation, Demucs and Wave-U-Net, do
not explicitly filter the signals in the audio domain, rather they perform a
nonlinear mapping. Nevertheless, they were both successfully employed
for MSS, which is a filtering problem.

reduced receptive field.

A-SPADE was introduced as a sparsity-based de-

clipping algorithm that outperforms previous similar ap-

proaches [25]. For each time frame of the clipped signal y,

it approximates a solution of the following problem:

min
x,z

||z||0 s.t. x ∈ Γ(y) and ||F(x)− z||2 ≤ ϵ, (4)

where z denotes the unknown discrete Fourier coefficients

of each time frame and F the Fourier transform operator.

Γ is defined as the feasible space of solutions (i.e., clipping

consistency constraint). We included the algorithm in the

evaluation of the declipping task as a baseline that delivers

state-of-the-art performance [11, 13].

5. EXPERIMENTS

Our experiments focus on the following three scenarios:

a) We conducted experiments on guitar recordings that

were processed using the overdrive algorithm of the au-

dio editing software SoX [10] (CEG-OD). b) We per-

formed the same experiments as in the previous scenario

while processing the same clean guitar recordings with

hard-clipping (CEG-HC). c) We tested the systems on an

extensive dataset comprising various hard-clipped sounds

(SignalTrain-HC) to evaluate their performance against a

popular declipping algorithm when the models are trained

given an increase in the amount and variety of data.

5.1 Data

The models were trained on two different datasets to as-

sess the distortion audio effect removal capabilities. The

audio signals from a dataset that contains a single instru-

ment class (e.g., electric guitar) exhibit consistent signal

statistics. In order to restrict the statistics that need to be

modeled in a first step, we chose to concentrate on dry gui-

tar samples as target data.

Since a large-scale, polyphonic dataset from clean elec-

tric guitar sounds is, to the best of our knowledge, not

available 2 , we used an internal dataset, which we refer

to as CEG (Clean Electric Guitar) dataset. The monaural

data were gathered from various sources, mainly commer-

cial audio loop packages and recordings of solo guitar, and

has a duration of 1.68 h. All signals were re-sampled to

a common sampling rate of 16 kHz in order to speed up

convergence during training. To create the input dataset

CEG-OD, the overdrive algorithm of SoX was applied to

the data using five uniformly sampled gain levels in the

range of γ ∈ [20, 50]dB. Likewise, the input dataset for

the hard-clipping task, CEG-HC, was created using hard-

clipping (see (3)) with gain levels from the same distribu-

tion. Both datasets have a total length of 8.4 h.

Although CEG represents a good source of data for our

experiments due to its specificity of timbre, it remains a

2 A publicly available guitar dataset for the recognition of audio effects
exists (IDMT-SMT-Audio-Effects [26]). However, the dataset contains
primarily homogeneous monophonic sounds and therefore, we choose to
use the CEG dataset instead.
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limited resource in terms of size and variety. Before at-

tempting to train a system to handle recordings in real en-

vironments (e.g., a commercial song), we need to inves-

tigate how the current models at our disposal handle the

availability of more and diverse training data. For this pur-

pose, we also performed experiments on the SignalTrain

dataset, which consists of more than 24 h of music and

randomly-generated test signals [27]. By applying hard-

clipping to these clean data using a uniformly-sampled in-

put SDR value in the range SDRinp ∈ [1, 20]dB, we cre-

ated SignalTrain-HC. During evaluation, we applied each

input SDR in the set SDRinp ∈ {1, 3, 5, 7, 10, 15, 20}dB
to each sample in the test set.

Each dataset was split into non-overlapping subsets for

training (80%), validation (10%) and testing (10%). We

evaluated the models on the test split.

5.2 Experimental Setup

During the supervised training procedure, Adam [28] was

used as optimizer with initial learning rates according to

the model’s original implementations. The learning rate

was reduced by a factor of 10 after 150 epochs of no de-

crease in the validation loss. All models were optimized

using the source-to-distortion ratio (SDR) between their

full output sequences x̂ and the respective target sequences

x in each batch B of N elements (not to be confused with

the definition in the BSS_eval toolkit [29]):

LB(x, x̂) =
1

N

∑

i∈B

10 log10
(

||xi||
2/||xi − x̂i||

2
)

. (5)

We stopped all trainings after 1000 epochs. All mod-

els processed audio sequences that are randomly extracted

from each clip in the dataset; the length of the extracted

sequences is equal to 2 s (2.3 s for CRAFx due to its archi-

tecture). We used a batch size of 16 for all experiments.

5.3 Objective Metrics

In speech enhancement and source separation, the ubiq-

uitous measure to estimate the quality of a system is the

SDR. However, applying (2) to a signal does not retain its

energy. Therefore, we follow the approach of [30]: the

scale-invariant SDR (SI-SDR) is obtained by rescaling

the target signal s such that the residual s− ŝ is orthogonal

to s by using the optimal scaling factor ŝT s/||s||2.

An evaluation exclusively based on the objective simi-

larity of the signals does not necessarily imply a correla-

tion with human perception [31, 32]. Accordingly, we ob-

served that the SI-SDR scores occasionally disagreed with

our qualitative evaluation. Therefore, we also considered

three metrics based on human perception.

The perceptual evaluation of audio quality (PEAQ)

[33] is a widely used perceptual metric [11, 13, 34, 35]

that measures the amount of degradation between two au-

dio signals. The output of PEAQ is an Overall Difference

Grade (ODG), which can reach values between 0 (imper-

ceptible impairment) and −4 (very annoying impairment).

Even though PEAQ is used in declipping and audio restora-

tion studies [11,13,34], it was developed for audio codecs.
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Figure 2. Box plot of scores for the CEG-OD dataset. The

boxes show the first and third quartile of the data while the

median is indicated with a line in the box. Higher scores

indicate superior performance except for FAD. The results

suggest that U-Net-based models performing convolutions

in the time domain are the most promising approach to

solving the task of overdrive removal.

The R-nonlin metric [36], in contrast, was developed

specifically for detecting nonlinear distortions and, like

PEAQ, considers the human auditory system. Rnonlin is

defined between 0 (high distortion) and 1 (no distortion).

The Fréchet audio distance (FAD) was recently pro-

posed as a reference-free evaluation metric for music en-

hancement algorithms. It has shown to correlate more with

human perception than the SDR [37]. In order to obtain the

FAD, the embedding statistics of both the whole clean and

distorted test set are generated using a VGGish model [38].

The FAD is calculated based on the Fréchet distance be-

tween two multivariate Gaussians computed from both the

test and the reference embeddings. [39].

6. RESULTS

In this section, we provide the results of the experiments

introduced in the previous section.

6.1 De-Overdrive (CEG-OD)

Fig. 2 shows the results of the models that remove over-

drive from guitar tracks.

Firstly, in SI-SDR, both Demucs and Wave-U-Net per-

form exceptionally well and even outperform the ideal-

ratio-mask by more than 24 dB. While CRAFx yields con-

siderably worse performance, it also surpasses the IRM or-

acle. UMX is the least performing of all the models in our

comparison. It should be noted that for UMX, a model that

operates on magnitude spectrograms, the IRM represents

its upper limit in performance.

Similar results are obtained with PEAQ, Rnonlin and

FAD: while Demucs and Wave-U-Net yield the best scores

and surpass the IRM, the ones for CRAFx and UMX are

considerably worse. It seems that directly processing the

signals in the time domain using a U-Net-based architec-

ture represents the most promising approach for the re-

moval of the overdrive effect.
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Figure 3. Box plot of scores for the CEG-HC dataset. It

is difficult to clearly determine the best model, although

Demucs represents a good compromise for all the metrics.

6.2 Declipping (CEG-HC)

Fig. 3 shows the results on the task of declipping on guitar

recordings. Generally, we experienced a drop in the scores:

now the models have been trained on declipping, which is

an ill-posed problem, as missing parts of the signal need

to be reconstructed. Additionally, we report scores for our

declipping baseline, A-SPADE.

Despite the general performance drop, Demucs sur-

passes the results of A-SPADE in terms of SI-SDR by al-

most 1 dB. While UMX and Wave-U-Net yield similar

performances, CRAFx is the method with lowest scores.

Regarding PEAQ, no method surpasses the IRM and the

A-SPADE algorithm. As before, Demucs and Wave-U-Net

have similar performance: while PEAQ slightly favors the

latter, SI-SDR favors the former. In contrast to the previous

results, CRAFx has no significant advantage over UMX.

While Demucs achieves the best score for Rnonlin

among the neural models, it does not surpass A-SPADE

since the difference in their score is marginal. Interest-

ingly, UMX achieves better results than CRAFx and Wave-

U-Net. As the Rnonlin metric was explicitly designed to

detect nonlinear distortions, we conclude that UMX’ out-

puts contain fewer nonlinear distortions than the outputs of

CRAFx and Wave-U-Net.

Surprisingly, when computing the FAD, UMX outper-

forms all other methods, including A-SPADE. This might

be accounted to the fact that the FAD is based on the mel

spectrum, whereas UMX optimizes the magnitude spectro-

gram. While Demucs and CRAFx outperform A-SPADE

in FAD as well, the score for Wave-U-Net is slightly worse.

The FAD for the IRM is relatively small because the differ-

ence between the reference and test embeddings from the

VGGish model can be traced back to the masking opera-

tion and quantization. Demucs seems to constitute a good

compromise regarding performance since it yields first- or

second-best results for all metrics.

6.3 Declipping (SignalTrain-HC)

Fig. 4 shows the results for declipping SignalTrain-HC.

Due to the lower gains that are used to prepare the data
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Figure 4. Box plot of scores for the SignalTrain-HC

dataset. Demucs can be regarded as the best model regard-

ing the median score across all metrics.

(see Sec. 5.1), the overall performance seems to be supe-

rior but cannot be directly compared to the previous results.

Because of its considerably worse performance in the pre-

vious task, CRAFx was left out of the evaluation.

Demucs surpasses all other models in SI-SDR, includ-

ing IRM and A-SPADE. Moreover, Wave-U-Net and UMX

both surpass A-SPADE but not the IRM. PEAQ gives a

similar ranking of the methods: only UMX cannot reach

the A-SPADE baseline. None of the neural methods sur-

passes the IRM. In terms of Rnonlin, the same ranking is

obtained, with Demucs surpassing, Wave-U-Net reaching,

and UMX just missing A-SPADE. The FAD highlights that

UMX and Demucs deliver comparable performance, out-

performing the baseline, but not surpassing the IRM.

When only looking at SI-SDR or PEAQ, we notice the

superiority of the time domain models. Future research

should investigate whether the waveform in the time do-

main is the best input representation for the task, compared

to, e.g., the real and imaginary part of a spectrogram [40] or

both the waveform and the spectrogram [41]. Ultimately,

Demucs can be considered the best model in our experi-

ments for the task of declipping on SignalTrain.

6.4 Discussion

Qualitative Evaluation Although the abundance of

evaluation metrics in the literature has the potential to an-

alyze the results in very detailed ways, it does not always

aid the judgement of which method is best given the indi-

vidual context. Often, different applications have different

requirements concerning the sound quality and can afford

some types of distortions or artifacts to be left in the sig-

nal. Therefore, we report some qualitative considerations

that need to be taken into account concerning our results,

with the aim of finding some descriptive patterns among

them. Fig. 5 shows spectrograms of a hard-clipped guitar

signal and the outputs of all models under evaluation.

We found that the characteristics of the artifacts that

each model produces are consistent, independent from the

task it is applied to. Nevertheless, for the time domain-

based models, the artifacts are less prominent in the de-

overdrive task. Here, Demucs often produces outputs that
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Figure 5. Spectrograms of a clipped guitar signal (γ =
45dB), its target signal, and the output of each method.

The respective time domain input and target signal are

shown at the top. While all methods significantly reduce

the harmonics, it can be observed that IRM and UMX

smear the transients. A-SPADE relies on the strongest bins

in the clipped spectrum, which leads to tonal artifacts.

are virtually indistinguishable from the original signal.

Generally, Demucs is the model that most often pro-

duces high quality results. Especially for inputs with a low

amount of distortion, it can reconstruct the original sound

without any perceptual artifact. Wave-U-Net behaves sim-

ilarly, although it often cannot reach the same quality.

UMX generally removes the distortion characteristics

very well at the cost of strong phasing artifacts: Despite

the absence of input distortions, the spectral features of the

output are not necessarily consistent with the ones of the

target. This is most likely due to UMX re-using the phase

of the distorted input to reconstruct the signal in the time

domain and the frame-wise processing. Moreover, Fig. 5

highlights that the transients are smeared by re-using the

phase of the degraded signal.

CRAFx does not suffer from phasing artifacts, but occa-

sionally leaves part of the distortion features in the output.

In some cases, the model fails to reconstruct the onset of

some notes, penalizing the listening experience.

Finally, A-SPADE is the model that exhibits the

strongest and most frequent artifacts, especially for

strongly clipped signals. Although it considers phase in-

formation by working in the complex frequency domain,

it leads to non-optimal solutions. Nevertheless, distortion

features (like those left by Demucs) or transient smearing

(left by UMX) do not occur.

Influence of the Dry Signal We have observed a

substantial difference in performance between models that

need to remove overdrive (CEG-OD dataset) and models

that need to remove hard-clipping (CEG-HC dataset). The

superior performance of the models trained and tested on

CEG-OD can be mainly traced back to the presence of the

non-distorted signal in the overdrive output and not to the

soft-clipping character of the specific overdrive implemen-

tation. We verified this hypothesis by training Wave-U-

Net on hard-clipped data superimposed with the clean sig-

nal (even when the amplitude of the clean signal is con-

siderably low). We obtained results similar to those in

the de-overdrive task (median results without superposi-

tion: SI-SDR = 7.2 dB, with superposition: SI-SDR =
34.4 dB). While the performance drop is present for all

metrics, it is less pronounced for UMX which seems not to

utilize the additional information in the signal.

Inference Speed The benefits of Demucs in the con-

text of declipping go beyond the quality of its outputs: us-

ing a neural approach also has advantages regarding in-

ference speed. Inference with A-SPADE is comparably

slow (real-time factor on CPU ×RT ∈ [4.2, 27.3] depend-

ing on SDRinp [13]), being an iterative approach that re-

quires a computation of the Fourier transform and its in-

verse at each iteration. Demucs (×RT = 0.072), Wave-

U-Net (×RT = 0.113) and UMX (×RT = 0.026) instead,

allow for fast inference on the CPU and even surpass real-

time constraints independently on SDRinp without sacri-

ficing the quality of the results.

Evaluation Metrics The results highlight how our

evaluation metrics focus on different aspects of the recon-

structions: While SI-SDR measures differences between

two audio signals in the time domain, PEAQ focuses on the

perceptual quality without differentiating between degra-

dation related to nonlinear distortions and artifacts/quality.

In contrast, Rnonlin specifically highlights nonlinear dis-

tortions that have not been removed. Finally, FAD focuses

primarily on the degradation that is observable in the mel

spectrum. Hence, each metric proves beneficial in measur-

ing specific aspects in the analysis of audio effect removal

systems and can be advised for further investigations.

7. CONCLUSION

We showed that recovering the clean signal from clipped or

overdriven audio signals can efficiently solved with neu-

ral networks designed for source separation. We found

that Demucs achieves high quality according to the cho-

sen evaluation metrics, especially when the distortion al-

gorithm to be removed blends the distorted sound with the

original one. This outcome highlights the potential of the

proposed approach for other audio effects that mix dry and

wet signals (e.g., parallel compression, reverberation, de-

lay, modulation effects).

Moreover, we showed that Demucs, Wave-U-Net, and

UMX outperform one state-of-the-art declipping method

on our test data. This outcome is promising, considering

that the dataset to train such a system is potentially much

larger than the size of the dataset we used. By discussing

the results, we stressed the usefulness of multiple evalua-

tion metrics suitable to assess distortion removal systems.

Future work should include gathering more clean elec-

tric guitar data and generating a dataset using high-quality

distortion emulations, which is required to improve gener-

alization on real-world data. Furthermore, the knowledge

from sparsity-based declipping algorithms could yield a

valuable prior for declipping through DNNs.
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