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ABSTRACT

We present a novel task of ªplaying level conversionº:

generating a music arrangement in a target difficulty level,

given another arrangement of the same musical piece in a

different level. For this task, we create a parallel dataset

of piano arrangements in two strictly well-defined play-

ing levels, annotated at individual phrase resolution, taken

from the song catalog of a piano learning app. In a series

of experiments, we train models that successfully modify

the playing level while preserving the musical ‘essence’.

We further show, via an ablation study, the contributions of

specific data representation and augmentation techniques

to the model’s performance.

In order to evaluate the performance of our models, we

conduct a human evaluation study with expert musicians.

The evaluation shows that our best model creates arrange-

ments that are almost as good as ground truth examples.

Additionally, we propose MuTE, an automated evaluation

metric for music translation tasks, and show that it corre-

lates with human ratings. Demos are available online. 1

1. INTRODUCTION

In this paper we tackle the task of generating piano ar-

rangements for specific playing difficulty levels, condi-

tioned on piano arrangements of the same music in a dif-

ferent playing level. The purpose driving this work is to

significantly accelerate our rate of content creation for our

piano learning app, Simply Piano. 2 In Simply Piano, we

have a library of songs for beginner piano learners to prac-

tice. Our library contains arrangements in various playing

levels, to match the skills acquired by our learners over

their piano journey. Arrangements are prepared by expert

musicians based on a pre-defined set of piano pedagogy

guidelines. These guidelines are strict and are designed to

maintain a uniform playing method and skill level in or-

der to help learners familiarize themselves with the piano

in a systematic way. Our aim is to be able to automati-

cally generate multiple arrangements, spanning our range

1 https://www.matangover.com/music-translation/
2 https://www.hellosimply.com/simply-piano
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of playing levels, from a single human-generated arrange-

ment at a given level.

Our contributions are two-fold. First, we introduce the

task of playing level conversion. We share our dataset

preparation method and discuss various experiments re-

garding choice of music representation and data augmenta-

tion methods. Second, we develop and share an automated

evaluation metric that can be used for music translation or

generation tasks where a reference is available. This auto-

mated evaluation metric provides a fast, low-effort estima-

tion of human ratings.

2. RELATED WORK

The symbolic music generation field has advanced consid-

erably in recent years. Specifically, the community has

been fast in adopting and adapting capable sequence-to-

sequence models, such as Transformer [1], which were

originally developed for natural language processing tasks

such as machine translation.

Some works focus on unconditional music generation,

that is, generating music from scratch [2±4]. Many recent

ones are based on Transformer and its variants [2, 4±10].

Other works tackle music generation conditioned on spe-

cific inputs: emotions [11], structure [12], theme [13], or

musical attributes such as note density [14]. In [2, 15], an

accompaniment is generated conditioned on a melody or

chord progression.

While most papers work in the performance domain

(training on MIDI performances), some work in the score

domain as we do. Some use custom tokenized score repre-

sentations [16,17] while others operate on text-based nota-

tion formats like ABC [18, 19].

Works that are most closely related to this paper are

those concerning symbolic music style transfer: generat-

ing a musical piece in a target style given the same piece in

another style. Musical ‘style’ can refer to various attributes

[20]: symbolic abstractions (score), expressive timing and

dynamics (performance), and acoustic details (sound). Of

relevance to us is only the first of the three.

Due to the lack of datasets with parallel examples in

different domains, most works use unsupervised methods

for learning style features. In [9], a Transformer with an

encoder bottleneck is used to learn a global style repre-

sentation. This style representation is then combined with

melody representations and fed into a decoder to generate

the same melody in a different style. [21] also learns a style
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representation in an unsupervised manner using an autoen-

coder bottleneck together with a style classifier. [22] uses

inductive biases in the encoder to disentangle chord and

texture factors. In [23, 24], CycleGAN is used to transfer

music between genres. Difficulty level classifiers such as

[25±27] could also be used for generating weakly-labeled

non-parallel training data for level translation.

In [28], style translation is performed with supervised

learning using synthetic parallel data. To our knowledge,

our work is the first to perform supervised domain transfer

for symbolic music with real-world parallel data.

3. DATA PREPARATION AND REPRESENTATION

Our proprietary dataset of piano arrangements is taken

from the song library of Simply Piano. For each song in

the library, expert musicians have created arrangements in

up to three levels: Essentials (easy), Intermediate, and Pre-

Advanced (more difficult but still aimed at learners). Strict

arrangement guidelines have been developed by our musi-

cians to create an approachable and engaging learning path

for users. We use a pedagogy system based on hand posi-

tions, where the aim is to initially minimize the player’s

need to shift their hands, and then gradually introduce new

hand positions and musical concepts as users progress.

Figure 1 illustrates the different difficulty levels. In this

paper, we focus on two levels only: Essentials and Interme-

diate. Specifically, we tackle the task of translating from

Intermediate to Essentials. The main difference between

the two levels are in hand positions, rhythmic complexity,

and harmonic complexity (amount of simultaneous notes).

In Essentials, we only allow a small number of positions

and keep position shifts to a minimum. We keep the num-

ber of chords small and emphasize the melody. We also

limit the range of allowed pitches and rhythms: in Essen-

tials we generally do not use tied notes or sixteenth notes.

In both Essentials and Intermediate, we do not use tuplets

and multiple indepdendent voices on the same staff.

When approaching the task of song level translation,

initial experiments showed that translating entire songs at

once is a difficult task: models we trained did not learn a

meaningful mapping between levels. The reason is prob-

ably that song structure can vary greatly between levels in

our dataset. That is, some levels of the same song omit

certain phrases, while other levels include extra phrases, or

change the phrase order. It seems that for full-song map-

ping, a larger (or cleaner) dataset is needed.

For this reason, we focus our work on translating indi-

vidual musical phrases. Fortunately, we could make use

of existing annotations for this purpose. Each of our ar-

rangements is divided by musicians into phrases, based on

the song structure. For example, a song could have the

following phrases: Intro, Verse 1, Verse 2, Chorus, Verse

1, Ending. Phrase names stay consistent between different

levels of the same song, allowing for minor variations such

as ‘Phrase 1’ ⇔ ‘Phrase 1a’.

We use the phrase boundary annotations to derive a

dataset of parallel phrases from our library of arrange-

ments. This is illustrated in Figure 2. We start from two
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Figure 1. Comparison of three difficulty levels. From bot-

tom to top: Pre-Advanced is fully harmonized with rhyth-

mic bass in the left hand and chords in the right hand. Inter-

mediate is transposed to the easier key of C major and con-

tains a simplified accompaniment. The right hand chords

are omitted, and the melody is split differently between the

hands to accomodate for less hand shifts. In Essentials, the

accompaniment is reduced to a minimum, and a tied note

in the melody is removed to simplify the rhythm.

parallel arrangements of the same song in the source and

target levels. We discard arrangements where the target

and source have different time signatures. We then trans-

pose the source arrangement to the same key as the target

arrangement (see details below).

Following that, we match phrases from the source and

target levels using heuristics that take into account phrase

order, names, and durations. These heuristics were crucial

for obtaining a dataset of sufficient size. To account for

added or removed phrases, we compute a diff between the

source and target phrase names. Phrases with exact name

(and order) matches are then considered to be parallel if

their duration difference is 2 measures or less. For phrases

with no exact name matches, we diff the phrase durations

instead, and consider phrases as parallel if their durations

match and their names are sufficiently similar.

In some songs, different levels were written in differ-

ent keys (e.g., Essentials in C major and Intermediate in D

major), to fit the arrangement to the desired playing level.

For our task, it was important that source and target phrases

maintain the same key, so that the model could learn a con-

sistent mapping. Since we didn’t have key annotations for

the dataset, we implemented a heuristic method for trans-

position estimation.

We initially tried existing methods for key estimation

[29] for each of the phrases, however these weren’t accu-

rate enough. Since we only need to estimate the transposi-

tion (and not the actual key), we came up with a dedicated

heuristic: convert each of the arrangements (source s and

target t) into a ªpitch-class piano-rollº, a boolean matrix

(Ps and Pt) with time and pitch-class dimensions, in which

1 signifies the given pitch-class is active at the given time.
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Figure 2. Data preparation: we start with two arrange-

ments of the same song in different levels, transpose them

to the same key, and extract matching phrase pairs.

We then compute the pitch-class overlap (
∑

Ps ∩ Pt ) be-

tween the piano-rolls for each possible transposition (out

of 12 possibilities) and take the one that gives the maxi-

mum overlap. We use this value to transpose the source

level’s phrases to match the target level’s key.

While the transposition might slightly affect the source

phrases’ difficulty, the target’s difficulty is kept intact. We

found that including these examples improves the gener-

ated results, since it allows us to increase the dataset size

considerably.

3.1 Music Representations

Sequence-to-sequence models such as Transformer oper-

ate on a stream of tokens. In order to use these models we

must represent music as a sequence, even if it is polyphonic

or consists of multiple tracks. Since symbolic music is

multi-dimensional in nature, various ways to turn music

into a token sequence have been proposed. MidiTok [30]

gives a good summary of various representations.

It is crucial to choose a representation that fits the given

task. We experimented with three representations for piano

music: MIDI-like, Notes, and Notes+Hands. The MIDI-

like representation uses note on and note off tokens, along

with time shift tokens to signify the passing of time [2,31].

MIDI-like representations are commonly used, perhaps be-

cause it is easy to derive them directly from MIDI files. For

our use case, the MIDI-like representation has two limita-

tions: it forces the model to meticulously track active notes

in order to later output corresponding note off tokens (po-

tentially leading to syntax errors), and it does not encode

the metrical structure of music, potentially leading to com-

pound alignment errors if a single time-shift is wrong.

To counter these problems we employ the Notes repre-

sentation, which uses three tokens for each note: offset,

pitch, and duration. The offset token signifies the note’s

time offset from the beginning of the measure. A ‘bar’ to-

ken is output at the beginning of each measure. This is

similar to REMI [6] (but without velocity tokens), in that

it (partially) encodes the metrical structure of music.

Since our output is sheet music, we must output two

separate staves for the right and left hands. Since the

MIDI-like and Notes representations do not encode track

information, we use a heuristic by which all notes on or

above middle C are assigned to the right hand, and any note

lower than middle C is given to the left hand. Chords (notes

with identical onset and offset times) are always grouped

to one hand. This heuristic generally matches our dataset’s

specific characteristics, but is quite coarse and leads to

hand assignment errors.

To solve this, we test an additional representation,

Notes+Hands, which is identical to the Notes representa-

tion but adds a ‘hand’ token to each note. As stated in [15],

such a representation emphasizes the harmonic (‘vertical’)

aspect of music. In the case of piano music, sorting notes

by time (and only then by track) emphasizes the overall co-

herence of the two piano hands over the melodic coherence

of each hand separately.

3.2 Data Augmentation

Since our dataset is small, even small models quickly over-

fit it, limiting our ability to scale model size, consequently

limiting the amount of information the model can learn.

Previous work has shown that data augmentation can turn

an overfitting problem into an underfitting problem, allow-

ing us to iteratively increase model size [32]. We followed

this protocol by gradually adding data augmentation meth-

ods and increasing model size to improve the final results.

To match our translation task, we needed augmentations

that meaningfully alter both source and target phrases,

without corrupting the relationship between them. We im-

plemented the following augmentation methods: adding

empty measures at random locations; randomly cutting the

beginning or end of phrases; removing some measures ran-

domly; and rhythm augmentation (doubling the duration of

each note) in some measures.

We purposefully do not include transposition in the list

of augmentations, even though it is commonly used in

other works. As described above, the arrangement style

in our dataset is not transposition-invariant: many features

depend on absolute pitch such as hand positions, fingering,

key signatures, range limits and hand allocation.

We release our data augmentation code, 3 built on top of

the muspy library [33]. We believe that these augmentation

methods could be useful for other symbolic music genera-

tion tasks, especially when working with small datasets.

4. MODEL

We use a classic Transformer model [1], specifically the

BART [34] encoder-decoder implementation from the hug-

3 https://github.com/matangover/muspy-augment
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gingface transformers library [35]. The specifics of

this implementation (compared to classic Transformer) are

that it uses learned position embeddings (we saw slightly

better results with these compared to sinusoidal embed-

dings) and GeLU rather than ReLU as the activation func-

tion (this did not seem to make a difference in our exper-

iments). As in the original Transformer, we use a shared

weight matrix for the encoder, decoder, and output embed-

ding layers.

We experimented with various model configurations:

model dimension, number of layers, number of attention

heads. We found that larger models (dmodel > 64) quickly

overfit our training dataset and do not achieve good per-

formance on the validation dataset. The optimal model

dimension was found to be 32±64 (with the feed-forward

layer dimension always set to 4 · dmodel as in the original

Transformer). The optimal number of layers was 3 to 5, de-

pending on the amount of data augmentation. As discussed

in Section 3.2, use of more data augmentation enables us

to increase model size without overfitting the data.

We trained using the Adam optimizer [36] with β1 =

0.9, β2 = 0.999, ϵ = 10
−8, a learning rate of 0.003 and

1,000 warmup steps.

Our dataset contains a total of 5,543 phrase pairs taken

from 1,191 songs. We split the data into train (5,241

phrases), validation (244 phrases), and test (58 phrases)

splits. We split phrases by song (never including phrases

from the same song in different splits) to avoid data leakage

between splits. The validation set was used to stop model

training after validation loss stopped decreasing. The test

set was used for final evaluation (see Section 7).

During prediction, the model outputs a probability dis-

tribution for the next output token given all the input tokens

and the previous output tokens. However, if at each de-

coding step we simply pick the most likely output (greedy

decoding), we might end up with a non-optimal sequence

[37]. We experimented with two decoding methods: beam

search and sampling. We found that sampling produces

more diverse results (due to its random nature) but beam

search produces overall superior results for our task.

5. INTERFACE FOR INTERACTIVE USE

While our model can be used unattended to create arrange-

ments in the target level, in practice we found that it is ben-

eficial to keep musicians ªin the loopº by allowing them to

use the model interactively rather than in a ‘fire and forget’

fashion. We created an interface in which a musician can

load a source arrangement, translate it phrase-by-phrase to

the target level, and review the results side by side.

Furthermore, the auto-regressive nature of the model

enables interesting use cases: a musician could manually

modify some notes and ask the model to re-generate the

subsequent music accordingly. Additionally, if we use ran-

dom sampling decoding (see Section 4) we could gener-

ate multiple alternatives for each measure using different

random seeds and offer the musician a choice. We could

also offer knobs that control sampling parameters such as

temperature (for controlling the output diversity vs. qual-

ity trade-off) or top-k/top-p thresholds (ways of eliminat-

ing unlikely outputs to increase the probability of choosing

more likely predictions).

In this way, our model becomes part of the creative pro-

cess, rather than replacing it. It becomes a tool that assists

musicians in their job.

6. EVALUATION METRIC

Evaluation is often difficult for music generation due to the

absence of pre-defined criteria and because output quality

is subjective [38]. Standard practices are reporting per-

plexity (the likelihood of the ground truth test data given

the trained model) and conducting human evaluation stud-

ies [2,4,9,15,31]. Some works also calculate scores based

on distributions of certain musical features, either compar-

ing generated data to ground truth distributions [9, 15, 39]

or using self-similarity in the generated data itself [3].

In machine translation (of text), evaluation metrics such

as the popular BLEU metric [40] have been developed

to measure the correspondence between generated transla-

tions and ground truth references. BLEU has been shown

to correlate with human ratings. We are not aware of a

similar metric for music generation tasks. To this end, we

propose MuTE (Music Translation Evaluation), an auto-

mated evaluation metric for symbolic music translation or

generation tasks where a reference is available.

MuTE is a score between 0 and 1. Like BLEU

and similar metrics, it is designed to reflect the corre-

spondence between a machine-generated example and a

human-generated reference. BLEU measures word n-gram

precision (the portion of correct predictions out of all pre-

dictions) and deliberately omits recall because of the de-

sire to allow for multiple reference translations of the same

phrase. In our case, we only have a single reference for

each phrase, hence we can easily use both precision and

recall, and combine them using the harmonic mean to give

the commonly used F1 score [41].

MuTE works by treating the model as a multi-label clas-

sifier that predicts at every time step what pitches are ac-

tive. To compute the MuTE score, we convert the reference

and target music to piano-rolls (where the time unit is set to

a certain small metrical unit ± in our case, a sixteenth note),

and calculate the F1 score over pitches. We do not com-

pute a global score for the entire piece, since that would

mean disregarding note order and timing. Instead, we treat

each time-slice of the piano-rolls as an individual sample,

compute an F1 score for each time-slice, and average those

scores. For time-slices where both the reference and target

are silent (and hence precision and recall calculation would

result in division by zero), we set the score to 1.

We also need to account for cases in which the target

differs from the reference in its duration ± if, for example,

the model ‘skips’ some measures of the input. We design a

procedure that is intended to match the way a human would

judge such cases, by detecting skipped or added measures

and adjusting the comparison accordingly.

For this, we precede the scoring step with a measure-

level alignment procedure. We perform the alignment us-
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ing dynamic time warping [42]. The feature vectors for the

alignment are each measure’s pitch-class piano-roll (see

Section 3). We found that using pitch-class piano-rolls

gives a more robust alignment compared to regular piano-

rolls. The distance between each two feature vectors is

computed using the Hamming distance (the proportion of

elements that disagree between the two vectors). We use

the computed alignment path to align the reference and tar-

get’s (regular) piano-rolls. The aligned piano-rolls are used

to compute the F1 score, while masking out the misaligned

segments to assign them a score of 0, thus penalizing the

model for any alignment errors.

One additional element of MuTE that pertains to our use

case is the desire to reflect the separation between the two

hands: we would like to penalize wrong hand allocation

of notes. For this reason, we use ‘track-specific’ MuTE:

we calculate a separate MuTE score for each hand and av-

erage them to get the final score. We found the mean-of-

hands metric to correlate better with human ratings than the

vanilla MuTE score calculated over both tracks combined.

We note that the measure-based alignment method is

specifically suitable for our use case because we use a

measure-based representation for our models, and we no-

ticed that models sometimes omit or repeat some measures.

For other use cases, the alignment could be computed over

individual time steps or beats, or skipped altogether.

Figure 3 illustrates the calculation of the MuTE score.

In Section 7 below, we show that the MuTE score cor-

relates with human ratings. While simple and effective,

the MuTE score has caveats. First, it does not differenti-

ate between sustained and repeated notes. For example, a

half note is considered identical to two consecutive quar-

ter notes of the same pitch. Second, it does not allow for

minor variations that might be acceptable to a human rater,

such as octave changes and rhythmic variations. Third, the

hand-specific version does not account for notes that are

missing in one hand but present in the other hand. We plan

to address these shortcomings in a future version.

We release a Python library for computing the MuTE

score 4 and we welcome researchers to adopt it or adapt it

for their use cases as needed.

7. RESULTS

We report the results of our experiments on converting In-

termediate level arrangements to Essentials, and compare

our models’ outputs to matching reference arrangements

created by expert musicians. For evaluation we conduct a

human evaluation study, calculate MuTE scores (see Sec-

tion 6) and report the correlation between human ratings

and MuTE scores. Furthermore, we run several ablation

studies to study the effect of our data augmentation tech-

niques and the choice of music representation.

7.1 Human Evaluation Study

For this study we selected 11 songs from the test set (none

of these songs’ phrases appeared at training). From each

4 https://github.com/matangover/mute
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Figure 3. Illustration of the MuTE score calculation. The

target score has an added measure (marked in red) with

regard to the reference. The misaligned region is masked

(in white) on the piano-rolls. The per-hand sample-wise

pitch F1 score is calculated from the aligned piano-rolls,

and scores are averaged to get the final MuTE score.
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Figure 4. Scores for each model version, as rated by hu-

man experts. Our best model (Augment) achieves ratings

almost as high as human generated examples (Human).

song we extracted a single phrase and translated it from In-

termediate level to Essentials, using 4 variants of the model

that differ in representation and augmentation. We also ex-

tracted the matching phrases from the ground truth Essen-

tials arrangement for comparison.

The first 3 model variants differ only in the music rep-

resentation they use: MIDI-like, Notes, and Notes+Hands

(see details in Section 3.1). The fourth model variant uses

the Notes+Hands representation and adds data augmenta-

tion (see Section 3.2) with randomly varying parameters to

about half of the training examples.

This resulted in 55 examples, which were then rated

by 6 expert musicians who are familiar with the Essentials

level guidelines. The examples were randomly ordered and

all identifiers of model version and ground truth were re-

moved. Musicians were told all 5 examples are different

model versions and were not aware of the details of the ver-
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a)
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Notes

b)
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Notes+Hands
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Figure 5. Difference in average rating, per criterion, be-

tween model variants. a) Moving from MIDI to Notes im-

proved across all criteria, mostly Level. b) Adding hand

information improved hand assignment. c) Augmentation

improved preserving musical content. d) No particular cri-

terion stands out in the difference from our best model to

the human-generated ground truth.
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Figure 6. Evaluation of our model variants on the test set

using the MuTE score.

sions or of the presence of human-generated ground truth.

Ratings between 1±5 were collected in 5 criteria:

1. Meeting Essentials level guidelines (Level)

2. Preserving musical content (Music)

3. Correctly assigning hands according to allowed

hand positions (Hands)

4. Avoiding syntactic style errors such as crossover

voices (Syntax)

5. Maintaining structure: avoiding missing or extra

bars (Alignment)

The maximum possible total score is 25. Figure 4 shows

the distributions of scores for each model variant and for

the ground truth. These results show that the changes be-

tween model variants improved overall output quality. The

best model (Augment) achieves ratings almost as high as

the ground truth (Human).

In Figure 5 we show the gains in each criterion from

the changes in each model variant. Some differences are

easily explainable, for example, adding hand information

improved the correct assignment of hands. Interestingly,
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Figure 7. A scatter-plot showing the relationship between

human ratings and MuTE scores. The black line shows a

linear regression model fit and the shaded area shows the

95% confidence interval for the regression estimate.

the difference between our best model to the ground truth

cannot be attributed to any specific criterion. We left out

the Alignment criterion from the figure, as ratings under 5

were very rare. The few ratings below 5 were given almost

only to the MIDI model variant, which is more prone to

alignment errors due to the lack of bar tokens.

7.2 Automated evaluation

We calculate MuTE scores (see Section 6) for the entire

test set (58 phrases from 12 songs). The results are shown

in Figure 6, and confirm the human evaluation results. Ad-

ditionally, for the 55 examples rated by human musicians,

we compare the MuTE scores to the human ratings (the

MuTE score of the ground truth compared to itself is al-

ways 1). As shown in Figure 7, we find that MuTE scores

are correlated with human ratings with a Pearson correla-

tion coefficient of 0.56 (p = 4 · 10
−29). While the correla-

tion is not perfect, it shows that MuTE can be used as an es-

timator for human ratings. Furthermore, MuTE correlates

better with the total human rating than with any of the in-

dividual criteria’s ratings: the correlation coefficients with

the indvidiual criteria are 0.27 (Alignment), 0.37 (Hands),

0.47 (Level), 0.37 (Music), and 0.29 (Syntax). The simi-

larity of figures 6 and 4 further shows that MuTE scores

can be used to rank models with similar results to human

rankings, while being cheaper and faster to compute.

8. CONCLUSION

We presented the task of playing level conversion: con-

verting piano arrangements from one difficulty level to an-

other. We ran several experiments focused on simplifying

arrangements to an easier level, and showed the impor-

tance of data representation and augmentation. Our best

model creates arrangements that achieve human ratings al-

most as high as reference arrangements composed by ex-

pert musicians. We designed the MuTE evaluation metric

and showed that it correlates with human ratings. For the

benefit of the community, we share our data augmentation

and evaluation code.
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