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Abstract. Screening tests for infectious diseases is a problem typically
addressed in the field of Medicine and Epidemics. However, as the SARS-
CoV-2 pandemic emerged, it became clear that there is no globally
accepted strategy for optimizing such procedures, e.g. in international
transportation and border checks, which policy makers can employ. In
this study, the general problem of developing optimal testing strategies
for infectious diseases is explored under the scope of Game Theory, sam-
pling and estimation methods from classic Statistics, as well as Bayesian
methods for the proper treatment of posterior updates, leading to the
benefits of employing Machine Learning for data-driven structural risk
minimization. Six main guidelines are established by this work, dictating
estimated variance of prevalence and associated risk as the main min-
imization target, in terms of both a criterion for inflow quotas alloca-
tion between population groups, as well as optimal posterior updates via
classic confidence intervals and Bayesian methods. As a result, it is es-
tablished that minimum infection risk, not optimal resource allocation,
is the real challenge and top priority in formalizing optimal screening
strategies for such risk mitigation policies.

Keywords: Epidemics · SARS-CoV-2 · screening methods · testing strate-
gies · Game Theory · Machine Learning · Bayesian methods.

1 Introduction

The SARS-CoV-2 pandemic that characterized 2020 was the most crucial factor
in revisiting common practices and re-establishing risk-mitigation policies in
terms of population screening for infectious diseases. As of September 2021,
world-wide statistics [10] show that a third pandemic surge is at its peak and
there are more than 219 million confirmed cases, with more than 4.55 million
deaths directly associated with the COVID disease. This is perhaps the most
severe health emergency since the Spanish flu a century ago. Although this virus
seems to exhibit patterns of droplet rather than aerosol transmission, its rate
is very high and it combined with an incubation period of 4-7 days [24].Due to
international flights, this ‘window of opportunity’ is extremely crucial for the
virus to spread undetected in asymptomatic carriers. The recent ‘delta’ variant
seems to exhibit even longer incubation period, perhaps up to 7-8 days, while

https://www.datastories.org


2 Harris Georgiou

the virus itself is more contagious than the original strain, making it even more
dangerous.

Testing strategies is perhaps the single most valuable tool for the containment
of the virus spread, especially between countries and when international travel
bans are to be lifted. However, there are theoretical and practical aspects that
make perfect screening impossible, leaving the decision makers with the crucial
but ill-defined challenge of how to introduce risk-mitigation plans, based on
imperfect information, time delays and limited resources.

With the SARS-CoV-2 pandemic still surging almost two years after its first
appearance in Wuhan (November 2019), the current focus in testing strategies
world-wide is towards long-term epidemic monitoring within a country, i.e., as
part of mitigation policies for restoring normal economic activities and avoiding
strict lockdowns. There are numerous guidelines from the international health
organizations like CDC (USA), ECDC (EU) and WHO [12,11,13,14,43], as well
as from the research community [6,36,28].However, there are only few works ad-
dressing the challenge of optimizing testing in border checks, i.e., very short-term
screening human flows (travellers, within 1 hour at most) using only limited re-
sources (number of test kits per day per entry point). These approaches include
mostly adaptations w.r.t. incidence rates [2,21,33], statistical models on preva-
lence [9,20], bandit formulations for ‘hit’ rate optimization [5,27], etc. There are
only few game-theoretic approaches for modelling the evolution of the outbreak,
the effects of the individual behaviours and the mitigation policies [7,35,3]. How-
ever, none of these approaches address the challenge of combining incidence rates,
inherent cost for ‘missed’ cases and the posterior (after testing) probabilities for
healthy/infected individuals, specifically for very short-term screening human
flows in border crossings between countries, which essentially is the driving fac-
tor for turning national-level epidemics into a global pandemic. Moreover, no
such approach is available as a well-defined framework based on mathematical
foundations and derived strategies.

In this work, the challenge of optimal testing strategies for infectious disease
screening is treated in a unified way. Beginning from the problem under the
viewpoint of Game Theory, the decision-making authority has to optimize its
testing strategy for groups of individuals, partitioned on the basis of some in-
herent property, e.g. the country of origin, demographics, etc. Assuming a fixed
capability on the base task of selecting ‘safe’ and ‘non-safe’ individuals, the game
setup of player-against-Nature and the goal is to minimize the loss from improper
allocation of increased and decreased rates of flow, which is typically associated
to what is happening in screening gates between countries or between regions
within the same country.

On top of the game-theoretic formalization of the testing strategies for the
decision-making authority, their capability is further explored within the con-
text of Sampling Theory and Estimation Theory. Since all estimations are based
on sampled data and not perfect ‘Oracle’ view of the entire population, proper
adjustments should be made to the properties that define the game-theoretic
optimizations. Moreover, the inherent limitations and ‘static’ nature of the stan-
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dard confidence interval methods are compared to the more rigorous and intuitive
view of the Bayesian methods for optimal posterior updates of the corresponding
probabilistic models.

Aggregating all these aspects of the screening tests during an epidemic, this
work presents a proper formalization of each step in a constructive way and
clearly defines their constraints. Section 2 defines the main task, which is the
problem of optimizing the policies for screening tests; section 3 provides the
general game-theoretic framework, solution concepts and evidence-based adap-
tations; section 4 extends this framework to multiple ‘experts’, also providing
solution concepts and application to testing strategies; section 5 describes the
related theory for sampling, estimation and evidence-based posterior updates,
including point statistics, confidence intervals and Bayesian methods; finally,
section 6 discusses further complications from having to cope with time-varying
uncertainty in the evidence and counter-intuitive testing strategies for prompt
containment of the disease, as well as some concluding remarks in section 7.

2 Problem statement

First of all, let us define the exact optimization task, which in general terms can
be described with the two equivalent statements:

– Minimize the risk margin of not identifying infected individuals in a target
group, i.e., the cost expectancy.

– Maximize the safety margin of identifying infected individuals in a target
group, i.e., the gain expectancy.

In the first statement, ‘cost’ is referring to the probabilistic expectancy of the
overall negative impact for the group from missed cases of infected individuals,
which is associated to a risk margin, i.e., a ‘miss’ probability. Similarly, in the
second statement, ‘gain’ is referring to the probabilistic expectancy of the overall
positive impact for the group from detected cases of infected individuals, which
is associated to a safety margin, i.e., a ‘hit’ probability. The two definitions
can be considered equivalent in the sense that detecting and isolating infected
individuals is always beneficial for the group. Hence, in the following analysis
they are used interchangeably as needed, with complementary probabilities and
outcomes.

3 Game-theoretic formalization

A very generic approach in formalizing the definition of this optimization setup
is via Game Theory [34,31,18]. Specifically, a zero-sum game can be designed
between ‘Nature’ that defines the (unknown) infected individuals and the check-
ing ‘authority’ that tries to identify and isolate them, i.e., mitigate the negative
impact of missed cases. In this setup, ‘Nature’ is typically the ‘negative’ player
and the ‘authority’ is the ‘positive’ player; since ‘Nature’ is the stochastic fac-
tor out of any immediate control, ‘authority’ is of the main interest here and is
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typically associated to the positive-valued outcomes of the game. Hence, the sec-
ond statement in section 2 is the one that is preferred by default when defining
probabilities (‘hits’) and outcomes (‘gain’).

Let C be the zero-sum ‘checking’ game according to the previous generic
description of section 2. Let N be the total number of individuals, either ‘safe’
(not infected) or ‘non-safe’ (infected), partitioned according to L = ⟨ℓk⟩, N =

|
⋃
ℓk| , k ∈ {1, . . . , |L|}, and with corresponding subset sizes nk , N =

∑|L|
k=1 nk.

If psk is the probability of an individual in group k being ‘safe’, then pnsk = (1−psk)
is the associated probability of an individual being ‘non-safe’ in that same group.
With nk being the size of group k, csk ≥ 0 is the marginal gain from each ‘safe’
individual and −cnsk ≤ 0 is the marginal cost from each ‘non-safe’ individual,
then the probabilistic expectancy (game value) from each group outcome is:

vk(C) = nk(p
s
kc

s
k − (1− psk)c

ns
k ) (1)

where csk and cnsk can be considered as common for all subsets in L, thus can be
used as cs and cns, respectively, with k omitted.

Besides the psk probability, nk is the other crucial factor for determining the
overall outcome of the game. In practice, there are two extreme options for the
checking authority: (a) admitting all the nk individuals in the group or (b) not
admitting anyone of them. If subsets ℓk are fixed and cannot be partitioned
further, then only these two extreme options are available and the task becomes
discrete (combinatorial), i.e., selecting or discarding each ℓk from L. Option
(b) is the pure strategy that always guarantees a non-negative outcome, but
in practice this also comes with an associated cost of not admitting the ‘safe’
individuals. In terms of game C, there are two pure strategies for each player
and four outcomes in total, as illustrated in Table 1. However, since the main
interest here is to estimate the optimal strategy for the checking authority (rows)
and the two extreme options can be merged taking nk ≥ 0, the corresponding
target function for maximization is Eq.1 restated as:

vk(C) = nk(p
s
kc

s − (1− psk)c
ns) (2)

Table 1. Zero-sum ‘checking’ game C in complete 2-by-2 form.

psk 1− psk
nk > 0 +cs −cns

nk = 0 −cs +cns

The optimization task defined by Eq.2 is considered against all the subsets

ℓk in partitioning L, i.e., for some fixed total sum N =
∑|L|

k=1 nk and the com-

bined expectancy v(C) =
∑|L|

k=1 vk(C), regarding the partitioning into subsets
ℓk ∈ L and their corresponding sizes nk. The exact aggregated maximization of
v(C) against partitioning L with subsets of sizes nk is stated in Definition 1 for
arbitrary sizes nk and in Definition 2 for fixed sizes nk (selection of indices k).
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Definition 1 (Optimal partitioning in game C with subsets of arbitrary
sizes). Let C be a zero-sum ‘checking’ game as described in Eq.2, with 0 ≤ psk ≤
1, {cs, cns} ≥ 0, L = ⟨ℓk⟩ ̸= ∅, N = |

⋃
ℓk| =

∑|L|
k=1 nk. Then the combined

expectancy v(C) =
∑|L|

k=1 vk(C), regarding the partitioning L into subsets ℓk of
corresponding sizes nk, is maximized with a specific set ⟨nk⟩ = {n1, . . . , n|L|}:

⟨nk⟩ : argmax
nk

|L|∑
k=1

vk(C) (3)

If the partitioning L defines subsets of fixed size, then the problem becomes
a discrete optimization task, with the target being the selection of a combination
of ℓkinL that exhibit the maximum overall payoff, as Definition 2 states:

Definition 2 (Optimal partitioning in game C with subsets of fixed
sizes). Let C be a zero-sum ‘checking’ game as described in Eq.2, with 0 ≤ psk ≤
1, {cs, cns} ≥ 0, L = ⟨ℓk⟩ ̸= ∅, N = |

⋃
ℓk| =

∑|L|
k=1 nk. Then the combined

expectancy v(C) =
∑|L|

k=1 vk(C), regarding the partitioning L into subsets ℓk of
corresponding fixed sizes nk = ℓk, is maximized with a specific combination of
indices k in the set ⟨nk⟩ ∈ {n1, . . . , n|L|}:

⟨k⟩ : argmax
k

|L|∑
k=1

vk(C) (4)

Definitions 1 and 2 formalize the optimization task for the checking authority
(‘max’ player) regarding the game C. In the first case the authority is free to
adjust ⟨nk⟩ freely with the only constraint being nk ≥ 0, i.e., enlarge or reduce
each subset in the partitioning L. In the second case the subset sizes nk are fixed
and the authority can only adjust the selection of indices in ⟨k⟩ ∈ {1, . . . , |L|}.
In both cases, the subset sizes nk are constrained by the partitioning L, i.e.,

N =
∑|L|

k=1 nk.

3.1 Solution concepts

As stated previously, the obvious strategy for the checking authority in order to
ensure v(C) ≮ 0 is to set nk = 0,∀ k ∈ {1, . . . , |L|}, if there is such a valid option

available. However, the most usual case is that the total sum N =
∑|L|

k=1 nk > 0
is a fixed constraint, i.e., cannot be avoided or maybe not even reduced. This
essentially makes the overall task for v(C) against ⟨nk⟩ a convex optimization
problem in a continuous (Definition 1) or a discrete (Definition 2) space.

In order to see how v(C) is maximized against nk given psk taking into account
all k, Eq.2 is applied to Eq.3 and Eq.4 for the arbitrary or fixed sizes nk, respec-
tively. Intuitively, we expect that for ps1 ≥ ps2 ≥ . . . ≥ ps|L|, the obvious choice

for k ∈ {1, . . . , |L|} is such that it maximizes the corresponding subset sizes, i.e.,

n1 ≥ n2 ≥ . . . ≥ n|L| while satisfying the constraint N =
∑|L|

k=1 nk > 0. Lemma
1 and Theorem 1 provide the formal proofs for this optimizer.
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Lemma 1. Let C be a zero-sum ‘checking’ game as described in Definition 1,

with 0 ≤ psk ≤ 1, {cs, cns} ≥ 0, L = ⟨ℓk⟩ ≠ ∅, N = |
⋃

ℓk| =
∑|L|

k=1 nk. Let
Θ be the indices defining the descending ordering of ⟨psk⟩, that is psθ1 ≥ psθ2 ≥
. . . ≥ psθ|L|

. Then Θ also defines the same descending ordering for ⟨γk⟩, where
γk = pskc

s − (1− psk)c
ns as in Eq.2.

Proof. See [19].

Theorem 1 (Optimal mixture of arbitrary-size subsets in game C). Let
C be a zero-sum ‘checking’ game as described in Definition 1, with 0 ≤ psk ≤ 1,

{cs, cns} ≥ 0, L = ⟨ℓk⟩ ̸= ∅, N = |
⋃

ℓk| =
∑|L|

k=1 nk. Let qk ≥ nk be the upper
limit (quota) for the size of the corresponding subset ℓk. Let Θ be the indices
defining the descending ordering of ⟨psk⟩, that is psθ1 ≥ psθ2 ≥ . . . ≥ psθ|L|

. Then

the combined expectancy v(C) =
∑|L|

k=1 vk(C), regarding the partitioning into
subsets ℓk ∈ L of corresponding sizes nk = |ℓk|, is maximized with:

r : NΘ =

θr∑
j=θ1

qj ≤ N <

θr+1∑
j=θ1

qj (5)

⟨nk⟩ = {qθ1 , . . . , qθr , N −NΘ, 0, . . . , 0} (6)

Proof. See [19].

What Theorem 1 provides is a proof of the intuitive approach from everyday
practice: when facing a set of |L| choices associated with different rewards and
a total sum N of selections, it is normal that the most logical thing to do is
maximize the selections from the top rewards, then do the same for the second-
best rewards, etc, until N is completed.

The same approach for the optimal strategy can be applied when the selec-
tions are of fixed subsets, which essentially makes the overall problem a discrete
optimization task. Based on Theorem 1, Theorem 2 proves that it reduces to
selecting the subset of the best-reward options.

Theorem 2 (Optimal mixture of fixed-size subsets in game C). Let C
be a zero-sum ‘checking’ game as described in Definition 2 with 0 ≤ psk ≤ 1,

{cs, cns} ≥ 0, L = ⟨ℓk⟩ ≠ ∅, N = |
⋃

ℓk| =
∑|L|

k=1 nk. Let nk = qk = |ℓk| be
the size and its upper limit (quota) for each subset ℓk ∈ L, i.e., fixed for each
k ∈ {1, . . . , |L|}. Let γk = pskc

s−(1−psk)c
ns as in Lemma 1. Let Θ be the indices

defining the descending ordering of ⟨nk, γk⟩, that is nθ1γθ1 ≥ nθ2γθ2 ≥ . . . ≥
nθ|L|γθ|L| . Then the combined expectancy v(C) =

∑|L|
k=1 vk(C), regarding the

partitioning into subsets ℓk ∈ L of corresponding sizes nk = |ℓk|, is maximized
with:

r : NΘ =

θr∑
j=θ1

qj ≤ N <

θr+1∑
j=θ1

qj (7)

⟨k⟩ ⊆ Θ : ⟨k⟩ = {θ1, . . . , θr, θ̂r+1, 0, . . . , 0} (8)
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where q
θ̂r+1

= N −NΘ ≤ qθr+1
.

Proof. See [19].

Remark 1. For the last subset in position θr+1 ∈ Θ the value nθr+1
= N −NΘ

may not be a valid option if it is not compatible with the fixed-size ℓθr+1
or,

equivalently, the total sum may not be satisfied, i.e.,
∑|L|

k=1 nk < N . This depends
on the exact partitioning L in relation to N and the defined quotas ⟨qk⟩; this
does not invalidate the general solution provided by Theorem 2.

It is worth noting that the descending ordering Θ in Theorem 2 is now strictly
defined for ⟨nkγk⟩ and cannot be deferred to ⟨psk⟩ according to Lemma 1. This is
because nk = qk = |ℓk| is now fixed and, thus, cannot be arbitrarily set to zero
for the lower-ranked positions in ⟨nk⟩. In that sense, Eq.2 can be rewritten as:

vk(C) = δkqk(p
s
kc

s − (1− psk)c
ns) (9)

where δk ∈ {0, 1} ∀ k ∈ {1, . . . , |L|}.
It should also be noted that the discrete case as stated in Definition 2 it is

loosely related to the subset sum problem [25], which explores the different ways
that a positive integer can be expressed as the sum of other positive integers.
Another way to state the subset sum problem is: given a set of positive integers
and a target sum N , does any subset of the numbers sum to precisely N ; or more
loosely, find a subset whose sum is as close as possible to N - this is precisely
what Eq.7 in Theorem 2 indicates regarding the selection of ℓk ∈ L. However,
the main difference here is that there is only one |ℓk| positive integer to use from
each ‘class’ k in the sum, i.e., it is purely a matter of selection of singletons
rather than combination of (possible) repetitions of numbers.

Based on Theorem 1, Algorithm 1 provides a baseline constructive procedure
for calculating the optimal solution of Eq.5 and Eq.6. Input |L| defines compart-
ments ℓk but not their sizes and inputs cs, cns are not strictly necessary, they are
only referenced for proper definition of the argmax equation. This algorithm also
applies to the discrete case as described by Theorem 2, i.e., optimizing against
⟨k⟩ instead of ⟨nk⟩, provided that: (a) the sorting statement for getting Θ is
applied to ⟨nkγk⟩; and (b) the last if statement also includes a validity check
with regard to the value N −NΘ.

From Algorithm 1 it is obvious that the constructive procedure outlined
is quite acceptable in terms of complexity. In fact, the most complex part is
the sorting step, typically in the order of O(n log n). The iteration in the main
loop is clearly linear at O(n), since the two summations inside the loop are
actually temporary variables stepwise-increased (no loops). This low-complexity
property of the solution is particularly important for Theorem 2, showing that
even though the discrete optimization task is combinatorial, the optimal solution
can be constructed generally in O(n log n), or even O(n) if the input vectors are
already sorted.
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Algorithm 1: Optimal mixture of partitioned pool

Result: Maximize the expected gain in mixing partitions of different success
rates:

⟨nk⟩ : argmax
nk

|L|∑
k=1

nk(p
s
kc

s − (1− psk)c
ns) (10)

Input:
– partitioning: L = ⟨ℓk⟩ ≠ ∅, k = {1, . . . , |L|}
– constraint: N = |

⋃
ℓk| =

∑|L|
k=1 |ℓk|

– success rates: ⟨psk⟩ = {ps1, . . . , ps|L|}, 0 ≤ psk ≤ 1
– subset quotas: ⟨qk⟩ = {q1, . . . , q|L|}, |ℓk| ≤ qk
– marginal gain/cost: {cs, cns} ≥ 0

Output:

– subset sizes: ⟨nk⟩ = {n1, . . . , n|L|}

1 sort ⟨psk⟩ → Θ : psθ1 ≥ psθ2 ≥ . . . ≥ psθ|L|
;

2 ⟨nk⟩ ← 0 ;
3 r ← 0 ;
4 finished← False ;
5 while ¬finished do
6 r ← r + 1 ;
7 nθr ← qθr ;

8 finished←
(∑θr

k=θ1
nk ≤ N

)
∧
(∑θr+1

k=θ1
nk > N

)
;

9 end

10 if
∑θr

k=θ1
nk < N then

11 nθr+1 ← N −
∑θr

k=θ1
nk ;

12 end
13 return ⟨nk⟩;
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3.2 Evidence-based soft partitioning

The game-theoretic formalization explored previously addresses a setup of ‘com-
partmentalized’ pool of N individuals according to some partitioning L, while
having only one ‘expert’ with success rate psk per subset ℓk ∈ L. This essentially
reduces the problem, in both continuous and discrete cases, to a convex opti-
mization task as defined in Definitions 1 and 2, respectively. However, in the
general case there may be no strict partitioning L and, hence, N may be one
single pool of individuals - this is actually the generalization of having L defined
by some evidence that updates the inclusion to some ℓk ∈ L and exclusion from
the other |L|−1 partitions of each individual, according to a posterior probabil-
ity that is not strictly equal to unity. Additionally, there may be more than one
‘experts’ per such partition ℓk, each evaluating the individuals with a different
success rate psk and, hence, an aggregation scheme has to be applied for the final
evaluation of ‘safe’ or ‘non-safe’ labelling. Eq.11 describes the Bayesian posterior
probability of Oj of m mutually exclusive outcomes given an observed evidence
E:

P (Oj |E) =
P (E|Oj)P (Oj)∑m
j=1 P (E|Oj)P (Oj)

=
P (E|Oj)P (Oj)

P (E)
(11)

Exploiting evidence for posterior updates and combining aggregated experts
is a highly challenging and multi-aspect research area that has been explored for
many years from different disciplines, ranging from Evolutionary Biology and
Sociology to Game Theory and Ensemble Learning [23,42,17]. In section 4 the
problem of optimal testing strategies for infectious diseases is restated in this
general context, providing a proper analytical solution and proofs for combining
multiple experts and with arbitrary posterior updates.

4 Weighted Majority Games

In collective decision-making, the individual outputs in an ensemble of experts
with moderate performance levels are aggregated in order to produce a collective
decision in an optimal way [18]. According to the Condorcet Jury Theorem
[8], if the experts’ individual decisions are independent and their corresponding
estimations are more likely to be correct than incorrect (p > 0.5), then an
increase in the collective performance of the ensemble is guaranteed when the
individual estimations are combined with a plurality voting scheme. Moreover,
this increase in performance continues to increase asymptotically as the size of
the ensemble increases, i.e., as more independent experts are added.

Although the experts within such an ensemble can be viewed as competitive
players each trying to impose its own choice upon the output of the ensemble,
in reality this depends on the coalitions that each choice forms regarding these
sub-groups. In other words, each expert is relevant to the collective output only
if it participates in the sub-group that dictates this final decision, e.g., via ma-
jority voting. This cooperative type of games is well-studied within the context
of Coalitional Gaming [31], a natural extension of the non-cooperative setups
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in classic Game Theory. In coalitional games, the optimality of the collective
decision-making depends on the exact aggregation rule and the parameters or
weights that are assigned to each member of the ensemble, typically in associa-
tion to each competency level for the specific task at hand [23,17].

The case of a having K options to choose from, using (weighted) plurality
voting as aggregation rule, is defined as a Weighted Majority Game (WMG) [34].
It has been proven by Nitzan and Paroush (1982) [32] and Shapley and Grofman
(1984) [38] that the optimal decision rules, in terms of collective performance,
are the Weighted Majority Rules (WMR); this is in fact a different name for
the well-known weighted majority voting schemes [26], which are often used in
Machine Learning for combining hard-output classifiers. The same assertion has
also been verified by Ben-Yashar and Nitzan [4] as the optimal aggregation rule
for committees under the scope of informative voting in Decision Theory.

Within this context, Definition 3 and 4 formalize the Weighted Majority
Voting (WMV) as the aggregation scheme for WMG, respectively. Furthermore,
Definition 5 formalize the WMR as the optimal aggregation rule for such WMG
setups.

Definition 3 (Weighted Majority Voting (WMV)). Let G be an ensemble
of K decision-making ‘experts’ {D1, . . . , DK} with individual outputs si ∈ Ω
against labels ωj ∈ Ω and corresponding accuracies {p1, . . . , pK}. Then the voting
support gj(x) for label ωj given the input x is defined as:

gj(x) =
∑
i∈Kj

wi , K ⊇ Kj : {si = ωj} (12)

where the voting weights wi are typically defined as 0 ≤ wi ≤ 1 and
∑K

i=1 wi = 1.

Definition 4 (Weighted Majority Game (WMG)). Let G be an ensemble
of K decision-making ‘experts’ {D1, . . . , DK} in a WMV setup according to Def-
inition 3. Then the Weighted Majority Game (WMG) of the ensemble defines
the winning coalitions Kwin ⊆ K with regard to their corresponding output label
as the ones having support gj(x) no less than a pre-defined lower threshold or
decision quota qwin:

i ∈ Kwin : gj(x) ≥ qwin , Kwin ⊆ K (13)

Definition 5 (Weighted Majority Rule (WMR)). Let G be an ensemble of
K decision-making ‘experts’ {D1, . . . , DK} in a WMG setup according to Defi-
nition 4, but with qwin = 0 and the largest support gj(x) always defining a single
winning coalition. Then the Weighted Majority Rule (WMR) of the ensemble un-
der these constraints is according to the output label with the maximum support
gj(x):

i ∈ K : argmax
j

gj(x) (14)

In the case where there are |Ω| available choices for each expert, it is sufficient
to define the decision threshold as qwin = 1/|Ω| in order to ensure well-defined
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collective decisions in the sense of both Definition 4 and 5, i.e., selecting the
maximum-support option and satisfying the decision threshold at the same time.

4.1 Solution concepts

As mentioned previously, WMR has been proven [32,38,4] as the theoretically
optimal aggregation rule for WMG. This means that in any ensemble with K
voting experts a set of voting weights ⟨wi⟩ can be defined so that the correspond-
ing WMR produces the optimal aggregation producing their collective decision.
This is a particularly important result, since it only depends on the aggregation
itself and not the design or the internal properties of each individual expert in
the ensemble. Hence, the complexity of defining the optimal aggregation com-
pletely is reduced to the convex (see Definition 3) optimization task of defining
vector ⟨wi⟩, i = {1, . . . ,K}.

In the restricted case of having independent experts and (possibly) fractional
weights wi ∈ R, the optimal design of WMR has been studied extensively and
independently in a wide range of disciplines. Specifically, instead of the intuitive
linear mapping of the experts’ competencies ⟨pi⟩ to corresponding voting weights
⟨wi⟩ in WMV, the logarithm of the odds or logodds rule is applied. According
to [38] and [22], the logodds rule has been proposed for mixtures of experts
as early as 1961 in [37]. In Machine Learning, the logodds rule re-appeared in
the formulation of the Adaptive Boosting or ‘Adaboost’ algorithm [15] for ro-
bust ensemble meta-learning, which gave its creators Yoav Freund and Robert
Schapire the 2003 Gödel Prize. In the last two decades the logodds method has
used repeatedly in various meta-learning approaches as an analytical solution for
optimal weighting in ensembles of experts, e.g. in classifier combination [23,44],
with proven performance over real-world problems and experimental datasets,
very close and sometimes even higher than fully trained (non-analytical) weight-
ing approaches [22,16,1].

Theorem 3 formally defines the logodds rule optimality for WMR weighting
profiles, given conditionally independent decision-makers, and provides a short
proof via Bayesian formulation. Next, Lemma 2 specializes it for the simple case
of dichotomy choice situations.

Theorem 3 (Log-odds Optimality (general)). Let G be an ensemble of K
decision-making ‘experts’ {D1, . . . , DK} in a WMR setup according to Definition

5 and being conditionally independent, i.e., P (s|ωj) =
∏K

i=1 P (si|ωj), ωj ∈ Ω.
Then the accuracy of the ensemble (Pw

maj) is maximized by assigning weights:

wi ∝ log
pi

1− pi

Proof. See [19].

Lemma 2 (Log-odds Optimality (dichotomous choice)). Let G be an
ensemble of K decision-making ‘experts’ {D1, . . . , DK} in a WMR setup ac-
cording to Definition 5 and being conditionally independent, i.e., P (s|ωj) =
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i=1 P (si|ωj), with si, ωj ∈ Ω = {−1,+1}. Then the accuracy of the ensemble

(Pw
maj) is maximized by assigning weights:

wi = log
pi

1− pi

and the optimal binary discriminator of the ensemble is:

g±(x) = (− logP (ω−) + logP (ω+)) +

K∑
i=1

siwi (15)

Proof. See [19].

Taking into account the definition of ⟨wi⟩ from Lemma 2 for the binary choice
‘safe’ or ’non-safe’, target range w′

i ∈ [0, 1] via Eq.?? and the convexity constraint∑K
i=1 ŵi = 1, Eq.16 presents the final definition for the weighting profile ⟨ŵ⟩ in

WMR:

⟨ŵ⟩ : ŵi = w′
i/
∑K

i=1 w′
i =

wi−wmin
wmax−wmin/

∑K
i=1

wi−wmin
wmax−wmin

(16)

What the WMG approach provides is a generalized approach to formulate
the combination of K decision-makers, perhaps pooled into soft partitions by
a Bayesian posterior update based on some membership evidence according to
Eq.11. The WMR is the theoretically optimal way to do this and the optimal
combination weights for the decision-makers can be analytically defined based
on their individual competencies according to Lemma 2 and Eq.16. Given the
fact that in the WMG approach the partitions are soft and not distinct as in
section 3, the game value is now defined across the entire set of N individuals
and for all the decision-makers. Again, for the dichotomous choice of ‘safe’ or
‘non-safe’ individuals, this can be defined as:

v(G) = N

K∑
i=1

(psi c
s − (1− psi )c

ns) ŵi (17)

where psi is the competency of expert i on choice ‘safe’ and may be an updated
Bayesian posterior according to Eq.11.

4.2 Application to ‘checking’ games

Following the problem definition of section 3, the optimization task here is how
the entire set of N may be partitioned into |L| subsets, where each expert may
exhibit significantly increased competency and, hence, get a larger WMR weight
that the others in the ensemble. In other words, instead of assigning each par-
tition to a single expert as in section 3, enable a combined decision according
to WMG, but with Bayesian posterior updates that effectively introduce soft
partitioning via the corresponding competency updates and, hence, the WMR
weighting profile langlew⟩.
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For any such partition number k ∈ {1, . . . , |L|}, Eq.17 can be redefined as:

vk(G) = nk

K∑
i=1

(
psi,kc

s − (1− psi,k)c
ns
)
ŵi,k (18)

where psi,k is the competency of expert i in partition number k on choice ‘safe’,
an updated Bayesian posterior according to Eq.11 that effectively defines the
soft partitioning into (non-distinct) subsets of sizes nk with

∑K
k=1 nk = N .

The difference of Eq.18 with Eq.2 is that the game value is estimated for each
k of the partitions, employing K > 1 instead of only a single expert as in section
3. Thus, for each partition number k, if only expert o (‘oracle’) is assigned with
ŵo = 1 and zero weight for every other expert in the ensemble, Eq.18 reduces to
Eq.2.

Eq.18 can be explored in terms of optimality conditions against both com-
petencies ⟨psi,k⟩ and weights ⟨ŵi,k⟩. The following Lemma 3 proves that the
ordering of the competencies of the decision-makers also define the ordering of
the expected payoffs for any partition.

Lemma 3. Let G be a WMG ‘checking’ game of K decision-makers as described
in Definition 4, with 0 ≤ psi,k ≤ 1, iin{1, . . . ,K}, {cs, cns} ≥ 0, L = ⟨ℓk⟩ ≠ ∅,
N = |

⋃
ℓk| =

∑|L|
k=1 nk. Let Θk be the indices defining the descending order-

ing of ⟨psi,k⟩ for each k, that is psθ1,k ≥ psθ2,k ≥ . . . ≥ psθK,k
. Then, if psi,k ≥

max{ cns

cs+cns , 1/2} and ŵi,k as defined in Eq.16, Θk also defines the same descend-

ing ordering for ⟨ζi,k⟩, where ζi,k =
(
psi,kc

s − (1− psi,k)c
ns
)
ŵi,k.

Proof. See [19].

Lemma 3 is a generalization of Lemma 1 with the inclusion of WMR weight-
ing. Based on this, Theorem 1 can now be reformulated accordingly for K
decision-makers in an ensemble:

Theorem 4 (Optimal mixture of arbitrary-size subsets via WMG G).
Let G be a WMG ‘checking’ game of K decision-makers as described in Def-
inition 4, with 0 ≤ psi,k ≤ 1, i ∈ {1, . . . ,K}, {cs, cns} ≥ 0, L = ⟨ℓk⟩ ≠ ∅,
N = |

⋃
ℓk| =

∑|L|
k=1 nk. Let qk ≥ nk be the upper limit (quota) for the size

of the corresponding subset ℓk. Let Θ be the indices defining the descending or-
dering of ⟨maxi p

s
i,k⟩ against k, that is psθ1 ≥ psθ2 ≥ . . . ≥ psθ|L|

, with psi,k ≥
max{ cns

cs+cns , 1/2}. Then the combined expectancy v(G) =
∑|L|

k=1 vk(G), regarding
the partitioning into subsets ℓk ∈ L of corresponding sizes nk = |ℓk|, is maxi-
mized with:

r : NΘ =

θr∑
j=θ1

qj ≤ N <

θr+1∑
j=θ1

qj (19)

⟨nk⟩ = {qθ1 , . . . , qθr , N −NΘ, 0, . . . , 0} (20)
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Proof. See [19].

What Theorem 4 states is that the logic of Theorem 1 is still valid for max-
imizing the overall payoff against a partitioned pool of N individuals to be
tested. That is, even when an ensemble of K decision-makers is available for
each partition, the subset sizes can still be maximized towards their correspond-
ing quotas taking into account the maximum-position in the descending ordering
of logodds-weighted marginal payoffs from the ensemble, instead of the single-
expert assignment per partition. Of course, this approach is valid only when
nk is to be maximized against a single decision-maker that is to be selected as
‘active’ from the logodds-weighted ensemble. Instead, if all K decision-makers
are considered ‘active’ in parallel and for every partition, then the generalized
WMR in Definition 5 and the optimality proof from Theorem 3 are applied. In
practice, this means that in Theorem 4 the descending ordering must be taken
against the (generic) ⟨ζsi,k⟩ instead of replacing it with ⟨psi,k⟩, i.e., optimizing
each nk in Eq.18 for all k ∈ {1, . . . , |L|}.

5 Sampling, estimations and posterior updates

In the previous sections, the problem of optimizing the allocation of N individ-
uals to be tested to K decision-makers was investigated under the assumption
of distinct, soft or no partitioning of the pool, namely in section 4 for the sec-
ond (more generic) case and in section 3 for the others. Based on the analysis
above, it was proven that the optimal allocation for maximum payoff, i.e., max-
imum expectancy of selecting ‘safe’ individuals, depends on the ranking of the
competency (or the logodds-weighted transformation of it) of the decision mak-
ers regarding this task. In other words, the performance of the members in the
ensemble is the criterion upon which this optimal allocation is defined. Fur-
thermore, this optimal allocation can be constructed analytically by employing
Theorems 1, 2 or 4, according to the specific setup of the task with regard to
the partitioning and the decision-makers.

Although the aforementioned approach is solid and constructive, it has a
severe limitation in terms of actual real-world application. Namely, it assumes
perfect knowledge of the decision makers’ competencies, i.e., the corresponding
vectors ⟨psi,k⟩. This is rarely the case, since almost always the competencies are
simply the best estimations we can get for the corresponding empirical success
rates based on finite sample sets. In other words, each of the psi,k elements is
an estimate, with a specific confidence interval and statistical significance value.
Moreover, new sampling data should be incorporated in these estimations to
provide a better result, i.e., a narrower and/or shifted confidence interval, in the
sense of iteratively updating the corresponding posterior probabilities. Finally,
the measurements upon the sample set may not be perfect, hence the estimation
should also take into account this uncertainty. All these issues introduce factors
of progressive complexity to the estimation of the competencies, not always easy
to implement or even formulate as models.
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5.1 Point statistics and confidence intervals

The easiest option is to estimate the competencies ⟨psi,k⟩ via standard sampling
theory. From the problem definition and Table 1 in section 2, it is established
that the task at hand can be modelled as subsequent independent checks in a
pool of ‘safe’ and ‘non-safe’ individuals, i.e, a series of Bernoulli trials. Hence,
the proper probabilistic formulation of the corresponding random variable X of
selecting ‘safe’ individuals (‘hits’) is via a Binomial distribution [40]:

f(x) = P (X = x) =

(
n
x

)
pxq1−x =

n!

x!(n− x)!
pxq1−x (21)

where n is the number of trials, x is the number of ‘hits’, p is the competency
for ‘hits’ and q = 1 − p the complementary probability for the Bernoulli trials.
According to these definitions, the mean value and standard deviation can also
be defined as µ = np and σ =

√
npq, respectively.

The sampled values of mean µ and variance σ2 are known to be unbiased
estimators, i.e., they both converge to the actual values as the sample size in-
creases. For the first this is true, for the second only approximately for large
n:

E
[
X̄
]
= µX̄ = µ (22)

E
[
(X̄ − µ)2

]
= σ2

X̄ =

(
N

N − 1

)(
n− 1

n

)
σ2

n
≈ σ2

n
(23)

where the approximation in Eq.23 is valid even when sampling n ≤ N with-
out replacement from a population of size N → ∞. In practice, the unbiased
estimator of σ is usually defined according to:

S2 =
1

n

n∑
i=1

(Xi − X̄)2 ⇒ E
[
S2

]
= µS2 =

n− 1

n
σ2 (24)

Ŝ2 =
n− 1

n
S2 =

1

n− 1

n∑
i=1

(Xi − X̄)2 ⇒ E
[
Ŝ2

]
= µŜ2 = σ2 (25)

Hence, Ŝ is typically used instead of S as an unbiased estimator for small-sized
samples. Based on these fundamentals from estimation theory, the confidence
intervals of the (sample) mean value for any given confidence level zc > 0 is
given by:

X̄ − zc
σ√
n

√
N − n

N − 1
≤ µ ≤ X̄ + zc

σ√
n

√
N − n

N − 1
(26)

for known σ and N,n as described above, i.e., the rightmost fractions are omitted
for sampling with replacement or as N → ∞. Similarly, if σ is unknown it is
replaced by Ŝ or S and the same definition is given by:

X̄ − tc
Ŝ√
n
≤ µ ≤ X̄ + tc

Ŝ√
n

(27)
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The statistic zc is defined according to the Standard Normal distribution given
a specific significance level (two-tailed cummulative distribution function), e.g.,
for α = 0.05 ⇒ zc = 1.960. Similarly, tc is defined according to the Student’s t
distribution given a specific significance level (two-tailed cumulative distribution
function) and degrees of freedom (sample size), e.g., for n = 20, α = 0.05 ⇒ tc =
2.093. The tc statistic provides a somewhat wider confidence interval due to
the uncertainty of having a small sample size and/or unknown σ. Evidently, for
n > 30 the confidence intervals provided by the two distributions are practically
equal.

Using the previous formulation, the confidence intervals defined by Eq.26
and Eq.27 can be specifically rewritten for the Bernoulli probabilities, i.e., the
normalized estimations or proportions p̂ and q̂ = 1 − p̂ in Eq.21. Specifically,
setting p̂ ∝ X̄ = k/n with k ‘safe’ individuals detected in n tests, i.e., X̄ is
the relative frequency in the current sample, and since for Binomial distribution

µ = np and σ =
√
npq ≈

√
Ŝ2 → σ, then:

X̄ − zc

√
p(1− p)

n

√
N − n

N − 1
≤ p̂ ≤ X̄ + zc

√
p(1− p)

n

√
N − n

N − 1
(28)

for known σ and N,n as described above, i.e., with the rightmost fractions
omitted for sampling with replacement or asN → ∞. Here, p is used for replacing
σ =

√
p(1− p), but in practice σ is also considered unknown (related to p̂)

and, thus, estimated via σ ≈ Ŝ according to Eq.25, while additionally using tc
instead of zc statistic if the size of the sample is small (n < 30). A more accurate
definition of Eq.28 is [40]:

p̂ =
X̄ +

z2
c

2n ± zc

√
X̄(1−X̄)

n +
z2
c

4n2

1 +
z2
c

n

(29)

where for large samples (n > 30) both Eq.28 and Eq.29 are reduced to:

p̂ = X̄ ± zc

√
X̄(1− X̄)

n
(30)

using the zc statistic with the Standard Normal distribution or, more properly
for unknown (estimated) σ ≈ Ŝ:

p̂ = X̄ ± tc

√
X̄(1− X̄)

n
(31)

using the tc statistic with the Student’s t distribution.

Similar approaches can be employed for hypotheses testing regarding the
prevalence level, i.e., accepting or rejecting a specific estimation p̂ ≈ X̄ based
on zc or tc at a specific significance level α [39]. Specifically, the zc statistic can
be reformulated in a way that enables the significance testing of hypothesis H0
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that the sample-estimated X̄ is ‘close enough’ to the assumed mean value µ (H0

not rejected) at a significance level α, or reject it otherwise:

H0 : −zc ≤
X̄ − µ

σ/
√
n

≤ zc (32)

where zc is defined for a specific significance level, e.g., for α = 0.05 ⇒ zc = 1.96.
Taking into account the properties of the Binomial distribution in Eq.21 and,
again, substituting for proportions X̄ = p̂, µ = p, σ =

√
p(1− p), Eq.32 can be

rewritten as:

H0 : −zc ≤
p̂− p√

p(1− p)/n
≤ zc (33)

which has the meaning of testing whether an estimated p̂ is ‘close enough’ to the
assumed prevalence p for the global population or if the specific sample (testing
group) is α-significantly different. As previously described for the confidence
intervals, proper adjustments can also be employed here for small-sized samples,
using Ŝ instead of σ and tc instead of zc statistics.

5.2 Evidence-based posterior updates

In Eq.11 the simplest and most common form of the Bayes rule [40] is defined
for m mutually exclusive outcomes Oj , using some evidence E to update their
corresponding posterior probabilities. This is the most fundamental and generic
way to express the fact that some prior probability is updated when new evidence
becomes available, e.g., a supplementary or more recent testing sample, data
related to another property of the associated subject, etc. Bayes approaches have
been applied for many years as the basis for statistical modelling and empirical
estimation of incidence rates [9,20].

A more generic definition of Eq.11 is when the underlying probability distri-
bution is continuous, as it is in most cases. Let x = {x1, . . . , xn} be a sample of
some random variable X, f(x) the corresponding probability density function
that depends on some unknown parameter θ and Θ the random variable asso-
ciated with that parameter θ having a probability distribution function π(θ).
Then f(x) may be described as the conditional density function of variable X
given some Θ = θ, i.e., denoting it as f(x|θ) or ‘x given θ’. Similarly, the joint
probability of Θ given some X = x is defined as π(θ|x). Then the joint prob-
ability of X and Θ can be defined as f(x; θ) = f(x|θ)π(θ). Moreover, given
a sample x of X, the joint density function or likelihood can be written as
f(x|θ) = f(x1|θ) · . . . · f(xn|θ) and the density function of θ given x as π(θ|x).
With these definitions at hand, Eq.11 can be rewritten in its more generic form
as:

π(θ|x) = f(x; θ)

f(x)
=

f(x|θ)π(θ)∫
Θ
f(x|θ)π(θ)dθ

(34)

where the integral is over the range of values for θ. In practice, calculating the
integral over the entire range of θ is not necessary, since the denominator is
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independent of θ and the individual (exclusive) outcomes can be treated com-
paratively. This translates to redefining Eq.34 in a simpler way as:

π(θ|x) ∝ f(x|θ)π(θ) ⇔ π(θ|x) = C · f(x|θ)π(θ) (35)

where C is a proportionality constant independent of θ.
Based on this generic formulation of the Bayes rule, likelihood f(x|θ) can

be interpreted as the updated or posterior probability of observing samples x
from random variable X given its conditioning parametrization by θ. Similarly,
π(θ|x) can be interpreted as the probability density of parameter θ for X after
observing samples x. This later case is very interesting when θ is to be ‘discov-
ered’ optimally from sample data in the sense of maximum likelihood. Although
this task is similar to the approach presented earlier with the confidence in-
tervals, Bayesian approaches are entirely different, since they always treat the
corresponding target parameters as continuous probability distributions rather
than spot statistics within some α-significance range of values [40,41].

The difference between these two approaches, i.e., the classic confidence in-
tervals versus the Bayesian methods, can be described more clearly for the case
of estimating the proportion parameter p in the Binomial distribution of Eq.21.
In the more generic formulation, n is the number of trials and θ is the unknown
parameter of the Binomial distribution of random variable X. Then θ has a
Beta-related probability density function [40]:

π(θ) =
θα−1(1− θ)β−1

B(α, β)
, 0 < θ < 1 , {α, β} > 0 (36)

where B(α, β) is the Beta function:

B(α, β) =

∫ 1

0

uα−1(1− u)β−1du , {α, β} > 0 (37)

If α = β = 1 then π(θ) becomes the uniform density function on [0, 1], mean-
ing that no assumption can be made for θ’s distribution. Using Eq.36 and the
simplification of Eq.35, the posterior density π(θ|x) given any observation x
becomes:

π(θ|x) ∝ θx+α−1(1− θ)n−x+β−1

B(x+ α, n− x+ β)
, 0 < θ < 1 , {α, β} > 0 (38)

which is actually similar to Eq.36 but with parameters x + α and n − x + β.
In words, if a random variable X is Binomial with parameters n and θ, with
the prior density of θ being beta with parameters α and β, then the posterior
density of θ after observing some X = x is also beta with (updated) parameters
α and β [40].

If more strict assumptions can be made for the prior density function of θ,
two other common options are Haldane’s prior with α = x, β = n− x in Eq.37:

π(θ) =
1

θ(1− θ)
⇒ π(θ|x) ∝ θx−1(1− θ)n−x−1

B(x, n− x)
, 0 < θ < 1 (39)
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and Jeffrey’s prior with α = x+ 1/2, β = n− x+ 1/2 in Eq.37:

π(θ) =
1√

θ(1− θ)
⇒ π(θ|x) ∝ θx−1/2(1− θ)n−x−1/2

B(x+ 1/2, n− x+ 1/2)
, 0 < θ < 1 (40)

The definition in Eq.38 is particularly useful in the context of the ‘check-
ing’ game described in the previous sections. Specifically, it describes how the
assumed prevalence p of the underlying Binomial distribution, associated to the
probability psk of selecting ‘safe’ individuals, is to be updated as new testing sam-
ples x become available. With confidence intervals this translated to increasing
the sample size n and, thus, narrowing the limits of the α-significant range. Here,
the Bayesian approach begins with little or no assumption (α = β = 1) regard-
ing the prior distribution of parameter θ = p̂ and after observing x the density
function gets updated, with the posterior distribution being ‘reshaped’ more
narrowly around the maximum likelihood ‘best guess’ of θ, while still remaining
a continuous density function.

In order to see how the Bayesian approach exploits the evidence in x and
improves the estimation of θ, the Binomial distribution of can be treated via
Normal distribution approximation as described earlier, in order to make the
analysis of X posteriors more tractable. In particular, for a random sample of
size n for X drawn from a Normal distribution with unknown mean value θ (X̄
in the sample) and known variance σ2, as well as a prior distribution of θ that
is Normal with mean value µ and variance v2, it can be proven [40] that the
posterior distribution for θ is also Normal with mean value µpost and variance
v2post given by:

E[θ]post ≈ µpost =
σ2µ+ nv2X̄

σ2 + nv2
(41)

V ar[θ]post ≈ v2post =
σ2v2

σ2 + nv2
(42)

In words, Eq.41 defines how µ prior for the mean value of θ is updated after
observing X̄ in the current sample of size n, provided that the corresponding
variances σ2 and v2 are both known. Similarly, Eq.42 defines how v2 prior for the
variance of θ is updated based on that same sample. For better understanding,
the comparison of prior versus posterior for the variance can be made in terms
of the reciprocal of it, thus defining the precision:

ξprior =
1

v2
⇒ ξpost =

1

v2post
=

1

v2
+

n

σ2
= ξprior + ξdata (43)

where the second term in ξpost can be considered as the precision of the observed
data, denoted by ξdata. It is clear that according to Eq.43, the smaller the vari-
ance of a distribution, the larger is its precision value. Then Eq.41 and Eq.42
can be rewritten as:

E[θ]post ≈ µpost =
ξpriorµ+ ξdataX̄

ξprior + ξdata
(44)
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V ar[θ]post ≈
1

ξpost
=

1

ξprior + ξdata
(45)

What Eq.44 and Eq.44 describe under the Bayesian scope is fundamental:
As the sample size increases, so does the precision of the (posterior) variance,
while the estimated mean value gets weighted more and more towards the sam-
ple (data) mean instead of the its prior. In words, the larger the sample size,
the better estimates the posteriors provide for the mean and variance over their
corresponding priors. Not surprisingly, this is similar to what happens with the
range of their confidence intervals for spot value estimations, as noted earlier.
However, the Bayesian context provides a more intuitive way of viewing this ef-
fect on parameter θ as transitioning from a state of little information (wide prior
distribution) to more specific information (narrower posterior distribution).

Besides confidence interval estimation, the Bayesian framework also enables
the analytical calculation of conditional distributions for future observations
based on a currently available observed sample. Although the approach is sim-
ilar, the difference is that instead of the overall posterior density function, the
probability of a specific outcome is now estimated, hence the name Bayesian
predictive distributions for this family of methods. As an example, based on
Eq.38 for a beta distribution for a random variable X, the joint probability of
observing Y = y after obtaining a posterior for θ can be defined as [40]:

f(y, θ|x) = f(y|θ)π(θ|x) =
(
m
y

)
θx+y+α−1(1− θ)m+n−x−y+β−1

B(x+ α, n− x+ β)
(46)

where 0 < θ < 1, {α, β} > 0, y = {0, . . . ,m} and {n,m} the sizes of the first
(observed) and the second (future) sample sizes. Then, the predictive probability
function for Y is the marginal density obtained by integrating Eq.46 over θ:

f∗(y) =

∫ 1

0

(
m
y

)
θx+y+α−1(1− θ)m+n−x−y+β−1

B(x+ α, n− x+ β)
dθ (47)

=

(
m
y

)
B(x+ y + α,m+ n− x− y + β)

B(x+ α, n− x+ β)
(48)

What Eq.48 provides is the point probability of observing y in a future sample
of size m, based on the posterior update as previously defined for θ. In a way,
it is much like hypothesis testing of whether the future sample’s distribution
parameter θ is consistent with its estimation on the currently available sample,
but with the Bayesian approach it is, again, a (predictive) distribution function
rather than an accept/reject outcome.

6 Further complications in real-world testing

The description thus far in the previous sections was focused on three main
aspects:

– Game-theoretic optimal strategies for ensuring risk mitigation.
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– Optimal estimation of the critical probabilistic parameters.
– Optimal posterior updates for safety margin assurances.

For the game-theoretic strategies, only the general setup of the testing process
is necessary to define the optimal way to plan the risk-mitigation testing for
infectious diseases, given that the goal is to maximize the pool of ‘safe’ (or,
equivalently, minimize the pool of ‘non-safe’) individuals and provided that the
capability of the (one or more) decision-makers in selecting those from the general
pool can be accurately estimated. For this estimation, samples can be used for
confidence intervals or Bayesian methods, while subsequent observations can also
be exploited via posterior updates.

The issue that is prevalent in real-world testing and not covered by the afore-
mentioned framework is related to the evidence used, i.e., the observed samples.
Normally in statistics the observations are considered with absolute certainty,
counting different outcomes or properties in a pool of samples without any pos-
sibility of measurement error or lack of information. However, in reality these
measurements are also subject of probabilistic functions that dictate their reli-
ability and the certainty of the outcome. If this certainty is adequately close to
100% it is usually ignored as a factor, but the typical estimation models can not
address situations where this is not a valid assumption. Instead, the evidence
itself must be estimated via confidence intervals or Bayesian methods, before it
can be used as observation to subsequent estimation procedures.

In testing for infectious diseases this situation is a very common case-specific
factor that needs to be taken into account. Neither of the two main categories
of tests, molecular or antigen ‘rapid’, exhibit perfect sensitivity or specificity
and, hence, their diagnostic accuracy is close but certainly lower than 100%.
There are several ways to assess the accuracy of these medical testing proce-
dures and, hence, the certainty of the evidence which they provide in statistical
terms. More commonly, sensitivity and specificity represent the two major fac-
tors in any empirical (data-driven) assessment related to the confidence on the
evidence regarding positive and negative hypotheses, respectively. In addition,
medical testing can also be characterized by the positive and negative predictive
value, which are related to the confidence on the evidence regarding positive and
negative test outcomes, respectively.

Regarding SARS-CoV-2, Table 2 presents the corresponding numbers for
five commercially available antigen ‘rapid’ tests (2020), for different levels of
sampled-estimated prevalence [29]. It is clear that testing outcomes can not be
assumed to exhibit perfect certainty, hence the statistical evidence on ‘safe’ or
‘non-safe’ individuals is strong but not absolute. This means that every priors
estimation and posterior updates should take this into account, leading to much
more complex probabilistic treatment than what was presented in the previous
sections.

What Machine Learning provides is a data-driven view of these estimation
tasks and an abstraction level ‘above’ the underlying statistical complications
that are unknown or too complex to express analytically [42,23]. At the same
time, the theoretical foundations from Artificial Intelligence and, more precisely,
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the structural risk minimization of models that are trained with empirical evi-
dence (datasets) ensure that the final estimations are optimal w.r.t. some core
criterion, which is normally the maximum likelihood estimation for the ‘true’ pa-
rameters of these ‘unknown’ probabilistic models [41]. Two such typical examples
are Support Vector Machines (SVM) [42], which can be designed specifically to
maximize the discrimination margin between predicted classes or, equivalently,
to minimize the structural risk of the empirical error of the trained model, i.e.,
generalized from a limited training dataset to the global problem; and Bayesian
Networks [41], which naturally incorporate the notion of imperfect information
(uncertainty) and cascaded propagation of evidence-based probabilistic estima-
tion of outcomes from node to node as a continuous flow.

One specific factor that caught the attention of researchers during after the
initial surge of the SARS-CoV-2 pandemic and the emergence of readily avail-
able ‘rapid’ test kits was the option of having lower accuracy but massive tests
in the general population [30]. Low accuracy in testing translates to low sen-
sitivity and/or specificity, which in turn produces low positive and/or negative
predictive value. After observing the evolution of the national epidemic in several
countries, especially after lifting the international travel bans during the summer
of 2020, researchers have argued that in practice these policies may work much
better than expected. Although this seems counter-intuitive in statistical terms,
‘rough’ but massive screening in the population can be a decisive pre-emptive
contingency measure against the spreading of the virus. Having many false pos-
itives means putting into quarantine more individuals than necessary, but this
can be considered as acceptable cost during such a global emergency. Having
many false negatives means missing some individuals, but the massive scale of
tests overcomes this drawback by detecting much more ‘non-safe’ individuals in
total. In words, both cases of low-performance testing may lead to better over-
all mitigation strategies and contingency policies against a pandemic such as
SARS-CoV-2.

7 Conclusions

In this study, the general problem of developing optimal testing strategies for
infectious diseases like SARS-CoV-2 was explored under the scope of Game The-
ory, sampling and estimation methods from classic Statistics, as well as Bayesian
methods for the proper treatment of posterior updates. Overall, it is a very chal-
lenging research topic that requires deep understanding and somewhat new point
of view, combining multiple aspects of crowd dynamics, risk management and
Machine Learning, which are usually employed individually by researchers de-
pending on their main field of expertise.

Six main guidelines have been established by this work:

1. The core task of any such screening process via testing in transit hubs and
gateways is minimizing the risk of introducing infectious individuals in the
general population; there is no point in maximizing the ‘hit rate’ of the tests,
especially when the testing pool is very limited.
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Table 2. Indicative performance of antigen ‘rapid’ SARS-CoV-2 tests from five differ-
ent companies (2020), for different levels of sampled-estimated prevalence X̄, based on
n = 1000 sample patients. [29].

X̄ = 0.02 STY SPY TP FP FN TN PPV NPV

comp.1 100.00% 94.29% 20 56 0 924 26.32% 100.00%
comp.2 95.00% 98.47% 19 15 1 965 55.88% 99.90%
comp.3 100.00% 93.06% 20 68 0 912 22.73% 100.00%
comp.4 90.00% 97.24% 18 27 2 953 40.00% 99.79%
comp.5 85.00% 97.24% 17 27 3 953 38.64% 99.69%

X̄ = 0.30 STY SPY TP FP FN TN PPV NPV

comp.1 100.00% 94.29% 300 40 0 660 88.24% 100.00%
comp.2 96,67% 98.57% 290 10 10 690 96.67% 98.57%
comp.3 98.67% 93.14% 296 48 4 652 86.05% 99.39%
comp.4 89.67% 93.14% 269 48 31 652 84.86% 95.46%
comp.5 85.33% 97.14% 256 20 44 680 92.75% 93.92%

2. Risk minimization is inherently associated with (estimated) variance mini-
mization of incidence rates for each sampling group; hence, allocating testing
resources according to this principle must be the core screening policy.

3. When planning an inflow-allocation strategy for a specific capacity from
multiple groups, risk minimization dictates that maximizing quotas towards
lower-ranked incidence groups is the optimal policy.

4. Multiple decision-making independent ‘experts’ (models) for detecting ‘safe’
versus ‘non-safe’ individuals can be combined optimally via analytical solu-
tions from Coalitional Games, specifically Weighted Majority Voting.

5. Estimated confidence intervals must be used instead of point means for
proper control of risk margins; even more, Bayesian methods provide a more
intuitive way for continuous posterior updates exploiting testing results.

6. In order to cope with the increased complexity of uncertainty in evidence
(test reliability), Machine Learning methods are appropriate for data-driven
maximum likelihood estimation of parameters and structural risk minimiza-
tion.

It is imperative to stress out the differences between common cost/benefit
optimization methods like bandit algorithms from Operational Research and the
risk-minimization target of the problem treated here: maximizing the detection
value of any single test does not minimize the posterior incidence risk for the
population. If tests themselves are put in the center of the optimization goal, there
is no guarantee whatsoever that the risk of infection propagation is minimized.
In other words, minimum infection risk, not optimal resource allocation, is the
real challenge and top priority.

Under the scope of these core principles described above, any screening policy
designed by the decision-making authorities is guaranteed to minimize the risk
of introducing infectious individuals to the general population.
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