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ABSTRACT

Self-supervised learning has steadily been gaining trac-
tion in recent years. In music information retrieval (MIR),
one promising recent application of self-supervised learn-
ing is the CLMR framework (contrastive learning of mu-
sical representations). CLMR has shown good perform-
ance, achieving results on par with state-of-the-art end-
to-end classification models, but it is strictly an encoding
framework. It suffers the characteristic limitation of any
encoder that it cannot explicitly combine multi-timescale
information, whereas a characteristic feature of human au-
dio perception is that we tend to perceive all frequencies
simultaneously. To this end, we propose a generalization of
CLMR that learns to extract and explicitly combine repres-
entations across different frequency resolutions, which we
coin the tailed U-Net (TUNe). TUNe architectures com-
bine multi-timescale information during a decoding phase,
similar to U-Net architectures used in computer vision and
source separation, but have a tail added to reduce sample-
level information to a smaller pre-defined number of rep-
resentation dimensions. The size of the decoding phase
is a hyperparameter, and in the case of a zero-layer de-
coding phase, TUNe reduces to CLMR. The best TUNe
architectures, however, require less training time to match
CLMR performance, have superior transfer learning per-
formance, and are competitive with state-of-the-art models
even at dramatically reduced dimensionalities.

1. INTRODUCTION

Representation learning is a fast-moving sub-field of ma-
chine learning that seeks to distill information encoded in
different types of input signals into less noisy abstract rep-
resentations that are suitable for various downstream tasks.
Such representations, which are learned without explicit
supervision, have been successfully applied to a broad vari-
ety of musical and non-musical task domains [1], including
audio tagging [2, 3] and speech recognition [4]. After self-
supervised training, the learned representations are then
evaluated by probing, a term originating from natural lan-
guage processing [5±7]. In MIR, probing is also known
as shallow network training or transfer learning [2, 8±13].
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When probed, these self-supervised learning methods per-
form comparably to end-to-end trained models [3, 14, 15].

One of the more common learning architectures used
for MIR tasks is the convolutional neural network (CNN)
[16±19]. CNNs typically consist of either only an encoder
path or an encoder and decoder path. One distinctive CNN
with both an encoder and a decoder path model is the
U-Net, consisting of variants of the encoder and decoder
paths called contractive and expansive paths. Our work fo-
cuses specifically on adapting the U-Net architecture [20]
to representation learning. To the best of our knowledge,
there is little to no published research in computer vision,
MIR, or signal processing that has considered the potential
of U-Nets for representation learning.

U-Nets originated from the field of biomedical image
segmentation, where they were introduced with the goal of
being more data-efficient and less time-consuming to train
for segmentation tasks, while also being able to perform
well with relatively few data points and in the presence of
class imbalance [20, 21]. U-Net architectures have shown
top performance in segmentation, winning the ISBI cell
tracking contest by a large margin in 2015 [20]. One of the
arguments for how well U-Net architectures perform is the
way the contractive and expansive paths allow the network
to incorporate features across multiple resolutions.

U-Nets have also been shown to perform well within
the audio domain. Their application to source separation
in the time-frequency domain yielded state-of-the-art res-
ults [22], after which the U-Net established itself for source
separation in the raw audio domain as well [23]. In raw
audio and speech generation, U-Nets perform on par with
Wavenet [24], with fewer parameters and faster inference
[25]. We are also motivated to explore U-Net-like architec-
tures for representation learning because of their intuitive
relation to the slow feature hypothesis [26], which states
that much of the meaningful information contained in sig-
nals changes gradually, over larger timescales. Without re-
quiring a formal transformation to the frequency domain,
U-Net architectures can extract these slow features along-
side fine-grained high-frequency information by encoding
and combining features across multiple timescales [25].

Given the scarcity of publicly available labelled data in
MIR, we focus further on U-Nets for self-supervised learn-
ing. Specifically, we adapt the contrastive semi-supervised
learning method from CLMR [3], since this has shown
great promise on label training efficiency and generalisab-
ility of learned representations to out-of-domain MIR data-
sets. Specifically, we generalise the SampleCNN [27] en-
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Figure 1: The TUNe architecture extracts features containing information obtained at multiple timescales. To this end, it
consists of three main components: (1) the contractive path iteratively extracts features at a given timescales and reduces
the signal resolution; (2) the expansive path upsamples the extracted features at lower resolutions and concatenates them
into higher-resolution features than those obtained from the contractive path; and finally, (3) the tail combines the features
extracted at multiple timescales and reduces their spatial resolution, ultimately yielding a single, low-dimensional, multi-
timescale representation for an input signal.

coder architecture used in CLMR with a new architecture
we dub the tailed U-Net (TUNe). TUNe architectures are
like U-Net architectures, but with an additional contract-
ive path ± the tail ± extending the original architecture by
a mapping from a representation at the input resolution to
a reduced latent representation size (see Figure 1). Intuit-
ively, the ‘U’ shape of the network extracts a representation
at the original temporal resolution, encoding a combination
of slow feature patterns with higher-frequency components
from the input signal, whereas the tail learns temporally re-
duced patterns from this enriched signal.

Our main contribution is this novel angle for the use
of U-Nets for representation learning on signal data. Fur-
thermore, we investigate a number of architectural setups
with different model sizes to assess the performance and
parameter efficiency of TUNe networks. In order to evalu-
ate the learned representations, we transfer them to a range
of benchmark MIR tasks, showing competitive perform-
ance with a drastically shortened training regime, para-
meter count, and representation dimensionality.

2. RELATED WORK

State-of-the art algorithms for audio-based MIR tasks (e.g.,
chord recognition, key detection, and music audio tag-
ging) are generally built on one of three input forms: (1)
time-frequency representations of the audio signal, (2) raw
time-domain audio, or (3) a combination of raw audio
and time-frequency representations [28]. Among the top-
performing raw audio input architectures are musicCNN
[2], JukeBox [29], and SampleCNN [27]. SampleCNN
was introduced for raw audio classification and later ad-
apted for CLMR’s contrastive learning setting. We use
CLMR’s version of SampleCNN as a reference point for
both performance and number of parameters. Moreover,

the TUNe convolution blocks introduced in Section 3 are
based on the filter±stride±max pooling operation used in
SampleCNN, which downshifts the effective frequency
range modelled by the convolution kernels applied in sub-
sequent layers. Note that because of this use of pooling op-
erations, much high-frequency information is discarded in
the extraction of the encoding from the input. Instead, our
proposed approach explicitly combines these subsampled
lower-frequency features with high-frequency features ob-
tained at the original temporal resolution.

For a range of benchmark MIR datasets, CLMR is cur-
rently the best-performing self-supervised model that does
not require industry-scale hardware to train [14]. It is
a self-supervised learning framework, and as such, it re-
quires no labelled data for training. Specifically, it is a con-
trastive learning framework: given two similar inputs to the
network (e.g., two segments from the same song), the loss
function is designed to ensure that the learned representa-
tions of these samples should lie closer to each other than
the representations of samples from two different songs.
CLMR also includes music-specific data augmentations
to ensure a robust representation learning framework for
MIR, for example, transposing the pitch of a segments up
or down and still instructing the network to predict a closer
distance to the original fragment than to the other audio
segments in the batch. Because mapping the representa-
tions with a projector head instead of directly using the net-
work representation results in a better representations [30],
the output layer is replaced with an identity function and a
projector head is added to the models trained with CLMR.

3. TAILED U-NET ARCHITECTURES

The architecture for representation learning we explore in
this work is based on the traditional U-Net [20]. The U-
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Net’s success on segmentation tasks has been argued to
come from its explicit extraction of features at multiple
resolutions, which allows it to respond to fine-grained fea-
tures as well as long-range dependencies in the input. In
representation learning for audio, we are interested in con-
structing encodings which similarly carry both high- and
low-frequency information. Because U-Nets were origin-
ally designed for image segmentation, however, variants
of the architecture traditionally produce an output at the
spatial resolution of the input: R

I×C where I is the in-
put length and C the number of classes given by the task.
Representation learning models, on the other hand, aim to
decouple the dimensionality of the representation from the
temporal resolution of the original input signal, to accom-
modate usage in a wide variety of downstream tasks. They
typically output a single representation: R

R with R the
size of the representation. To address this mismatch, we
propose adding a tail module to the U-Net. The tail mod-
ule serves (1) to combine enriched sequence length repres-
entation obtained at multiple resolutions in the contract-
ive and expansive path, and (2) to reduce the resolution of
these features to a single compact multi-timescale repres-
entation. See Figure 1 for an overview of our architecture.

In addition to the tail module, we introduce another im-
provement on the TUNe architectures: TUNe+. TUNe+
networks have additional connections between the expans-
ive and tail path (the pink arrows and blocks in Figure 1).
This explicit transfer of information at lower resolutions
should allow for better multi-timescale feature information
flow, further improving the obtained representations.

3.1 Contractive Path

The contractive path of the network is built from a block
consisting of a convolution, a batch normalisation layer,
and a ReLU activation function, following CLMR’s en-
coding architecture [3]. This block is repeated Ncon times
(default 4). In Figure 1, this block is indicated with purple
arrows. The output of this block is saved to combine with
the corresponding expansive block later. After each block,
max pooling is applied to extract the most prominent pat-
terns at a given resolution, represented by the red arrows
in Figure 1. The output of the max pooling is then passed
on either to the next layer in the contractive path or, after
the Ncon-th block, to the beginning of the expansive path.
Every layer in the encoder path doubles the amount of
channels. The convolution operation is performed with a
kernel size of 3 and a stride of 1, and the max pooling
operation with a kernel size of 3 and stride of 3. Further-
more, the convolution operation is applied on a padded in-
put, such that input and output to the convolution are of
equal sequence length.

3.2 Expansive Path

Whereas each layer of the contractive path reduces the sig-
nal resolution, the expansive path of the network is made
up of blocks that are paired with blocks from the contract-
ive path, each one gradually increasing the signal resol-
ution again. The expansive path block, which is repeated

Nexp times (default 4), consists of a strided transposed con-
volution, represented by the green arrows in Figure 1, with
a kernel size of 3, stride of 3, and 0 padding, to keep the
dimensionality the same as the output of the contractive
block at the same depth. The output of each strided trans-
posed convolution is concatenated with the output of its
pair from the contractive path (see the blue arrows leading
into the blue-and-white blocks in Figure 1). Next, a con-
volution followed by batch normalisation and ReLU ac-
tivation is used to combine the multi-scale features in the
concatenated outputs. The upsampling by strided trans-
posed convolution enables the network to combine lower
frequency features with the higher frequency information
obtained at higher resolutions in the contractive path. The
input±output channel ratio for the strided transposed con-
volution is 2:1, and for the convolution block is also 2:1,
because of the concatenation of the encoder block and
strided transposed convolution output.

3.3 Tail

The blocks in the tail of a TUNe model are identical to the
blocks of the contractive path, each of the Ntai blocks (de-
fault 4) doubling the number of channels until the repres-
entation size is reached. In a TUNe+ model, the tail blocks
differ from the contractive path blocks because TUNe+ tail
blocks are paired with blocks from the expansive path. As
illustrated by the pink arrows in Figure 1, each TUNe+ tail
block combines the output of the previous tail block with
the output of the expansive block at the same resolution.
The input±output channel ratio in this case is 3:2, because
the input gets 2⁄3 of the input channels from the expans-
ive path and 1⁄3 from the previous tail block. Depending
on the number of downsampling steps in the tail module,
any remaining temporal dimensions O are projected to a
single representation using average pooling, mapping from
R

O×R to RR with R the representation size. This opera-
tion is indicated by the yellow arrow in Figure 1.

The TUNe network architecture allows for flexible net-
work adjustments. When removing all tail layers the res-
ulting TUNe is equivalent to the original U-Net. If all ex-
pansive layers are removed there is no way to distinguish
contractive and tail layers, and adding six contractive or
tail layers is equivalent to CLMR. Since the output does
not have to end with the same dimensionality as the in-
put, one can add and remove contractive, expansive, or tail
layers without needing to add or remove layers along the
other paths. We leverage this compositionality to conduct
experiments with the TUNe architecture that explore rep-
resentations built up over a differing number of timescales,
in order to explore the impact of the structure of each re-
spective module on the capacity of the resulting represent-
ation to perform in downstream tasks.

4. EXPERIMENTS

To explore the validity and performance of our proposed
setup, we trained multiple TUNe architectures with vary-
ing path lengths for 1000 epochs on the MagnaTagATune
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Variant Ncon Nexp Ntai Filters Parameters (M) MTTAUC MTTAP

Vanilla TUNe 4 4 4 34 2.4 87.7 33.0

TUNe Contractive+1 5 5 4 18 2.3 88.3 33.9
TUNe Contractive+2 6 6 4 9 2.1 88.6 34.6
TUNe Contractive+3 7 7 4 4 1.7 88.0 33.5

TUNe Expansive-1 4 3 3 34 2.3 87.6 33.0
TUNe Expansive-2 4 2 2 35 2.4 87.7 33.1
TUNe Expansive-3 4 1 1 38 2.3 87.6 33.0

TUNe Tail+1 4 4 5 28 2.3 88.2 34.4
TUNe Tail+2 4 4 6 19 2.3 88.7 35.2
TUNe Tail+3 4 4 7 15 2.3 89.1 36.5
TUNe Tail+4 4 4 8 13 2.3 89.2 36.6
TUNe Tail+5 4 4 9 11 2.1 89.2 36.5

TUNe CLMR-tail 4 4 10∗ 10∗ 2.5 89.4 36.7
TUNe+ 4 4 9 11 2.2 89.2 36.6
Vanilla TUNe Small 4 4 4 11 0.4 86.8 31.9
TUNe+ Large 4 4 9 34 7.4 89.4 37.1
TUNe+ Smaller Rep 4 4 9 11 1.4 89.2 36.1

musicnn 10 000 [2] - - - ± 11.8∗∗ 90.7 38.4
TUNe Tail+5 10 000 4 4 9 11 2.1 89.5 (89.6) 37.0 (36.7)
TUNe+ 10 000 4 4 9 11 2.2 89.3 (89.8) 37.1 (37.1)
CLMR 10 000 [3] 10 0 0 ± 2.4 88.7 (89.3) 35.6 (36.0)

Table 1: TUNe variant performance on the MagnaTagATune (MTT) tag prediction task with number of parameters and
number of initial filters. The performance is measured after 1000 epochs (except where noted otherwise) with the area
under the receiver operating characteristic curve MTTAUC, and the average precision, MTTAP. The table is divided into six
sections: the Vanilla TUNe model with no layers added; the results of adding contractive layers; the results of removing
expansive layers; the results of adding tail layers; the results parameter-efficiency experiments; and the results of the best
TUNe models and the CLMR baseline after training for 10 000 epochs. In addition to the shallow probe, we trained a probe
with an extra linear layer for the longer trained models and report this score in parentheses. TUNe Tail+5 and TUNe+ at
10 000 epochs are the best-performing models overall, exceeding CLMR’s performance at 10 000 epochs and performing
only slightly worse than state-of-the-art end-to-end±trained musicnn. Multiple other variants match CLMR performance
even though only trained for 1 000 epochs.
∗ For the CLMR-tail experiment, the number of filters corresponds to the initial number of filters used for the contractive
and expansive path. For the tail, we used the same architecture as CLMR’s SampleCNN and report the number of blocks.
∗∗ Number of parameters is taken from the last reported number of parameters, musicnn [31].

audio dataset. As baseline, we compare to CLMR [3]. We
ensure a fair comparison by varying the number of chan-
nels in each TUNe architecture to obtain a total parameter
count comparable to the CLMR baseline. Next, we trained
five variants: (1) a version where the tail was fixed to
the published pre-trained CLMR model, in order to test
whether the contractive and expansive paths (the ‘U’) add
information; (2) a TUNe+ network, still restricted to have
no more parameters than CLMR, to test whether the extra
connections between the expansive path and the tail allow
for better feature information flow; (3) a filter-restricted
model, to test whether the number of filters can be a bot-
tleneck for the deeper models; (4) a large TUNe+ network
with an unrestricted number of parameters; and (5) a model
with a smaller representation dimension. Finally, we eval-
uated the out-of-domain dataset generalisability of our two
best models on three different datasets for the same prob-
ing task. 1

1 Pretrained models and source code for all experiments are available
to download at https://github.com/Marcel-Velez/TUNe

4.1 Hyperparameters and Preprocessing

The hyperparameters we used for pre-training were the
same as [3], following their setup with data augmentations.
We used an Adam optimiser [32], and He initialisation [33]
for all convolutional layers. As input, we sampled audio
files at 22 050 Hz for 59 049 samples. We also used the
same architecture for the projector head as [3]. This out-
put is then used for the contrastive learning objective. For
every experiment, we used a batch size of 96. In order to
be able to train with such a batch size, we trained every
model data-parallel (DP) on two Titan RTXs, except for
Vanilla TUNe and TUNe+ Large. To train these variants
with a batch size of 96, we used three Titan RTXs.

4.2 Exploring the TUNe Architecture

Because the number of permutations of how many con-
tractive layers are added, expansive layers are subtracted,
tail layers are added grows exponentially, we chose to in-
vestigate the influence of each of these paths separately.
Every model was trained on the audio of the MagnaTagA-
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Tune (MTT) dataset [34]. This dataset consists of 25 863
music clips of 29 seconds of audio from 5223 songs. Each
of these clips has one or more tags, making it a multi-
class classification task dataset. We use the same train-
validation-test split as is common within MIR [35±37].
After training, each model was probed on the MTT tag-
ging task using a single linear-layer probe and evaluated
using two metrics. The first metric is the receiver operat-
ing characteristic curve (MTTAUC), which is popular but
can be positively biased for imbalanced datasets [38], and
the average precision (MTTAP). We report results for each
model in Table 1.

The only constraint for these variations was to have
fewer parameters than CLMR, so as to exclude the model
being bigger being a possible reason for performing bet-
ter. The TUNe architecture follows a fixed input channel±
output channel ratio per layer, and thus in order to keep the
number of parameters smaller than CLMR, we only had to
change the number of output channels of the first block.
The remainder of the network changes in proportion. A
complete overview of the number of parameters and initial
output filters can be found in Table 1.

4.2.1 Contractive Path Depth

When varying the contractive path depth, we also added
an equal number of expansive layers, in order to keep the
upper resolution of the U and the tail the same; the tail
remained unchanged so that the final representation size
remained unchanged. Starting from the vanilla default of 4
contractive layers, adding layers increased performance up
until Ncon = 6, suggesting that the extra contractive and
expansive layers ± a deeper U ± do allow for better integ-
ration of feature information for the representation dimen-
sionality. Contractive+3 (Ncon = 7) drops slightly in per-
formance, which initially seems contradictory to the Con-
tractive+1 and +2 results. We believe this can be attributed
to the potentially exponential parameter growth of adding
layers to the contractive and thus also expansive paths: to
prevent the exponential growth and remain within our con-
straint on the maximum number of parameters, adding lay-
ers entails reducing the number of filters. TUNe Contract-
ive+3, for example, has only 4 initial filters, as compared
to 34 in Vanilla TUNe, and this may no longer be enough
to achieve good performance.

To test this hypothesis, we ran Vanilla TUNe with the
number of filters from TUNe+ (labelled Vanilla TUNe
Small in Table 1), and conversely ran TUNe+ with the
number of filters from Vanilla TUNe (labelled TUNe+
Large in Table 1). Vanilla TUNe performance dropped and
TUNe+ Large performance increased under these condi-
tions, suggesting that the number filters could indeed be
the bottleneck for Contractive+3.

4.2.2 Expansive Path Height

In order to analyze the effect of expansive path height, we
applied a similar procedure. For every expansive layer we
removed, we also removed a tail layer to keep the final rep-
resentation dimensionality unchanged. Because this modi-

fication reduced dimensionality, we were able to add ini-
tial filters in order to come closer to the dimensionality of
CLMR. Nonetheless, removing expansive layers seems to
have little influence: removing up to three layers of the
expansive path and tail leaves performance essentially un-
changed. Put differently, the extra initial filters seem to be
able to compensate for reduced integration of the higher
frequency timescale features due to a shallower U.

To see whether the U shape in fact adds information
and increases performance, we trained a TUNe model with
a tail path identical to pretrained CLMR. If the U shape
does not add information, such a model should perform
equally well or worse than baseline CLMR; if it performs
better, then there is evidence that the contractive and ex-
pansive paths are contributing signal enrichment important
for representation learning. Indeed, TUNe with a CLMR
tail performs better with a single layer probe than baseline
CLMR can even after 10 times as many training epochs
and a multi-layer probe. It seems that the contractive±
expansive path pair is a powerful performance enhancer
for time-domain music representation learning.

4.2.3 Tail Length

The model performance after adding 1 to 5 layers to the
tail path shows a steady increase per layer added until
Tail+4, after which performance seems to plateau. In gen-
eral, we should expect longer tails to improve performance,
because the model average pools the remaining sequence
length at the end of the tail path. With fewer tail layers, we
average over a longer sequence, and when averaging, de-
tailed information is replaced with an aggregation, thereby
losing possible important information. The parameter con-
straint could again be responsible for the eventual plateau,
as we see that the TUNe+ Large model from before also
performs better than either Tail+4 or Tail+5. But it is a
plateau, not a decrease: Tail+5 performs equivalently to
Tail+4, and it does so with fewer parameters and poten-
tially less loss of precision from averaging than Tail+4. We
choose Tail+5 as our best model from this block.

4.2.4 Extra Connections

The model with extra connections, TUNe+, performs com-
parably to the Tail+5 model, with only .1 higher MTTAP.
It still shows similar MTTAUC scores as CLMR 10 000
epochs trained and outperforms CLMR MTTAP -wise. To
further explore the influence of the added connections we
chose TUNe+ to be one of the two variants used for the
probing experiments (Section 4.3).

4.2.5 Smaller Representations

All of these variants showed reasonable performance for
the same representation size, with only slightly varying
numbers of parameters. To test the parameter efficiency
of TUNe architectures, we trained another variant of the
TUNe+ with the same number of initial filters, but redu-
cing the representation size from 512 to 256. The results
were impressive. Even with 44% fewer parameters and a
representation size half that of the other TUNe architec-
tures we tested, TUNe+ Smaller Rep still performs equally
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well as CLMR after 10 000 epochs. Compared to the best
TUNe architectures, it achieves comparable MTTAUC and
only marginally worse MTTAP.

4.2.6 Longer Training

In order to be conservative with computing resources, we
first trained all of the aforementioned models for 1000
epochs only and probed with only a single linear layer. As
a final comparison, we trained the two best models, TUNe
Tail+5 and TUNe+, an additional 9 000 epochs. Because
of the random data augmentations and the size of MTT,
training for more epochs results in the models ‘hearing’ an
increasing amount of natural variation in the audio, which
in turn improves performance. We evaluated these mod-
els using the same probing tasks, once with a single linear
layer and once with a two-layer probe to see how much
introducing nonlinearity could increase performance. In
Table 1, we report these additional multi-layer perform-
ance figures in brackets. The MTTAUC score does increase
with the multilayer probe, but the MTTAP, on the contrary,
decreases. Overall, however, these two 10 000-epoch mod-
els are the best performing models from our entire series
of experiments, achieving slightly lower performance than
the musically motivated end-to-end trained musicnn [2]
and outperforming CLMR 10 000 epoch results.

4.3 Probing Tasks

In order to compare the TUNe performance to state-of-the-
art models, we evaluate TUNe with probing: training a
shallow model on downstream tasks [10]. We use the same
datasets as [3] for the CLMR training.

When probing a model, we evaluate the pre-trained
model representations on a different dataset than the model
is pre-trained on. This evaluation on a different dataset is
done by training a probe, often a single linear layer or a
multi-layer perceptron with one hidden layer. This probe
takes the output representation of the main model as in-
put and outputs the desired classes or values for the task in
question. Probing is often used to test certain representa-
tion characteristics, in our case, to see how well the learned
representations from other types of datasets generalise to
music tagging.

We ran the probing experiment to see how well our
network could generalise representations when trained on
three different datasets: the medium Free Music Archive
dataset [39], the fault-filtered GTZAN dataset [40,41] con-
taining 930 songs, and the McGill Billboard dataset [42]
containing 712 songs. Next, we probed the trained models
on the MTT dataset, of which the results are displayed in
Table 2. For this probing experiment, we used a learning
rate of 3e−4, weight decay of 10−6, and an early stopping
mechanism. Early stopping occurred if the probe’s valida-
tion score did not improve for five epochs.

TUNe architectures allow for excellent out-of-dataset
representation generalisability. Even when both TUNe
Tail+5 and TUNe+ were trained on the McGill Billboard
dataset, which is more than 33 times smaller than MTT,
the models still only perform 4% worse on AUC than the

Probing Variant Training Data MTTAUC MTTAP

TUNe+ FMA 89.1 (89.4) 36.2 (36.1)
TUNe Tail +5 FMA 88.9 (89.2) 35.3 (35.9)
CLMR FMA 86.2 (86.6) 30.6 (31.2)

TUNe+ GTZAN 87.2 (87.9) 32.6 (33.9)
TUNe Tail +5 GTZAN 86.9 (87.5) 32.6 (33.0)
CLMR GTZAN 81.9 (85.4) 26.2 (29.5)

TUNe Tail +5 Billboard 84.7 (85.8) 28.6 (29.9)
TUNe+ Billboard 84.5 (85.9) 28.7 (30.5)
CLMR Billboard 82.7 (84.2) 26.9 (27.8)

Table 2: TUNe Tail +5, TUNe+ and CLMR out-of-domain
probing experiments. The table shows the probing per-
formance on MagnaTagATune of each of the three mod-
els, trained on the Free Music Archive medium (FMA),
fault-filtered GTZAN, and the McGill Billboard dataset.
In addition to the shallow probe, we trained a probe with
an extra linear layer and report this score in parentheses.
CLMR results are taken from [3].

models pre-trained on MTT. When they are trained on the
GTZAN dataset, which is about the same size as McGill
Billboard, both variants outperform CLMR regardless of
(non-MTT) training set. With pre-training on the MTT-
sized FMA dataset, the TUNe models perform almost as
well as they did in the original MTT-only experiments.

5. CONCLUSION

In this paper, we introduced TUNe network architectures,
a generalisation of a recent representation learning frame-
work called CLMR. TUNe brings the strengths of U-Nets
to representation learning. TUNe networks comprise three
sections, called the contractive, expansive, and tail paths,
which can be flexibly lengthened or shortened. We per-
formed several experiments exploring the contribution of
each of these paths and compared them against CLMR.
We evaluated TUNe’s performance in three ways. First, we
trained and evaluated variants of our model with CLMR on
MagnaTagATune (MTT), outperforming CLMR margin-
ally after training for a fraction of CLMR’s time. Second,
we evaluated the best two models with out-of-domain
probing tasks. Both TUNe architectures improved upon
the already competitive CLMR performance and showed
that TUNe architectures allow for an even better general-
isation of music representations. In the supplemental ma-
terial, we include the results of further experiments show-
ing how TUNe architectures can also achieve competit-
ive performance on other downstream tasks, even at small
model sizes. TUNe sets a new standard for parameter effi-
ciency and the ability of modern self-supervised networks
to extract salient features, and we hope that it will encour-
age MIR researchers to use self-supervised music repres-
entations more widely.
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