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S1 Probability distribution estimation of Ar and Br

We have shown that with the model described in equation(3), it not possible to calculate

Ar, Br at the trial level. But we were able to calculate first and second order moments.

Here, in this section we present estimates of higher order moments for Ar and Br.

Ar, Br higher order moment estimates: Substituting Ar from equation(14) into

(15), we have

Brsin(φr − α) = Rrcos(α)− Irsin(α). (S1.1)

Raising the equation S1.1 to the jth power, we have

Bj
rsin

j(φr − α) = (Rrcos(α)− Irsin(α))j. (S1.2)

Since φr ranges from −π to π, 〈sinj(φr − α)〉 = 0, 2j
jCj/2

for j is odd, even respectively.

Averaging S1.2 for j is even gives

〈Bj
r〉 =

2j

jCj/2
〈(Rrcos(α)− Irsin(α))j〉. (S1.3)

The above equation gives us even moments for Br, for odd moments, we separate the

trials for which Rrcos(α)− Irsin(α) > 0. Refering to equation S1.2, this means that the

left-hand-side should also be greater positive. Which translates to sinj(φr − α) being

positive. Therefore, 〈sinj(φr − αr)〉 becomes 1
2j−1π

∑j
k=0

(−1)(j−k)jCk

j−2k
and jth odd moment

for Br can be written as
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〈Bj
r〉 =

2j−1π∑j
k=0

(−1)(j−k)jCk

j−2k

〈(Rrcos(α)−Irsin(α))j〉 ∀ r where (Rrcos(α)−Irsin(α)) > 0.

(S1.4)

Equations (34) and (35) together gives us the estimates of odd and even moments for

Br. To estimate the moments of Ar, we raise equation (14) to nth power, which using

binomial expansion can be written as∑
j

nCj(Arsin(α))n−j(Brsin(φr))
j = Rn

r (S1.5)

Taking trial average of the above equation, and considering 〈sinj(φr)〉 = 0 (when j is

odd), we have
n∑

j=0,even

nCj〈(Arsin(α))n−j〉〈(Brsin(φr))
j〉 = 〈Rn

r 〉. (S1.6)

Substituting for the moments of Br, we have

n∑
j=0,even

nCj〈An−jr 〉sin(α)n−j〈(Rrcos(α− Irsin(α)))j〉 = 〈Rn
r 〉. (S1.7)

The above equation relate the Ar moments with the averages of the observed Rr fourier

coefficients. Equation S1.7 can be used to calculate Ar moments. But we don’t need to

explicitly calculate Ar moments to fit to a probability distribution. Equation S1.7 can

be used directly to fit probablity distribution fuctions.

Estimating the emperical PL and NPL probability distribution In theory, the

moments can be mapped to the probability density function of a random variable. But

the proposed higher order moments are estimates and not the true moments of underlying

random variable and have error in their estimation. Therefore, inverting the moments

to get the discrete probability distribution gives errornous results. Here, we choose to

fit the estimated moments with moments generated from gaussian, gamma, exponential

distribution. Fitting the various probability distributions we can select the distribution,

which best fits the estimated Ar, Br moments, thereby best represent the underlying

probability disrbution. We apply the above developed analysis to audio steady-state

response EEG data. We fitted three different probability distribution functions (PDF),

i.e., gaussian, gamma, and exponential distribution and calculated the fit error in each

case. PDF was fitted for phase-locked and non-phase-locked activity at 40 Hz for both pre-

stimulus and stimulus (audio stimulus) conditions.Table S1 shows the result for different

PDF fits. We can clearly see that gamma PDF gave minimum fitting error for all cases

except for PL amplitude in pre-stimulus condition. We don’t expect phase-locked activity
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Gaussian PDF Gamma PDF Exponential PDF
(Mean,Deviation) (shape and scale parameter) (rate paramter)

Pre-stimulus Ar 1.6x10−11, 1.7x10−16 5.5x10−6, 2.4x10−6 16384
Error 0.1 297.3 0.1

Pre-stimulus Br 0.39 0.63, 3.2, 0.2 2.0
Error 0.0.39 0.032 0.350

Audio-stimulus Ar 6.72x10−2, 6.80x10−16 100, 6.72x10−6 15.8
Error 139.5 139.5 144.5

Audio-stimulus Br 0.57, 0.97 2.47, 0.35 3.12
Error 0.11 0.05 0.55

Table S1: Estimated paramters and error to the fit for different probability density
functions, for ASSR data (calculated for 40Hz at PO7 electrode).

during pre-stimuls condition, which is confirmed by near zero mean for both gamma and

gaussian distribution and very large rate parameter for exponential distribution. So, we

conclude that both Ar, Br follows gamma distribution in experimental EEG data.

S2 Trial varying phase-locked activity (zitters in α)

It has been shown in numerous studies that the ERP i.e., phase-locked activity is not

exactly time-locked but has delay zitters. This trial varying time zitters in ERP cor-

responds to time latencies in the ERP components e.g. latencies in P300. The time

latencies in the ERP maps to the phase zitters in frequency domain i.e., the phase α of

the PL activity is not exactly constant but has some variance across trials. Therefore

here we consider α to be trial varing. So, our model equation of sum of phase-locked and

non-phase-locked ativity is written as

Sr(t) = Arsin(ω0t+ αr) +Brsin(ω0t+ φr). (S2.8)

In fourier domain above equation transform to

Arcos(αr) +Brcos(φr) =Ir (S2.9)

Arsin(αr) +Brsin(φr) =Rr. (S2.10)

System of equations S2.9 and S2.10 forms an underdetermined system. So, we assume αr

to follow some distribution. Here, for the sake of simplistic analytic calculations we choose

αr to be distributed unifromly around a mean (µ) and have deviation θ. Assumption,

probability distribution function for αr:

p(αr) =
1

2θ
∀αr ∈ [µ− θ, µ+ θ]. (S2.11)
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Averaging equations S2.9 and S2.10 across trials, under the above assumption, we have

〈Ar〉
sin(θ)

θ
sin(µ) =〈Ir〉 (S2.12)

〈Ar〉
sin(θ)

θ
cos(µ) =〈Rr〉. (S2.13)

Solving for µ, we have

µ = tan−1〈Rr〉/〈Ir〉. (S2.14)

And for Ar, θ we have

〈Ar〉
sin(θ)

θ
=
〈Rr〉
sin(µ)

. (S2.15)

Multiplying equation S2.10 and S2.9 and averaging, we get

〈A2
r〉
sin(2θ)

2θ
=

2〈RrIr〉
sin(2µ)

. (S2.16)

Similarly evaluating average of (3RrI
2
r −R3

r) with equation S2.10 and S2.9, we get

〈A3
r〉
sin(3θ)

3θ
=
〈3RrI

2
r −R3

r〉
sin(3µ)

. (S2.17)

We have shown in the last section that Ar and Br occurs as gamma distributed in the

EEG data. A gamma distribution is characterized by two parameters, shape parameter

k and scale paramter Θ, with probability distribution function given by euation S2.18.

p(Ar) =
1

Γ(k)Θk
Ak−1
r e−Ar/Θ. (S2.18)

The first three moments of gamma distribution are given by Θk, Θ2k(k+1), Θ3k(k+1)(k+

2). Assuming Ar is gamma distributed and substituting for Ar moments in equations

S2.15-S2.17, we have

Θk
sin(θ)

θ
=
〈Rr〉
sin(µ)

(S2.19)

Θ2k(k + 1)
sin(2θ)

2θ
=

2〈RrIr〉
sin(2µ)

(S2.20)

Θ3k(k + 1)(k + 2)
sin(3θ)

3θ
=
〈3RrI

2
r −R3

r〉
sin(3µ)

. (S2.21)

Equations S2.19,S2.20,S2.21 can be solved for Ar distribution parameters i.e.,Θ, k and θ

the deviation in α. Next, assuming Br also follows gamma distribution, we can compute

the distribution parameters by equating the distribution moments with the calculated

moments. The second and fourth moment for Br can be calculated as
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〈B2
r 〉 =〈R2

r + I2
r 〉 − 〈A2

r〉 (S2.22)

〈B4
r 〉 =〈(R2

r + I2
r )2〉 − 〈A4

r〉 − 4〈A2
r〉〈B2

r 〉. (S2.23)

We can use these estimates to calculate probability distribution paramters for Br.

S3 Derivation of phase-locked value from Concur-

rent phaser model

In this section, we calculate the PLV given that the signal takes the form given in equation

(3). The signal for trial r can be represented as

Sr(t) = Rrcos(ωt) + Irsin(ωt) (S3.24)

where, Rr = Arsin(α)+Brsin(φr) and Ir = Arcos(α)+Brcos(φr). The hilbert transform

of the above signal is given by

H{Sr(t)} = Rrsin(ωt)− Ircos(ωt). (S3.25)

The analytic signal is given by Sr(t) + iH{Sr(t)}. From this, the instantaneous phase

can be written as

θr(t) = tan−1Rrsin(ωt)− Ircos(ωt)
Rrcos(ωt) + Irsin(ωt)

. (S3.26)

PLV is defined as

PLV (t) =

∣∣∣∣∑
r

eiθr(t)

∣∣∣∣ (S3.27)

For instantaneous phase given in S3.26, plv can be written as

PLV (t) = |a+ ib| =
√
a2 + b2 (S3.28)

where

a = 1/N
∑
r

cos(θr(t)) = 1/N
∑
r

Rrcos(ωt) + Irsin(ωt)√
R2
r + I2

r

, (S3.29)

b = 1/N
∑
r

sin(θr(t)) = 1/N
∑
r

Rrsin(ωt)− Ircos(ωt)√
R2
r + I2

r

. (S3.30)
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We can further write ′a′ as

a = cos(ωt)
∑

R + sin(ωt)
∑

I (S3.31)

b = sin(ωt)
∑

R− cos(ωt)
∑

I. (S3.32)

where,
∑
R = 1/N

∑
Rr/

√
R2
r + I2

r and
∑
I = 1/N

∑
Ir/
√
R2
r + I2

r .

To solve for
∑
R and

∑
I, putting back Rr and Ir in terms of Ar and Br gives,

∑
R = 1/N

∑
r

Arsinα +Brsinφr√
A2
r +B2

r + ArBrcos(φr − α)
, (S3.33)

= 1/N
∑
r

(
(Ar/Br)sinα√

1 + (Ar/Br)2 + 2(Ar/Br)cos(φr − α)
+

sinφr√
1 + (Ar/Br)2 + 2(Ar/Br)cos(φr − α)

)
.

(S3.34)

Taking the denominator to numerator and using bionomial expansion and consider the

ratio Ar/Br to be small (observed emperically Table S1) and keeping first oder and

neglecting higher order terms of Ar/Br.
∑
R approximates to,∑

R ≈ 1/N
∑
r

(Ar/Br)sinα(1− (Ar/Brcosφr)) + sinφr(1− (Ar/Brcosφr)) (S3.35)

As 1/N
∑

r cosφr and 1/N
∑

r sinφr = 0,
∑
R is evaluated to be

∑
R ≈

〈
Ar
Br

〉
sinα. (S3.36)

(S3.37)

Similiarly
∑
I is evaluated to be

∑
I ≈

〈
Ar
Br

〉
cosα− 1/2

〈
Ar
Br

〉
. (S3.38)

Putting above values back in equation (S3.31), (S3.32) and substituting for a, b in equa-

tion(S3.28), gives

PLV ≈
〈
Ar
Br

〉√
5/4− cosα. (S3.39)

Though above equation gives a simple expression for PLV from concurrent-phaser model.

But the calculation of
〈
Ar

Br

〉
is not straight forward. Following steps shows the steps and
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assumption to calculate
〈
Ar

Br

〉
. Since Ar and Br are independent,〈

Ar
Br

〉
=
〈
Ar
〉〈 1

Br

〉
. (S3.40)

The 〈Ar〉 has been calculated is section(2.3.2). Estimating
〈

1
Br

〉
needs assumption re-

garding the probability distribution of Br. It has been in section (5.1) that Br folllows a

gamma distribution in the emperical data. Under this assumption,
〈

1
Br

〉
can be calculated

as 〈
1

Br

〉
=

(V ar(Br))
4

〈Br〉4(2〈Br〉2 − 〈B2
r 〉)

. (S3.41)

The above equation represents
〈

1
Br

〉
in terms of known estimates presented in section(2.3.2).

S4 Phase-locked nature of ASSR

The CPM estimates for PL and NPL power for ASSR experiment shows that only the

PL power increase during stimulus presentation whereas NPL power remains at the pre-

stimulus levels, as can be seen in the figure (S4).

(A) (B)

Figure S4: ASSR (A) PL and (B) NPL power relative to baseline PL, NPL power
calculated via CPM method. (A) shows large increase (80 folds) in PL power for ASSR
whereas (B) NPL power remains at baseline level.
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S5 Constant phase-α estimate

Taking trial average on both sides of equations (14) and (15) and assuming that Br and

φr are independent of each other gives

〈Ar〉cos(α) + 〈Br〉〈cos(φr〉 =〈Ir〉
〈Ar〉sin(α) + 〈Br〉〈sin(φr〉 =〈Rr〉. (S5.42)

Since φr is expected to be uniformly distributed from −π to π, 〈cos(φr)〉, 〈sin(φr)〉 can

be approximated to be zeros. This gives

〈Ar〉cos(α) =〈Ir〉 (S5.43)

〈Ar〉sin(α) =〈Rr〉. (S5.44)

Dividing equations (S5.43) by (S5.44) gives

tan(α) =〈Rr〉/〈Ir〉
α =tan−1(〈Rr〉/〈Ir〉). (S5.45)

S6 The power operation

Here we define Power{.} as an operation that we used in equation (5). Power{.} is

energy per unit time of the signal that it is operated on. It is given by sum of square of

fourier coeffecient. Signal at right-hand side of equation(5) can be expanded as

(Ar − 〈Ar〉)sin(ω0t+ α) +Brsin(ω0t+ φr) = (S6.46)

((Ar − 〈(Ar〉))cosα +Brcosφr)sinω0t+ ((Ar − 〈(Ar〉))sinα +Brsinφr)cosω0t

Operating power operation on both sides of S6.47, we get

Power{(Ar − 〈Ar〉)sin(ω0t+ α) +Brsin(ω0t+ φr)}
= ((Ar − 〈(Ar〉))cosα +Brcosφr)

2 + ((Ar − 〈(Ar〉))sinα +Brsinφr)
2 (S6.47)

= B2
r + (Ar − 〈Ar〉)2 + 2(Ar − 〈Ar〉)Brcos(φr − α) (S6.48)

S7 Analytical expression for Evoked Potential

Taking trial-averages on both the sides of equation 2, we can express

〈Sr(t)〉 = 〈Arsin(ω0t+ α) +Brsin(ω0t+ φr)〉 (S7.49)
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Since, ω0t and α are not changing across trials we can write,

〈Sr(t)〉 = 〈Ar〉sin(ω0t+ α) + 〈Br〉〈sin(ω0t+ φr)〉 (S7.50)

Now, since φr is symmetric, i.e., takes values between [−π, π], the trial average of odd

function 〈sin(ω0t+ φr)〉 = 0 (assumption of uniform variation of phase). Hence,

〈Sr(t)〉 = 〈Ar〉sin(ω0t+ α) (S7.51)
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