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ABSTRACT

Popularized by Arnold Schoenberg in the mid-20th cen-

tury, the method of twelve-tone composition produces mu-

sical compositions based on one or more orderings of the

equal-tempered chromatic scale. The work of twelve-tone

composers is famously challenging to traditional West-

ern tonal and structural sensibilities; even so, group theo-

retic approaches have determined that 10% of certain com-

posers’ works contain a highly unusual classical symmetry

of music. We extend this result by revealing many sym-

metries that were previously undetected in the works of

Schoenberg, Webern, and Berg. Our approach is computa-

tional rather than group theoretic, scanning each composi-

tion for symmetries of many different cardinalities. Thus,

we capture partial symmetries that would be overlooked by

more formal means. Moreover, our methods are applicable

beyond the narrow scope of twelve-tone composition. We

achieve our results by first extending the group-theoretic

notion of symmetry to encompass shorter motives that may

be repeated and reprised in a given composition, and then

comparing the incidence of these symmetries between the

work of composers and the space of all possible 12-tone

rows. We present four candidate hierarchies of symmetry

and show that in each model, between 75% and 95% of

actual compositions contained high levels of internal sym-

metry.

1. INTRODUCTION

The Viennese composers Arnold Schoenberg, Anton We-

bern, and Alban Berg produced a combination of 86

twelve-tone compositions in the early-to-mid 20th cen-

tury [1±3]. Each of these compositions is constructed from

some permutation of the twelve pitch classes of the equal-

tempered chromatic scale, which then guides the order of

notes in the melody and harmonies. Figure 1 shows musi-

cal notation for one such permutation of the pitch classes

that was selected by Schoenberg. Each such permutation is

called a tone row, and we will take the Viennese tone rows
to mean those that underlie the compositions of Schoen-
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Figure 1. Musical notation for the row from Schoenberg’s

Serenade, opus 24, movement 5. Note that each pitch class

is used once.

berg, Webern, and Berg, the principal members of the Sec-

ond Viennese School. Using Hauer’s arrangement of the

pitch classes at the hour marks of an analog clock dia-

gram [4], each tone row can be visualized as a directed

graph that visits each vertex once, and the set of these di-

rected graphs is in bijection with the set of tone rows [5,6].

The strict rules of twelve-tone composition and its in-

herent relation to permutations have inspired formal math-

ematical study, both combinatorial and group theoretic.

Recent work by von Hippel and Huron applied a key-

finding algorithm to subsets of all lengths within certain

tone rows in order to quantify their degree of ªtonalnessº

[7]. This combinatorial approach construes the tone row

as the union of many shorter overlapping subsets whose

individual properties imply properties of the tone row as

a whole. By contrast, Hunter and von Hippel treated tone

rows more like indivisible algebraic objects in their group-

theoretic study, showing that the action of the dihedral

group (rotations and reflections) on clock diagrams, to-

gether with the operation of reversing the diagram’s ar-

rows, encompass the classical music-theoretic symmetries

of translation, inversion, and retrograde [8].

The composers of the Second Viennese School consid-

ered tone rows to be equivalent under these symmetries so

it makes sense to study equivalence classes of tone rows

instead of the rows themselves. The resulting row classes
of Schoenberg and Webern can therefore be visualized as

unlabeled, undirected clock diagrams (start and end points

need not be distinguished due to equivalence under retro-

grade). Berg also considered a fourth symmetry, cyclic
shift, so his row classes are larger: they are equivalent

to unlabeled, undirected clock diagrams whose endpoints

connect [3]. Figure 2 shows clock diagrams of the twenty-

one row classes used by Webern, with the four diagrams

that possess dihedral symmetry set apart from the others.

These four diagrams correspond to row classes that are iso-

morphic to their retrograde. The fact that Berg considered

an extra symmetry has the practical effect of making his

row classes larger, and hence the set of row classes smaller,
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Figure 2. Clock diagrams of the twenty-one tone rows

used by Webern, with the four symmetric diagrams on the

left.

than those of Schoenberg and Webern. In this work, we

follow convention by studying the two alternatives in par-

allel as the methods of study are otherwise unaffected by

the use of an extra symmetry.

Hunter and von Hippel posed and resolved the follow-

ing question: are there more symmetric Viennese tone rows

than would be expected by chance alone? By the numbers,

symmetric rows comprise just 5% of Schoenberg’s works,

19% of Webern’s, and 9% of Berg’s. However, symmet-

ric rows are exceedingly rare among all row classes: just

0.13% of row classes possess dihedrally symmetric clock

diagrams (the figure is 1.16% when Berg’s cyclic shift

symmetry is included). Hunter and von Hippel made this

idea rigorous by using a hypergeometric test to conclude

that these composers showed a statistically significant pref-

erence for symmetry, whether intentionally or not [8].

Results of this kind can be concretely informative to

music scholars as well as mathematicians. Most directly,

Hunter and von Hippel offered analytical evidence that

the three composers preferred symmetric row classes, a

fact that had already been believed widely among mu-

sic scholars [2, 3]. However, their results also contra-

dicted certain beliefs, for example that Webern preferred

non-palindromic symmetry [2]. They found that non-

palindromic symmetry is simply much more common than

palindromic symmetry, more than accounting for its higher

incidence in Webern’s corpus. In short, the enumeration of

row classes and their symmetries is a truly interdisciplinary

undertaking with promise to inform music scholars in ways

that are relevant to their practice.

The main question left open by Hunter and von Hip-

pel relates to the fact that just 10% of the Viennese tone

rows are symmetric. While this figure is already surpris-

ingly high compared to the incidence of symmetry among

all row classes, it still leaves the fact that the Viennese

twelve-tone composers evidently had some priorities be-

yond symmetry alone. Indeed, music scholars have posited

many other properties of tone rows that may have attracted

the composers’ interest: ªcombinatorial,º ªall-interval,º

ªtonally colored,º and particularly ªderivedº rows have all

been subject to study [9, 10]. Derived rows are those that

consist of a sequence of 12/d notes repeated d times under

the various transformations available to the composer [10].

The Gotham and Yust Serial Analyzer project [11] has

yielded a catalog of rows in the repertoire classified by

these traditional properties as well as more novel harmonic

properties deduced from the discrete Fourier transform ap-

proach of Krumhansl [12]. The set of all possible derived

rows has also been enumerated algebraically. Fripertinger

and Lackner generalized the work of Hunter and von Hip-

pel by constructing a group action and classified all tone

rows according to the traditional properties in the Database

of Tone Rows and Tropes [10]. To our knowledge, this

database has yet to be studied in the sense of Hunter and

von Hippel to determine whether the Viennese tone rows

contain statistically significant quantities of derived rows,

for example.

The combinatorial study of tone rows has led to the enu-

meration of rows with various traditionally studied prop-

erties as well as measurements of ªtonalnessº and other

harmonic properties. Meanwhile on the group-theoretic

side, Fripertinger and Lackner’s group action has helped

enumerate the derived rows, a much richer set than the

fully symmetric rows of Hunter and von Hippel. Missing

from the literature is a combinatorial attack on the defini-
tion of symmetry in tone rows: just as Yust [13] extended

von Hippel and Huron’s study of tonal fit to pairs of tonal,

atonal, and mixed dimensions, this paper uses combinato-

rial means to generalize the concept of derived row, captur-

ing nuances that are impractical to detect with group the-

ory. For example, if we permute just the last two notes of

a derived row, the resulting tone row will most likely not

possess any group theoretic symmetries. The rigidity of

group-theoretic symmetries causes this type of partial sym-

metry to be overlooked. In this work, we introduce a com-

binatorial alternative to the group-theoretic definitions of

symmetry, scanning each tone row for partial symmetries

of all cardinalities. Our approach results in a complete cat-

alog of recurring motives within each tone row, from which

we argue that the vast majority of the Viennese tone rows

contain unusually high levels of symmetry. Moreover, we

believe the flexibility of our approach grants it applications

beyond the narrow scope of twelve-tone composition.

2. DETECTING INTERNAL SYMMETRY

For the purpose of this work, a motive within a tone

row is any consecutive sequence of notes that recurs

at least once within the same row (transposed and pos-

sibly inverted or in retrograde). For example, the

row (0, 1, 10, 5, 2, 3, 6, 7, 8, 11, 4, 9) contains the motive

(0, 1, 10, 5) which repeats transposed under retrograde in-

verse as (10, 5, 2, 3), as shown in the top line of Figure 3.

This particular row also contains the motive (3, 6, 7, 8) and

its transposed retrograde inverse (6, 7, 8, 11). Motives can

be as short as two notes or as long as twelve; whereas mo-

tives of length 2 occur whenever the same musical interval

(or its inverse) is reused in a tone row, motives of length 12

are only found in the rare palindromic rows. The highest

incidence of motives can be found in the chromatic scale
and the circle of fifths, each of which consists of a single

length-2 segment whose corresponding musical interval is
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Figure 3. Clock diagrams of the tone row

(0, 1, 10, 5, 2, 3, 6, 7, 8, 11, 4, 9) showing the nine se-

quences of length 4. The two recurring motives are

indicated with doubled lines.

repeated eleven times to form the row. In the opposite case,

the all-interval rows consist of every different musical in-

terval and consequently possess very few motives. Figure

4 shows clock diagrams for the circle of fifths (containing

the maximum number of motives of all lengths) and an all-

interval row that contains no motives above length 2 at all.

Our approach has two stages: first, we enumerate the

motives of all lengths for every row class; then, we advance

four plausible models for assigning an overall symmetry

rating to any set of motives, with attention to the music-

theoretic and mathematical literature to ensure consistency

of our results with existing knowledge. We begin the first

stage by treating each tone row as a collection of length-d
sequences of notes, with d ranging from 2 to 12. Figure 3

shows a particular tone row’s nine sequences of length 4, of

which two pairs are found to be separate recurring motives.

In general, the set of length-d motives of a tone row can be

quantified by a partition of 12 − d + 1 (the total number

of length-d sequences) based on which sequences appear

multiple times. Figure 3 shows that the depicted tone row

corresponds to the partition 9 = 2+ 2+ 1+ 1+ 1+ 1+ 1
since there are two motives that each appear twice, plus

five other length-4 sequences that do not form motives. As

d varies from 2 to 12, the corresponding sets of motives

fully encode the symmetrical properties of a tone row at

every cardinality. Therefore, the symmetrical properties of

any tone row can be represented by a list of partitions of the

integers from 1 to 11, corresponding to values of d ranging

from 12 down to 2. We refer to such a list of partitions as

the full symmetry data of a row class.

Generalizing symmetry in this way encodes a tremen-

dous amount of information. Hunter and von Hippel iden-

tify three types of rows (eight, when cyclic shift is in-

cluded) [8]. Friptertinger and Lackner extend this to a

few thousand by introducing tropes [10]. But a naïve up-

Figure 4. Clock diagrams of the maximally symmetric

circle of fifths and a minimally symmetric all-interval row.

Figure 5. Clock diagrams of the tone row

(0, 1, 8, 11, 10, 3, 2, 7, 4, 6, 9, 5) showing that it achieves

symmetry scores of 3, 4, and 2 for the lengths of 2, 3, and

4, respectively.

per bound on the number of distinct full symmetry data

is the product of the first eleven partition numbers, about

5.379 × 1010 or five thousand times the number of row

classes! There are many principled ways to simplify the

full symmetry data while maintaining consistency with the

literature. One promising approach (not explored in this

paper) would map each partition to its length, summariz-

ing the symmetry data of a tone row with an integer 11-

tuple. Under this scheme, rows whose 11-tuple values

are small exhibit more repetitive motives (hence, greater

symmetry) than those whose 11-tuple values are large. In

an extreme example, the chromatic scale and the circle of

fifths achieve scores of all 1’s in this scheme. In this pa-

per, we choose to map the full symmetry data to a differ-

ently defined 11-tuple: the maximum values of the parti-

tions. The reason for using the maximum value instead of

the length is subjective as both schemes capture essential

information about the partition. Figure 5 depicts a tone

row whose most-repeated motives of length 2, 3, and 4

have multiplicities of 3, 4, and 2, respectively. This par-

ticular tone row has no motives of length 5 or greater,

meaning that its symmetries are quantified by the tuple

(3, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1). We refer to this tuple as the

symmetry score of the row class.

3. ANALYSIS

In Section 2 we established a map from the set of row

classes to an 11-dimensional lattice with the property that

greater values correspond to higher multiplicity of motives.

The two clock diagrams in Figure 4 illustrate this property:
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whereas the circle of fifths maps to a symmetry score of

(11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1), the depicted all-interval row

maps to a symmetry score of (2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
which is in fact the lowest possible multiplicity of motives

among all row classes. The next step is to assess whether

the Viennese tone rows contain unusually high levels of

symmetry, but this depends on how we compare symmetry

scores to each other. Instead of presenting just one possible

interpretation of ªhigh symmetry,º we give four reasonable

candidates that span a wide range of interpretations of sym-

metry while still respecting musical intuition and the math-

ematical literature on the topic. In each model, we con-

duct hypergeometric tests to gauge whether the incidence

of high symmetry in the composers’ corpora was signif-

icantly greater than would be predicted by chance alone.

While these tests are exploratory in nature, the models in

Sections 3.1 and 3.2 admit a conservative Bonferroni cor-

rection to adjust for the issue of multiple testing [14].

3.1 Reverse-Lexicographic Model

The most direct extension of Hunter and von Hippel’s re-

sults is to introduce a sensible total order on the set of sym-

metry scores, then split the scores into ªlowº and ªhighº

bins in music-theoretically sound ways and apply a hy-

pergeometric test. A natural candidate for the total order

is reverse-lexicographic order (RLEX), prioritizing longer

motives over shorter ones. This choice has the advantage

of seamlessly reproducing known results in its base case;

moreover, it yields a natural definition of low and high

symmetry: for each length d, the valid splits are the lo-

cations in the total order at which the d-symmetry score

increments. For example, we can split the set of tone rows

according to whether any length-4 motive is present; in the

set of all row classes, 23.62% have a length-4 motive, yet

fully 50% of Schoenberg’s tone rows exhibit this symme-

try. The associated hypergeometric test gives a p-value of

p < 0.0002, so the prevalence of motives of length at least

4 in Schoenberg’s work is unlikely to have arisen by chance

alone. This model has 38 splits (40 for Berg) and the ad-

justed p-values are computed by multiplying by these num-

bers. Table 1 shows a selection of significant results for

the three composers. Notably, more than 90% of Webern’s

corpus exhibits a statistically significant level of symmetry

in the RLEX sense and both Schoenberg and Webern’s cor-

pora exhibit significant levels of symmetry under the multi-

ple testing correction. Berg’s use of a fourth symmetry and

the correspondingly smaller space of row classes makes it

more difficult to obtain significant results for his corpus, as

already noted by Hunter and von Hippel. However, even in

this case a few notable results are seen, although only on

an exploratory basis.

3.2 Lattice Rank Model

The RLEX model faithfully reproduces known results, yet

strongly penalizes row classes that contain many short mo-

tives but few long ones. The Lattice Rank model delivers

on the opposite extreme by using a grading according to

Figure 6. Directed acyclic graph representation for

the partially ordered set of symmetry scores relevant to

Schoenberg and Webern.

the sum of the symmetry score, thereby equally weight-

ing motives of all lengths. Here, the natural divisions of

ªhighº and ªlowº symmetry are determined by the rank

function with 54 distinct levels (109 for Berg). For exam-

ple, two-thirds of Webern’s tone rows have lattice rank of 6

or greater (that is, 6 more multiplicity of motives than the

lowest symmetry score), while only 11.17% of the set of

all row classes has this property. The quantity of tone rows

in Webern’s corpus with at least this lattice rank almost

certainly did not arise by chance alone (p = 2.5 × 10−9).

Table 2 shows that the Lattice Rank model obtains remark-

ably similar results to the RLEX model in spite of being ag-

nostic to motive length. Again, Schoenberg and Webern’s

corpora exhibit statistically significant levels of symmetry

even under the multiple testing correction, while Berg’s

corpus only does so on an exploratory basis.

The fact that the RLEX and Lattice Rank models yield

similar results in spite of applying diametrically opposed

weighting schemes to motives of different lengths suggests

that the Viennese tone rows simply contain a lot of in-

ternal symmetries no matter how you count them. Still,

these models impose value judgments on the relative im-

portance of each internal symmetry, possibly affecting the

outcome of the analysis. To validate our findings, we offer

a non-parametric alternative that makes no assumptions at

all about the relative importance of the different motives.

Instead, this alternative is based on the single intuitive as-

sumption that the symmetry scores form a partially ordered

set: a row class whose symmetry score is no greater in

any component than the symmetry score of a different row

class cannot be said to exhibit greater symmetry overall.

Abstracting from the lattice structure in this way results in

the diagrams in Figures 6 and 7, where each vertex is a

symmetry score and the directed edges (all running left-to-

right) run from lesser to greater in the partial order.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

112



Schoenberg All p-value Webern All p-value Berg All p-value

76.19%** 45.50% 5.11× 10−5 90.48%*** 39.15% 1.51× 10−6

50.00%** 23.62% 1.88× 10−4 57.14%* 23.68% 1.01× 10−3 47.83% 28.84% 0.042

38.10%*** 11.11% 5.47× 10−6 42.86%** 11.16% 2.23× 10−4

11.90% 2.29% 2.67× 10−3 28.57%*** 2.29% 5.89× 10−6 8.70% 1.04% 0.024

4.76% 0.13% 1.50× 10−3 19.05%*** 0.13% 1.93× 10−8

Table 1. Selected RLEX results for each composer, comparing their corpora to the set of all row classes with respect to

various ªhighº and ªlowº symmetry bins. Asterisks indicate significance level under conservative Bonferroni correction.

* : p < .05, ** : p < .01, *** : p < 0.001.

Schoenberg All p-value Webern All p-value Berg All p-value

83.33% 66.07% 0.011 95.24% 66.07% 1.96× 10−3

47.62%** 20.87% 9.98× 10−5 71.43%*** 20.87% 9.13× 10−7 56.52% 35.04% 0.029

33.33%** 11.17% 1.17× 10−4 66.67%*** 11.17% 2.54× 10−9

9.52%* 0.90% 5.48× 10−4 38.10%*** 0.90% 7.48× 10−12 17.39% 4.50% 0.018

7.14%*** 0.11% 1.47× 10−5 19.05%*** 0.04% 1.38× 10−10

Table 2. Selected Lattice Rank results for each composer, comparing their corpora to the set of all row classes with respect

to various ªhighº and ªlowº symmetry bins. Asterisks indicate significance level under conservative Bonferroni correction.

* : p < .05, ** : p < .01, *** : p < 0.001.

3.3 Partial Order Rating Models

In order to set up a hypergeometric test on the poset of

symmetry scores, we still need to choose some linear ex-

tension of the poset to a total order. The RLEX and Lattice

Rank models accomplish this by appealing to music intu-

itions on the relative importance of different kinds of mo-

tives. However, the fact that our poset has a unique least

and greatest element gives us a non-parametric alternative.

Given any symmetry score v, we count the number of row

classes with strictly lesser scores (ascendants) and strictly

greater scores (descendants) in the poset. If v has rela-

tively few descendants compared to ascendants, then few

row classes have strictly greater symmetry than v and we

may say that v possesses a relatively high level of symme-

try. To make this idea precise, let Av be the number of row

classes assigned to strictly lesser scores than v, and Dv

be the number of row classes assigned to strictly greater

scores than v. Lastly, let M be the total number of row

classes. The formula

1

2
(1 + (Av −Dv)/M))

ranges from 0 to 1 as v ranges from the least to greatest

elements of the poset. We define the Solo Poset Rating of

v by renormalizing this formula to range from 0 to infinity,

like so:

PRs(v) = − log

(

1−
1

2
(1 + (Av −Dv)/M))

)

= − log

(

1

2
(1− (Av −Dv)/M)

)

. (1)

In Figure 7, the symmetry score marked by the black

vertex would receive a relatively high Solo Poset Rating

because it has many ascendants but relatively few descen-

dants. This imbalance is further amplified by the fact that

scores near the minimum symmetry score are generally as-

signed to many more row classes than scores near the max-

imum symmetry score.

For example, two of Berg’s tone rows have a symme-

try score of (6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1), whose Solo Poset

Rating is 0.695. An additional ten of Berg’s tone rows

achieve a greater Solo Poset Rating than this, so 12/23 or

52.17% of Berg’s tone rows exhibit a Solo Poset Rating of

0.695 or greater. Meanwhile, just 29.42% of all tone rows

achieve a Solo Poset Rating of at least 0.695. If Berg had

selected row classes at random, the probability that twelve

or more of his corpus would have a Solo Poset Rating of at

least 0.695 is just 0.018.

Figure 7 shows that for any given symmetry score, there

are many other scores in the poset that are incomparable.

We define the Cohort Poset Rating of a particular score

as the average of the Solo Poset Ratings of all scores that

are incomparable with the chosen score. Both variants of

the Poset Rating quantify how close a given score is to the

highest possible symmetry score, compared to its close-

ness to the lowest possible symmetry score. The two rat-

ings yield nearly identical results when analyzing the cor-

pora of Schoenberg and Webern (Tables 3 and 4). Due to

Berg’s smaller space of row classes, the only noteworthy

finding for his corpus under the Poset Rating models is the

one given in the previous paragraph (the Solo and Cohort

models coincide in this case).

4. DISCUSSION

Our work takes a flexible approach to detecting patterns

within tone rows, uncovering partial symmetries that can-

not be detected by group theory. The trade-off is that we

also find many internal structures that have no name in mu-

sic theory. Whether this is a true disadvantage depends on
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Figure 7. Directed acyclic graph representation of the

symmetry scores relevant to Berg with highlighted ascen-

dants and descendants of the black vertex, and incompara-

ble scores greyed out.

Schoenberg All Solo (Cohort) p-value

83.33% 65.87% 0.010

52.38% 26.23% 2.73× 10−4

33.33% 12.85% (11.65%) 5.13× 10−4

9.52% 0.74% (0.60%) 2.73× 10−4

4.76% 0.74% (0.13%) 9.08× 10−3

Table 3. Selected Poset Rating results for Schoenberg,

comparing his corpus to the set of all row classes with re-

spect to various ªhighº and ªlowº symmetry bins. When

the Solo and Cohort ratings do not coincide, the larger of

the two p-values is displayed for brevity.

Webern All Solo (Cohort) p-value

95.24% 45.35% 1.62× 10−6

66.67% 12.85% (16.03%) 2.78× 10−7

52.38% 2.85% 2.67× 10−12

33.33% 1.03% (1.06%) 1.51× 10−9

19.05% 0.12% (0.25%) 2.39× 10−7

Table 4. Selected Poset Rating results for Webern, com-

paring his corpus to the set of all row classes with respect to

various ªhighº and ªlowº symmetry bins. When the Solo

and Cohort ratings do not coincide, the larger of the two

p-values is displayed for brevity.

the validity of our basic premise: that the presence of a re-

curring motive is noteworthy in itself. We believe that this

premise is supported by the preexisting scholarly interest

in derived rows, those tone rows that are fully generated by

a shorter repeating motive [10]. Since small adjustments to

a derived row result in similar rows that yet lack any offi-

cial symmetry, it seems natural to extend the concept of

derived row to any tone row that is at least partially gener-

ated by a motive.

In bringing new methods to this topic, we have made

particular effort to situate our work in the literature and

reproduce known results where possible. Indeed, all our

models agree with the existing knowledge that roughly 5%

of Schoenberg’s corpus and 19% of Webern’s corpus have

significant incidence of symmetry at the highest level. The

RLEX model in particular achieves exact replication of

known results. Where it was necessary for us to make a

value judgment on the relative importance of different mo-

tives, we have followed the literature (in the case of RLEX)

and also explored the diametrically opposed value judg-

ment (in the case of Lattice Rank) in order to provide max-

imum contrast. In each case, we performed a multiple test-

ing correction and still found significant levels of symme-

try in much of the tone rows of Schoenberg and Webern.

We also developed two non-parametric models to further

validate our findings. Moreover, our approach to defining

symmetry by the presence of shorter motives is analogous

to von Hippel and Huron’s measurement of the ªtonalnessº

a row by the tonal properties of its subsets [7].

As for whether the Viennese twelve-tone composers fa-

vored symmetry in their work, our models support this

across the board. We find that all three composers made

extensive use of symmetry in their work, decidedly be-

yond what can be explained by chance alone. We found

that 76%±83% of Schoenberg’s corpus and 90%±95% of

Webern’s corpus contained significant levels of symmetry

(up from 5% and 19%, respectively.) Even in the case of

Berg, whose much smaller space of row classes limits the

power of the hypergeometric test, we can extend the pre-

viously determined figure of 9% to the range of 48%±57%

of his corpus although only on an exploratory basis.

Our combinatorial approach has one other advantage

over the group-theoretic approaches in the literature. By

forgetting the permutation group structure and studying

motives on a purely combinatorial level, we no longer re-

strict ourselves to studying tone rows. Indeed, our meth-

ods apply just as well to any data series together with a

relevant group of symmetries, with the one concession that

there is no clear analog for the hypergeometric test. Still,

the n-tuple symmetry score can serve as a feature for clas-

sification of melody and rhythm that encodes information

of many different cardinalities, evoking concepts from per-

sistent homology and wavelet analysis. While we assert no

formal connection between these fields and our work, we

take inspiration from the concept of studying an object at

many different scales and hope that our success in the enu-

meration of tone row motives may find broader application

in music information retrieval.
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