
 

 

 

FX Double Window Double Barrier Option Model 

 

 

An FX Double Window Double Barrier option can be seen as a special case of a complex barrier 

option, where we can have multiple single and double partial barrier (partial barrier meaning: the 

barrier is effective only on a subinterval of the full option term).  

 

We offer a hybrid (trinomial tree plus semi-analytic formulas) pricing method for the product. 

Currently, the model uses spot implied volatility for the first time window, and forward implied 

volatility for the second time window. These are Black-Scholes implied volatilities from traded 

vanilla European options, but, while desired, usage of different volatilities based on strike or 

barrier moneyness directly within the tree is difficult to achieve.  

 

We will start by defining Single Knock Out Partial Barrier Option, Single Knock In Barrier 

Option, Double Knock Out Partial Barrier Option, and Double Knock In Barrier Option 

contracts on whose features the Double Window Double Barrier Option contract definition is 

based. The exercise style is assumed European everywhere in this paper. 

 

Assume an underlying price (FX rate in our case) process, tS , an expiry date, 0T , and a strike 

price (rate), K . Assume the underlying follows the SDE below: 

( ) )1(,tttt dWSdtSqrdS +−=   

where r is the (continuously compounded) risk-free rate (domestic rate for FX options), q is the 

continuous dividend yield (foreign risk-free rate for FX options),  is the volatility of the 

underlying, and tW  is standard one–dimensional Brownian process.  

 

The Single Knock Out Partial Barrier (SKOPB) Option has one single partial knock out 

barrier. Let B be the single barrier and let   ,0,, 2121 TTTTT   be the interval on which 

this barrier is effective.  The possible types of Single Knock Out Partial Barrier Option contract 

are: up-out-call/put (UOC/P), down-out-call/put (DOC/P). If the barrier interval is effective over 



 

the whole term of the option, we obtain the basic Single Knock Out Barrier (SKOB) Option 

contract. Define the minimum and maximum of the underlying process over a given time interval 

as follows: 
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The payoffs of such contracts are then defined as follows: 
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where 1=  if call, 1−=  if put, and   11 =condition
 if condition is true,   01 =condition

 if condition is 

false. 

 

The Single Knock In Barrier (SKIB) Option has one knock in barrier effective for the whole 

term of the option (we do not define here a general partial version for knock in). Let B be the 

single barrier. The possible types of Single Knock In Barrier Option contract are: up-in-call/put 

(UIC/P), down-in-call/put (DIC/P). The corresponding payoffs are then: 
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The Double Knock Out Partial Barrier (DKOPB) Option contract has two partial knock out 

barriers. Let H and L be the two partial knock out barriers (no order specified for H and L), and 

the intervals on which they are effective be   ,0,, 2121 TTTTT HHHH   and 

  TTTTT LLLL  2121 0,,  (they may be overlapped or disjoint).  

 

The possible types are: H-up-L-up-out-call/put (HULUOC/P), H-up-L-down-out-call/put 

(HULDOC/P), H-down-L-up-out-call/put (HDLUOC/P), and H-down-L-down-out-call/put 

(HDLDOC/P). If H is bigger than L, H is up, L is down, and their intervals cover the whole option 

term, then we obtain the basic Double Knock Out Barrier (DKOB) Option. The payoffs of such 

contracts are: 
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The Double Knock In Barrier (DKIB) Option contract has two total knock in barriers (we do 

not define here a general partial version for knock in). Let H and L be the two knock in barriers, 

with H bigger than L. Only two types are considered: H-up-L-down-in-call/put (HULDIC/P). 

The corresponding payoffs are then: 
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We can now define the Double Window Double Barrier (DWDB) Option contract. The term of 

the option is split into two windows. Let TT 0 be the end date of the first window. The first 

window,  T ,0 , has the characteristics of a DKOPB  (or SKOPB, if one of the barriers is not 

available), that is, we have partial knock out barriers H and L with effective time intervals 

  ,0,, 2121 TTTTT HHHH   and   TTTTT LLLL  2121 0,, (or just one partial knock out 

barrier, B , with effective time interval   TTTTT  2121 0,, ).  

 

The second window,  TT , , has the characteristics of a DKOB (SKOB) or DKIB (SKIB), that is, 

we have total (effective over the whole second window) knock out (knock in) barriers 2H  and 2L , 

with 22 LH   (or just one total knock out (knock in) barrier for the whole second window, 2B ). 

For example, the payoff of a DWDB call with HULUOC/P characteristics for the first window, 

and HULDIC/P characteristics for the second window is: 
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that is, both the HULUOC/P condition and HULDIC/P condition, verified at option expiry date, 

determine the payoff. All other combinations permitted by the DWDB contract described above, 

can be presented in the same fashion. 



 

 

There are analytic formulas for SKOB and SKIB options, and particular types of SKOPB and 

SKIPB options (either the start of the barrier interval is the valuation date or the end of the barrier 

interval is the expiry date). There are also semi-analytic formulas for DKOB and DKIB options. 

The DKOPB and SKOPB options can only be treated using a trinomial tree pricing. These two 

types of options are the main focus of this paper. We will use the above products that posses 

(semi) analytic formulas for testing the convergence of our lattice pricing. 

 

 

• Trinomial tree pricing for Multiple Single Partial Barrier (MSPB) Options  

 

The trinomial tree discretizing our underlying dynamics (1) is based on a common market 

practice. We parameterize our trinomial tree (shift it spatially in log scale) so that the barriers 

match underlying values. (In fact, it should be seen as a discretization of the Black-Scholes PDE 

associated to (1), thus allowing for negative “probabilities” for its branches.)  

 

Tree state building 

 

Assume a number of n time steps, and assume niH i ,...,1,0, = a series of barriers applicable at each 

time level. Let 
n

T
t =  be the length of the time step. Let iS  be the value of the underlying at time 

ti  . Let tS = log  be the spatial step in log scale, where we choose  2
2

1
=  

(standard choice that assures the convergence of the standard trinomial tree). Consider the 

underlying value at time level  ni ,...2,1,0  and space level  

 iiiij ,1,...,0,...,1, −+−− , denoted by 
jiS ,
. If the underlying is in state 

jiS ,
 at time level i , the 

three values the underlying may take at next time level, 1+i , are 
1,1 ++ jiS , 

1,1 −+ jiS , 
jiS ,1+
. We define 

them as follows: 
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where i  is a parameter which we will use to match barrier 1+iH .  



 

Equivalently, from 
0,iS  we construct 

0,1+iS  via 

iii SS 0,0,1 =+
,  (2) 

and then all the other nodes at time level 1+i  are built by  

( ).logexp0,1,1 SjSS iji = ++
  (3) 

The relevant states are for  1,,...,0,...,,1 +−−− iiiij , but we will use relation (3) beyond this 

restriction, in which case we talk about unrestricted underlying values. We want our barrier 1+iH  

to match one of the (possibly unrestricted) underlying values at time level 1+i , that is, for some 

integer 
1+iHj  we want the following equality to hold: 

1
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This is equivalent to: 
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Assuming we know 
0,iS (and automatically all other states at time level i ), in (4) we are presented 

with one equation and two unknowns:  real number i , and integer 
1+iHj .  

We will choose first the integer 
1+iHj  so that 1+iH  comes as close as possible to an (possibly 

unrestricted) underlying value at time level 1+i , assuming that the central node at this time level 

is equal to the one at the precedent time level, that is, the distance 

( )SjSH
iHii logexp
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is minimal. This minimization problem is easily solved by the integer: 
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where  x  is the integral part of the real number x (that is, the integer with the following property 

  xxx −1 ; consequently,   5.05.05.0 ++− xxx , which makes  5.0+x  the closest 

integer to the real number x). 

Then i  is chosen so that it solves exactly equation (4): 
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Note that i  is very close to 1, which means the tree geometry does not change by much if the 

chosen mesh is dense enough.  



 

Given 
0,0S , from (2), (3), and (5) we can build, inductively, all possible states for our underlying 

at all time levels. 

 

Tree probabilities 

 

Let iS  be the value of the underlying at time ti  . From our assumed dynamics (1) we have: 
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Let us introduce the following notation: 
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Consider now in our discretization the probabilities of state 
jiS ,
branching off to 

1,1 ++ jiS , 
1,1 −+ jiS , 

jiS ,1+
, denoted respectively

iup ,
(up), 

idp ,
(down), 

imp ,
(middle). Denoting by ( ),logexp Su =  and 

then using (6), we obtain the following system of equations: 
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Equivalently: 
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Solving this linear system we obtain: 
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Pricing on the tree 

 

Now that the full trinomial tree, states and ramification probabilities, is built, we can use it to price 

a multiple single barrier option. Let  
jiC ,
 be the option price at time level  ni ,...2,1,0  and space 

level  iiiij ,1,...,2,1,0,...,1, ++−− . Let 
jiB ,
 be the barrier condition at time level i  and space 

level j  (for example, if iH  is up and out type, then  jiiji SHB ,, = ). 

At time level n  we have: 

( )( ) .1
,,, jnBjnjn KSC −=

+
  

To roll backwards, we use the averaging and discounting relation together with the barrier 

condition: 
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The price of the option is then 
0,0C . 

 

 

• Pricing SKOPB and DKOPB options 

 

For SKOPB option pricing, all we need to do is to set  niBH i ,...,1,0=  and use 

  ( )   2121, ,, TTtiTTtiB ji    instead of the above barrier condition 
jiB ,
. 

 

For DKOPB, we first set  niLH i ,...,1,0=  and then we modify slightly  so that the other 

barrier, H, is matched automatically: 
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This new  is still very close to the old one so that the stability and convergence of the tree will 

not be affected, but also H gets matched by an underlying value. Indeed we have from (4) 
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Then we want an integer Hj such that 
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Subtracting we obtain: 
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• Hybrid pricing for DWDB option: trinomial tree for first window, (semi) analytic 

formulas for second window 

 

The idea is to use the corresponding analytic or semi-analytic formulas for the second window, 

where we must have a product that admits such pricing (basically, the requirement is that the 

barriers involved in the second window should be total, that is, being effective from the end date 

of the first window to the expiry date of the option). We then build a tree only for the first 

window, using for the nodes at the end date of the first window the (semi) analytic prices we get 

from the second window. One advantage is that we can use the forward volatility for the second 

window (this way, we include some volatility term structure in our pricing). For a generalization 

of this product and its pricing see https://finpricing.com/lib/EqBarrier.html 

 

https://finpricing.com/lib/EqBarrier.html

