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ABSTRACT

Music contains hierarchical structures beyond beats and

measures. While hierarchical structure annotations are

helpful for music information retrieval and computer mu-

sicology, such annotations are scarce in current digital mu-

sic databases. In this paper, we explore a data-driven ap-

proach to automatically extract hierarchical metrical struc-

tures from scores. We propose a new model with a Tem-

poral Convolutional Network-Conditional Random Field

(TCN-CRF) architecture. Given a symbolic music score,

our model takes in an arbitrary number of voices in a beat-

quantized form, and predicts a 4-level hierarchical metri-

cal structure from downbeat-level to section-level. We also

annotate a dataset using RWC-POP MIDI files to facili-

tate training and evaluation. We show by experiments that

the proposed method performs better than the rule-based

approach under different orchestration settings. We also

perform some simple musicological analysis on the model

predictions. All demos, datasets and pre-trained models

are publicly available on Github 1 .

1. INTRODUCTION

Music contains rich structures at different levels, and the

structure annotations play an important role in music un-

derstanding [1, 2] and generation [3, 4]. Progress has been

made in music structure analysis on certain levels, like beat

tracking [5±7], downbeat detection [8±11] and part seg-

mentation [12±15]. These levels of structures are often

inter-connected with each other, and can be described in

a hierarchical way. For example, a part may contain sev-

eral sections, each containing several measures. Measures

can be further decomposed into beats.

Several views of hierarchical music structures are for-

mally discussed in the Generative Theory of Tonal Music

(GTTM) [16], including the grouping structure, the met-

rical structure, the time-span tree, and the prolongational

tree, each focusing on different music properties (i.e.,

the grouping structure focuses more on melodic grouping

1 https://github.com/music-x-lab/Hierarchical-Metrical-Structure
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Figure 1. The hierarchical metrical structure of the be-

ginning of RWC-POP No. 001. Only the main melody

is shown. Despite the pick-up bar, these 4 measures are

grouped into 2 hypermeasures of length 2, which are fur-

ther grouped into 1 hypermeasure of length 4.

while the metrical structure focuses on rhythmic patterns).

Among these structures, we choose the metrical structure

as the topic for two reasons: (1) For polyphonic music, the

metrical structures of different voices are usually compat-

ible, building up a common song-level metrical structure.

This property makes data annotation easier and provides

opportunities for self-supervision; (2) Some low-level met-

rical structures (e.g., beats and downbeats) are already an-

notated in music scores and most MIDI datasets, which

can be a helpful source of supervision. In this paper, we

will focus our analysis on pop songs, which often contain

a well-defined hierarchy of metrical structures [17].

Our main goal is to infer the high-level metrical struc-

tures given low-level ones like beats and downbeats. The

hierarchy of the metrical structure is created by recursively

grouping lower metrical units into upper ones (see Figure

1 for an example). We call the grouping of measures (or

other larger metrical units) a hypermeasure, and the num-

ber of units that form the group as its hypermeter [18, 19].

While some properties of beats and measures can be gen-

eralized to upper-level metrical structures, there are still

many differences to take into account. Similar to the me-

ter, the hypermeter of each layer tends to stay the same

to maintain a regular rhythmic pulse, but it is not uncom-

mon to see hypermeter changes in a piece, as shown in

Figure 4. Such changes occur more often than low-level

meter changes since listeners are less sensitive to long-

term rhythmic regularity. Another major difference is that

the decision of upper-level metrical structures requires a

longer context in the time domain compared to downbeat

or beat tracking.

To resolve these issues, we design a new model that

contains a Temporal Convolutional Network (TCN) front-

end for metrical level prediction and a Conditional Ran-

dom Field (CRF) decoder for joint metrical structure de-

coding. We design the transition of CRF hidden states to

allow hypermeter changes with some penalties. To han-
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dle polyphony, the model takes an arbitrary number of

voices/tracks as input, and predicts a confidence score for

each track. The final prediction is a weighted average of

the results from all tracks. We annotated 70 songs from

the RWC-POP dataset and used them for model training

and evaluation. We conduct experiments under different

orchestration setups with results shown in section 4.4.

2. RELATED WORK

2.1 Downbeat and Meter Tracking

Downbeat tracking for raw audio is a well-studied task

with many promising results. Krebs et al. [8] use parti-

cle filters to find the downbeats, yielding a 2-level metri-

cal structure. Durand et al. [9] use an ensemble of con-

volutional networks to locate downbeats robustly. Fuentes

et al. [10] use skip-chain CRF and deep learning to track

downbeats, noting that longer-term musical contexts can

better inform downbeat tracking. The reader is referred to

Gouyon and Dixon’s review [11] for non-symbolic low-

level metrical analyzers before 2005.

Notably, locating the beats and downbeats for symbolic

music is not a trivial task. Kostek et al. [20] apply neural

networks and rough sets to a polyphonic symbolic piece

and classify whether each note is accented or not, yielding

a 2-level metrical structure (beat and downbeat). Chuang

and Su [21] use various RNNs to classify each timestep in

a piano roll into non-beat, beat, or downbeat.

Another related task is time signature detection. Benoit

[22] uses symbolic-level auto-correlation to obtain a 4-

level metrical structure, and ultimately extracts the me-

ter. More auto-correlative methods [23, 24] share a similar

logic, since note onsets usually display periodicity in ev-

ery measure. More recently, inner metric analysis was also

used to infer the time signature by Haas et al. [25].

2.2 Music Segmentation

The task of music segmentation is to infer musically mean-

ingful section or part boundaries from the music content.

Audio-based music segmentation is usually achieved by

detecting similarity or repetition of the audio spectral fea-

tures. McFee and Ellis [13] evaluate inter-time frame sim-

ilarity and use spectral clustering to obtain a multi-level

segmentation of music. Salamon et al. [14] and McCal-

lum [15] replace traditional features with pre-trained deep

embeddings to estimate timbre and harmonic similarity.

Tralie and McFee [26] fuse multiple similarity metrics for

better prediction results. Ullrich et al. [27] train fully su-

pervised CNN on a segment-annotated dataset to detect

segment boundaries. See Dannenberg and Goto’s review

[28] and the 2010 SOTA report by Paulus et al. [29] to

learn more about audio-based music segmentations.

Segmentation of symbolic music relies more on domain

knowledge of music composition. Van der Werf and Hen-

driks [30] restate GTTM grouping rules in terms of Opti-

mality Theory (OT) and design a Prolog program to find an

optimal parse for short monophonic pieces. Dai et al. [31]

identify phrases as units of melodic repetition by minimiz-

ing the Structural Description Length (SDL) for the entire

piece, and then extract a 2-layer hierarchy.

2.3 Hierarchical Structure Analysis

The Generative Theory of Tonal Music (GTTM) [16] dis-

cusses several views of the hierarchical music structures,

but GTTM does not describe how to realize an analyzer

computationally. Various efforts have been made to mech-

anize GTTM. For example, Jones et al. [32] use a rule-

based expert system to obtain a 6-level metrical struc-

ture for monophonic pieces, satisfying all GTTM’s well-

formedness rules while following Povel’s grid theory [33].

Rosenthal’s Machine Rhythm [34] ventures into the poly-

phonic domain and uses rule-based methods to extract a 3-

level rhythmic annotation for MIDI input. Temperley and

Sleator [35] use a preference-rule approach and dynamic

programming to obtain the optimal parse. Hamanaka et

al. [36] propose the Automatic Time-span Tree Analyzer

(ATTA) for structural analysis of 8-bar monophonic scores.

Temperley [37] use Bayesian reasoning to jointly analyze

metrical, harmonic, and stream structures. Wojcik and

Kostek [18] use rule-based methods to retrieve hyperme-

tric rhythm from only the melody.

Machine learning models are also used for hierarchi-

cal structure analysis. Hamanaka et al. propose Deep-

GTTM [38, 39] which is a fully automatic analyzer that

uses a neural network to predict the applicability of GTTM

rules for each note, yielding a 5-level metrical structure for

8-bar monophonic scores.

There are some issues when applying previous works to

large polyphonic MIDI databases. Most systems work only

for monophonic music or music with limited polyphony.

Also, they often work in a short context, usually up to 8

bars.

3. METHODOLOGY

3.1 Problem Setting

We first formally define the metrical structure prediction

task for this paper. Assume we have a music score with T

voices (or tracks, in the sense of MIDI files) m1, ...,mT .

We also have a list of pre-annotated downbeats d1, ..., dN
for the music. The aim is to assign hierarchical metrical

labels li ∈ {0, 1, ..., L} to each downbeat di where L is the

total number of layers we want to build beyond measures.

Each label serves as the level of the metrical boundary at

di. li = l means di serves as a metrical boundary of all

levels for the first l levels beyond measures. Specially, li =
0 means di serves only as a measure boundary but not any

metrical boundary beyond measures.

If we use GTTM’s metrical structure notation, we can

use (li+1) dots to represent a metrical boundary level of li.

For the example in figure 1, the first 4 measures (excluding

the pickup measure) would have labels l1 = 2, l2 = 0, l3 =
1, l4 = 0.

We can also introduce the following notations.

Hypermeasures: A hypermeasure of level l is an interval
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0 1 2 3 4Metrical level 

prediction 𝐡𝑖𝑡 0.35 Confidence 

score 𝛼𝑖(𝑡)

Quantized track 𝐦𝑡 𝑑𝑖

…

Figure 2. The architecture of the neural network.

between two downbeats di and dj where li ≥ l, lj ≥ l and

lk < l for all k = i+ 1...j − 1. In other words, any lk ≥ l

serves as a separator of a level-l hypermeasure. Specially,

level-0 hypermeasures are just measures.

Hypermeters: A hypermeter is the generalization of me-

ters by counting how many level-(l−1) hypermeasures are

in a level-l hypermeasure. Since a binary structure is the

most commonly used [19,40], we assume a general hyper-

meter of 2 in all levels, with a few exceptions that cause

binary irregularity.

3.2 Temporal Convolutional Network

Temporal Convolutional Networks (TCNs) have been

proven an effective model for beat, downbeat, and tempo

tracking [7,41,42]. We believe it is useful for general met-

rical structure analysis for its unique property we will men-

tion below. We mainly reference [43] for the design of the

TCN, but we made it non-causal similar to [7]. Each TCN

block contains 8 sequential layers. The first 4 layers are

a dilated convolutional layer with kernel size 3 and 256

channels, a batch normalization layer, a Rectified Linear

Unit (ReLU) activation layer, and a dropout layer. The next

4 layers repeat this configuration. There is also a residual

component that adds a linear transformation of the input to

the block output, allowing shortcut connections.

Our model uses 6 TCN blocks sequentially. Each block

multiplies the dilation by 2, starting from 1 at block 1, re-

sulting in an exponentially growing context range for each

layer. This allows the model to capture long-term context

and more importantly, integrate prior knowledge about bi-

nary metrical structure into the network. The model input

contains the piano roll and the onset roll of a track quan-

tized into a 16th note level. Under a 4/4 meter, the dilations

of the convolutional layers in each block are therefore 1/4

beat, 1/2 beat, 1 beat, 2 beats, 1 measure and 2 measures,

respectively. This encourages the convolutional layers to

capture more musically meaningful context for binary met-

rical structures.

For each track mt in a song, we first feed them into

the TCN blocks to get the features for each time step, and

then discard the time steps that do not correspond to any

downbeat. We use linear layers to project the features into

a metrical level prediction h
(t)
i and a confidence score α

(t)
i .

0
0

0
0

·····

· ·· · ···

·

𝑧𝑖𝑙𝑖

1
0

0
0

0
1

0
0

1
1

0
0

0
0

1
0

1
0

1
0

·· · ····

·

0
1
1

0

1
1
1

0

0
0

0
1

1
0

0
1

·· · ···

0
1

0
1

1
1

0
1

0
0

1
1

(a)

0
0

0
0

·····

· ·· · ···

·

𝑧𝑖𝑙𝑖

1
0

0
0

0
1

0
0

1
1

0
0

0
0

1
0

1
0

1
0

····

· ·· ·

0
0

0
1

1
0

0
1

0
1

0
1

1
1

0
1

···
0

0
1
1

(b)

0
0

0
0

·····

· ·· · ···

·

𝑧𝑖𝑙𝑖
1

0
0

0

0
1

0
0

1
1

0
0

0
0

1
0

1
0

1
0

·· · ·· ·

0
1
1

0

1
1
1

0

0
2

1
0

1
2

1
0

····

· ·· ·

0
0

0
1

1
0

0
1

0
1

0
1

1
1

0
1

(c)

···
0

0
1
1

Figure 3. Examples of the CRF hidden variables zi (shown

as a L-digit number z
(1)
i ...z

(L)
i ) and the corresponding

metrical boundary levels li when L = 4. (a) Binary reg-

ularity is satisfied. (b) A level-1 hypermeasure is deleted

from (a). (c) A level-1 hypermeasure is inserted into (a).

Both (b) and (c) are examples of binary irregularity.

Each prediction h
(t)
i is a vector of size (L+1) for the labels

0...L. The final prediction of li is the weighted average of

all predictions h
(t)
i on the same time step weighted by their

confidence scores:

a
(t)
i

:= expα
(t)
i

/

∑

t′

expα
(t′)
i

(1)

pi :=
∑

t

a
(t)
i

Softmax(h
(t)
i

) (2)

3.3 Conditional Random Fields

Conditional Random Fields (CRFs) have been widely used

in downbeat tracking [10, 44] to enforce the regularity of

the decoded downbeat patterns. Inspired by this, we also

use a structured prediction method for decoding. The ma-

jor differences are that this model needs to predict a hier-

archy of L = 4 layers of metrical structures jointly.

The state space of hierarchical metrical structure can be

complex and ambiguous. To make it simple, we restrict our

model to accept a hypermeter of 1, 2 or 3 on any level. In

the sense of transformational grammar, a level-l hyperme-

ter of 1 can be constructed by deleting some level-(l − 1)
hypermeasures from a deep structure with binary regular-

ity, and a hypermeter of 3 can be constructed by inserting

some level-(l − 1) hypermeasures (see figure 3 for an ex-

ample). A hypermeter of 4 or more is not allowed and

needs to be decomposed into multiple metrical levels (e.g.,

4 = 2 + 2).

We design the linear CRF with a joint state space zi =

(z
(1)
i , ..., z

(L)
i ) where each z

(l)
i ∈ {0, 1, 2} corresponds to

the current hypermeasure position at level l, i.e., the num-

ber of complete level-(l − 1) hypermeasures in this level-l

hypermeasure up to the current time step. It can be seen

as a generalization of the beat position in [10]. A state

z
(1...l)
i = 0 ∧ z

(l+1)
i ̸= 0 denotes a metrical boundary

level li = l. Specially, the highest-level metrical bound-

ary li = L is associated and only associated with the state

(0, ..., 0), and the lowest-level metrical boundary li = 0 is

associated with any zi where z
(1)
i ̸= 0. See figure 3 for

some concrete examples.
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We manually design the transition potential function to

encode the belief of binary regularity on each level. We

define the transition potential matrix of a single level as

A
(l) =





exp
(

− w
(l)
del

)

1 0

1 0 exp
(

− w
(l)
ins

)

1 0 0



 (3)

where A
(l)
ij denotes the potential of transition from hy-

permeasure position i to position j on level l. w
(l)
del >

0, w
(l)
ins > 0 are hyperparameters that controls the penalty

of a level-l hypermeasure deletion and insertion respec-

tively. Intuitively, an alternating state sequence like

0, 1, 0, 1 on a single level satisfies binary regularity and

will not be penalized. Binary irregularity by inserting (e.g.,

0, 1, 2, 0, 1) or deleting (e.g., 0, 0, 1) states are penalized.

In a hierarchical metrical transition to a level-l metrical

boundary, the hypermeasure positions of level 1...(l + 1)
are updated, and the ones above level-(l+1) keep the same.

Therefore, the joint transition potential is defined as

ϕ(zi−1, zi) =
L
∏

l=1

{

A
z
(l)
i−1z

(l)
i

l ≤ li + 1

I[z
(l)
i−1 = z

(l)
i

] l > li + 1
(4)

where li denotes the corresponding metrical boundary

level of zi, and I[b] is the indicator function that returns

1 if b is true and 0 if b is false.

The emission potential function is designed as

ψ(zi,pi) = pili where pili is the li-th entry of pi. We

use Viterbi decoding to decode the optimal hidden states

z1..d given the observations p1...N :

ẑ = argmax
z

ψ(z1,p1)
N
∏

i=2

ϕ(zi−1, zi)ψ(zi,pi) (5)

4. EXPERIMENTS

4.1 Datasets

The main dataset we use in model training and evalua-

tion is the RWC-POP dataset. It contains 100 songs with

aligned MIDI files. The MIDI files have beat and downbeat

annotations that are mostly correct 2 . We manually anno-

tated the 4-layer song-level metrical structure for 70 songs.

We use 50 songs for training, 10 for validation, and 10 for

testing. We acknowledge the ambiguity in data annota-

tion which potentially causes bias by annotator subjectiv-

ity [45], so we publicized the annotation data and methods

to facilitate discussion and future research.

All samples are quantized into 16th-note units. The bi-

nary piano roll and onset roll are extracted for each track.

During training, a random 512-unit (32 measures) segment

is chosen from each song, resulting in a 512 × 256 fea-

ture matrix (128 MIDI pitches for piano roll and 128 MIDI

pitches for onset roll) for each track. To prevent overfitting,

we perform label-preserving data augmentation including

random pitch shift augmentation of -12 to +12 semitones

and a microtiming shift up to an 8th note on the training

2 2 out of 70 songs have minor beat/downbeat annotation issues.

set. The drum track does not use pitch shift augmentation

and does not share the same parameter with pitched instru-

ments for the first convolutional layer.

4.2 Model Training

For model training, we use a mini-batch of 16. We use

the Adam optimizer [46] on the cross-entropy classifica-

tion loss with a learning rate 0.0001 for 100 epochs. In

one epoch, we go through each augmented version of each

song for 5 times. For each song, we randomly select 2

tracks and try to predict the song-level metrical structure

given the weighted average of their predictions. We also

apply dropout with a probability 0.5 after each convolu-

tional layer to further suppress overfitting.

4.3 Baseline Models

While there are some existing rule-based hierarchical met-

rical structure analyzers [32,39,47] in previous works, they

mostly focus on low-level (e.g., beat & downbeat) bound-

ary features like note transitions, durations and local rhyth-

mic patterns. Those features are not effective enough for

metrical structures above the measure level. We here build

our baseline model using the methodology from [48]. For

each metrical level, we calculate the similarity matrix of

piano rolls on different granularity and estimate their nov-

elty score as observations. We use a CRF decoder as men-

tioned above with a different set of hyper-parameters tuned

for the baseline model.

To assess the necessity of introducing metrical irreg-

ularity, We also introduce another hypothetical baseline

model called the oracle model. The oracle model is not

allowed to predict any hypermeter changes (i.e., it always

assumes binary regularity) but it always performs the best

possible prediction (i.e., maximal F1 score) for each level.

This hypothetical model serves as an upper bound for any

model that does not allow binary irregularity.

4.4 Results

Table 1 shows the performance of each model on the test

split of RWC-POP songs. To perform a more systematic

evaluation, we also created two difficult versions of each

test song: (1) no drums: the drum track(s) are removed

from the original song and each model is required to pre-

dict the same metrical structure without referring to any

drum clues; (2) mel. only: all tracks except the melody

track are removed. Each model is required to predict the

structure by purely referring to the main melody track.

From the results, we can see that our proposed model

performs better than the rule-based counterpart on all met-

rical levels. Since most test songs have more than 10 MIDI

tracks, they provide sufficient metrical hints to both the

proposed model and the rule-based model even if the drum

track is removed. When we only have the melody track,

both the proposed model and the rule-based model’s per-

formances are not satisfactory even on the first level be-

yond measure. Still, the data-driven approach shows im-

proved performance compared to the rule-based system.
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Rule

Proposed

Rule

Proposed

Rule

Proposed

Figure 4. A case study with song RWC-POP No. 008 from the test split. The song is multi-track but we only show the

main melody here. The metrical structure of the song does not satisfy binary regularity because of the 2-bar extensions in

the pre-chorus (marked by a dashed blue box), causing hypermeter changes. The prediction of the proposed method aligns

well with the reference. The errors in the rule-based prediction are marked in red (better viewed in color).

Model Level 1 Level 2 Level 3 Level 4

Proposed
0.9848

±0.0215
0.9559

±0.0386
0.8880

±0.0889
0.6849

±0.1900

Proposed
w/o CRF

0.9338
±0.0390

0.8528
±0.0937

0.7971
±0.1276

0.6646
±0.0844

Rule
0.9228

±0.0698
0.8425

±0.1195
0.7485

±0.1536
0.5185

±0.2656

Oracle
0.9427

±0.1120
0.7782

±0.2076
0.5188

±0.1751
0.4225

±0.1234

Proposed
(no drums)

0.9868
±0.0174

0.9519
±0.0346

0.8803
±0.1023

0.6611
±0.2170

Rule
(no drums)

0.9312
±0.0660

0.8107
±0.1568

0.7055
±0.2008

0.4823
±0.2239

Proposed
(mel. only)

0.7413
±0.2139

0.6253
±0.2448

0.5551
±0.2536

0.3808
±0.2399

Rule
(mel. only)

0.6606
±0.1451

0.4395
±0.1522

0.3142
±0.1211

0.1863
±0.1310

Table 1. Evaluated F1 scores on the test split of the RWC-

POP dataset.

We observe that the proposed model is better at cap-

turing irregular metrical structures than the rule-based ap-

proach. Figure 4 shows a cherry-picked example where

binary irregularity can be found. Both the proposed model

and the rule-based baseline can detect such irregularity but

only the proposed model correctly tells the exact position

of the hypermetrical change.

There is also a tendency for the performance to drop

rapidly from lower to higher levels. We believe there are 2

main reasons. First, the higher levels have fewer positive

samples, making it hard for the model to learn its seman-

tic characteristics. Second, metrical structures on higher

levels are often more ambiguous than lower ones even for

human listeners. Sometimes, the highest level (level 4)

needs to decide how to group parts together (e.g., verse

+ pre-chorus or pre-chorus + chorus). Different decisions

are sometimes all acceptable.

4.4.1 Out of Distribution Evaluation

We also want to know whether the proposed model can

be applied to MIDI files with very different orchestration

setups. Such experiments are hard to perform because of

the lack of ground truth annotations. We here perform a

small-scale experiment on the POP909 [49] dataset. We

select the first 5 songs in the dataset ordered by index and

manually annotate the metrical structure 3 . POP909 is a

dataset of Chinese pop songs rearranged for piano perfor-

mance. Each song only has 3 tracks, i.e., a vocal track and

two piano tracks, making it harder compared to RWC-POP.

The results are shown in table 2.

From the results, we can see the performance degrades

even when all 3 tracks are present. By case inspection,

we find that the proposed model has generally satisfactory

performance on 3 out of 5 songs on lower layers. However,

there is one complex song 4 with multiple metrical and hy-

permeter changes that make all the approaches fail. Also,

due to the lack of rhythmic clues (e.g., drums), a deeper

understanding of the syntax and semantics of melody and

chords might be required to perform musically meaning-

ful segmentation, which we assume our model can hardly

acquire on a small training set of 50 pop songs.

4.5 Confidence Score Analysis

To perform a statistical analysis of the model behavior and

provide a musicological view of the model prediction, we

perform model inferences on a large selection of the Lakh

MIDI dataset [50]. To ensure enough accuracy of model

prediction, we only select a part of the Lakh MIDI dataset

3 We are aware that POP909’s downbeat annotations are sometimes
inaccurate and we manually fixed them.

4 POP909 No. 005: I Believe by Van Fan.
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Model Level 1 Level 2 Level 3 Level 4

Proposed
0.9084

±0.0896
0.8742

±0.1101
0.6470

±0.2174
0.4930

±0.3132

Rule
0.6818

±0.1855
0.6625

±0.1550
0.5163

±0.1195
0.3446

±0.1856

Oracle
0.8527

±0.1735
0.7348

±0.2763
0.5883

±0.2493
0.5767

±0.2474

Proposed
(mel. only)

0.6742
±0.2962

0.6542
±0.2737

0.5685
±0.2403

0.4797
±0.2053

Rule
(mel. only)

0.6062
±0.1034

0.3933
±0.0275

0.2642
±0.0546

0.1551
±0.0305

Table 2. Evaluated F1 scores on the first 5 songs in the

POP909 dataset. Mel. only denotes that the melody track

is used. Otherwise, all 3 tracks (melody, bridge and piano)

are used.

that has a similar orchestration compared to RWC-POP.

We filter the MIDI files according to the following crite-

ria: (1) it contains at least 6 MIDI tracks, including 1 drum

track and 1 track whose name contains strings "melody" or

"vocal"; (2) if multiple MIDI files’ identified audio sources

are the same, at most one MIDI file is kept. A filtered

dataset of 3,739 MIDI files is collected.

We here evaluate the relevance of instruments and the

model’s predicted confidence score. Notice that the in-

strument program number is not a part of the model input,

so the only difference comes from the rhythmic properties

of their scores. We collect the unnormalized confidence

scores α(t) for each track mt of different instruments, and

calculate their means and standard derivations. Specially,

we regard all melody tracks (identified by their names) as a

new instrument and ignore its original MIDI program num-

ber. Also, we remove all tracks with too many measure-

level rests (more than 1/3 of the whole song) since they

trivially result in low confidence scores.

Table 3 shows the results of confidence score analysis.

We can see that drums are the strongest clue for metri-

cal structures. The melody track and many melodic in-

struments (e.g., guitars) also serve as useful clues. On

the other hand, instruments that produce slow accompa-

niments (e.g., string ensemble and pads) are less preferred.

4.5.1 Drum Track Analysis

As another experiment of musicological analysis, we per-

form an experiment on the relation between drum notes

and the metrical structure level. For simplicity, we only

collect samples that a certain drum event happens exactly

on the downbeat, and we collect the corresponding metri-

cal boundary level of that downbeat. The results are shown

in Table 4. While the occurrence of many drum events

does not significantly change the distribution of the met-

rical boundary level, the crash cymbal and splash cymbal

are certainly useful clues to a high-level metrical bound-

ary. This aligns with people’s perception of them since

these cymbals are usually associated with a strong burst of

energy, serving as an important rhythmic hint.

Track/Instrument Confidence

Melody 1.78 ± 1.22

Drum 3.61 ± 2.58

Acoustic Grand Piano 0.35 ± 1.69

Electric Guitar (jazz) 0.75 ± 1.55

Acoustic Bass 0.33 ± 1.66

String Ensemble 0.11± 1.70

Pad (warm) -0.86 ± 1.78

Table 3. A selected view of the means and stan-

dard derivations of the confidence score for different

tracks/instruments. The melody track is identified by its

name instead of the MIDI instrument. The drum track is

identified by its MIDI channel number (No. 10).

Drums (%) L-0 L-1 L-2 L-3 L-4

Any 50.00 24.71 12.06 6.21 7.02

Bass Drum 48.66 25.10 12.46 6.47 7.30

Acoustic Snare 52.27 23.28 11.19 6.27 7.00

Closed Hi Hat 51.32 25.14 11.91 5.54 6.11

Open Hi Hat 51.90 25.07 11.33 5.38 6.32

Crash Cymbal 20.97 19.13 18.58 18.94 22.38

Ride Cymbal 51.41 25.03 11.57 5.61 6.39

Splash Cymbal 34.80 22.30 16.00 12.90 14.01

Table 4. A selected view of the frequency of different

drum instruments (on a downbeat) associated with differ-

ent levels of metrical boundaries. L-n means level-n met-

rical boundary.

5. CONCLUSION AND FUTURE WORK

In this paper, we propose a data-driven approach for hi-

erarchical metrical structure analysis of symbolic music.

Our model adopts a TCN-CRF architecture and accepts

an arbitrary number of voices as input. Experiments on

MIDI datasets show that our model performs better than

rule-based methods under different orchestration settings.

The model performance is still not satisfactory, espe-

cially for high-level metrical structures and music with

very different orchestration. We assume the performance

would be better if more data were annotated, but there

are also other possible directions for data-driven methods.

First, self-supervised or semi-supervised methods might be

a helpful complement to the lack of labeled datasets. For

example, a consistency loss can be used to evaluate the pre-

diction between different voices in the same music piece.

Different data augmentation strategies might also be help-

ful. Second, it might be useful to utilize datasets of related

tasks (e.g., section labels) as a source of weak supervision.

Related tasks can also be used for multi-task learning.

Other potential future works include improving the au-

tomatic analysis system of other hierarchical structures,

e.g., the grouping structures. The application of hierar-

chical structure analysis in the audio domain is also worth

exploring.
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