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Demand Response (DR) strategies represent an innovative option to optimise energy management. In
particular, smart thermostats have captured the attention of the scientific community for their effective-
ness in achieving energy-saving and peak-shaving by lowering HVAC consumption during critical hours
of the year. One way of achieving this aim, is to leave the control of the smart thermostat to a third party
for the duration of the DR event in the so-called Direct Load Control (DLC) configuration. Most research
focuses on thermostat overrides during DR events; in this work, we use real world data from the Donate
Your Data dataset to analyse the interaction of users with the thermostat around the DR event. In partic-
ular, this work focuses on users that interact with the thermostat before (anticipative behaviour) or dur-
ing the DR event (reactive behaviour), leading to a lower efficiency of the load control. Through clustering
techniques, different categories of users are identified, and some significant cases are simulated on a
building energy simulation tool to quantify the missed power reduction and the impact on energy. The
study highlights that the behaviour of some users can reduce or even nullify the efficacy of the DLC strat-
egy. In light of the findings and to prevent this issue, we suggest the need for tailored DR events for dif-
ferent archetypes of users as identified in this work through clustering.

� 2022 Published by Elsevier B.V.
1. Introduction

The current electricity infrastructure is designed based on peak
loads, which varies with the climate, the type of usage and the pen-
etration of local production systems. Electricity demand load
changes throughout the day and the year according to users’
demand, creating a peak in periods of maximum demand. This
has consequences at both building and urban scales. The single
building can experience power outages and blackouts. Even worse,
the single-building peaks sum up with neighbour ones, creating a
peak demand at the urban scale, which can lead to a collapse of
the grid in the long term [1]. During extreme weather episodes
(heat waves, for instance), this issue is even amplified.

Because of the recent increase in power demand (e.g., for the
penetration of fast charging electric vehicles [2], but also for the
proliferation of electric heat pumps), the maximal load needed
now is greater than the one given by the natural renovation of
the grid driven by the natural growth of the cities. Loads are
becoming ‘peakier’ and those peaks are more frequent. Even, the
situation will become more and more serious in the next decades.
Electricity demand is expected to increase by up to 509 % from
2007 to 2050 depending on the country [3]. Maintaining the stabil-
ity of the supply should be a priority all over the world, but it
implies continued investments to achieve the modernisation and
the expansion of the actual grid, mainly based on an increase of
the capacity, and consequently an increase in the number of hours
at which the grid is underused. To make a more efficient system, a
reshaping of the peaks over time is needed; and it can be seen as an
effective solution to achieve good power management. The ensem-
ble of the mechanisms of shaving peak loads, i.e. reducing the con-
sumption during peak times or shifting it to off-peak times, is
called Demand Response (DR). DR programs are considered as part
of the Demand-Side Management and are strictly related to cus-
tomers’ engagement and awareness. They are highly encouraged
by both energy companies and regulatory authorities to exploit
the potential of demand-side flexibility [4].

Direct Load Control (DLC) is a type of DR program that consists
in altering directly a customer’s energy consumption based on an
event issued by a third party [56789]. In particular, direct load con-
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trol of the HVAC system is one of the most used incentive-based
strategies. Smart thermostats, necessary in order to plan a DLC
strategy of the HVAC system, have captured the attention of the
scientific community for their effectiveness in achieving energy-
saving and peak shaving while maintaining occupants’ thermal
comfort [10111213]. The users subscribing to the DR program
are asked to relinquish control over their smart thermostats, i.e.
over the setpoint temperatures that govern their thermal environ-
ments, in exchange for bill credits. When a peak demand is
expected, the third party takes control over the programmed
schedules, increasing or decreasing (depending on the season)
the setpoint temperature. This occurrence is referred to as Demand
Response Event (DRE). Such management of the setpoint tempera-
ture can lead to a substantial reduction in energy consumption,
preventing the peak demand from occurring (Fig. 1). Users are an
active part of the loop, as they are requested to accept changes
of their normal patterns to enhance a better distribution of their
consumptions [5].

DREs can have different timescales depending on the degree of
urgency the utility company is facing. For what concerns just the
HVAC system, the conventional building demand management
strategy consists of a low-impact change in the setpoint tempera-
ture in order to maintain occupants’ comfort. For example, in the
hottest days of summer, diminishing the cooling setpoint temper-
ature by a few degrees for the warmest hours of the day, may be
enough to avoid the peak load. Nevertheless, sometimes the power
imbalance of the grid leads to a more urgent solution. In such
cases, an immediate demand reduction is needed, and the HVAC
system is shut down for a very short period, of the order of minutes
(the so-called ancillary service) [14]. In this article, we will focus on
the long DREs, that affect the indoor environment over more than
an hour.

Direct control over the thermostats carries the risk of affecting
occupants’ thermal comfort. It is worth specifying that DREs can be
optional or mandatory. In the first case, if an occupant starts to be
uncomfortable during a DRE, they can stop it and that is called an
override. In the second case, customers cannot override the DR
event once subscribed to the program. From the literature, it is
clear that the majority of DR initiatives consists of interruptible
programs [15] since the possibility of stopping an event increases
largely the willingness of the users to subscribe to a DR program
[1617]. During a DRE, the only way an occupant has to express
Fig. 1. Sketch of the concept of peak shaving in a Demand Response event. The
expected power consumption (turquoise line) is shaved over the duration of the
event as a consequence of a change in the setpoint temperature (orange line). For
the colour version of the picture the reader is referred to the online version of the
paper. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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their thermal discomfort is by adjusting the setpoint temperature,
i.e. overriding the event.

Studies in the literature point to different findings of how peo-
ple react to DREs. In some studies, DREs are found to be almost
unperceived by occupants [18]. This is in contrast with other works
that analysed the rate of overrides, obtaining quite high results, up
to 39 % [19]. Sweetnam et al. [20] analysed this discrepancy
through a winter experiment of demand shaping. Although the
experiment was characterised by a very modest change in temper-
ature (within ± 2 �C), the feedback received from the occupants
revealed a low acceptance of the DRE. Such a conclusion is in line
with the theory that the thermal dissatisfaction of individuals is
often underestimated [21]. This, together with the fact that an
override implies a loss on the effectiveness of the demand response
event, highlights the importance of studying overrides during
DREs.

Overriding an event has repercussions on the average power
reduction, as the total duration will be shorter than expected.
We will refer to the difference between the expected power reduc-
tion and the effective power reduction as missed power reduction.
We have evaluated the magnitude of the missed power shaving
depending on both the duration of the override and the change
in the setpoint temperature during the override. However, over-
rides are not the only threat to power consumption. As explained
by Conejo et al. [22], if many users participate in the same DR
event, the original peak will be shaved but another peak could be
created afterwards. This phenomenon is known as the rebound
effect, and it is due to postponing consumers’ consumption to the
period after the event [23]. The increase in power consumption
due to a rebound can extremely reduce, and even nullify, the
power reduction obtained through the DRE [24]. Studies on the
rebound effect are often limited to the power increase due to the
abrupt increase in HVAC load when brought back to normal oper-
ation, right after the DR event [25262728], but the increase in
power consumption is also affected by the changes in the setpoint
temperature chosen by the users after the event (additional
rebounds). To better analyse and quantify the rebound effect, it
is important to understand if, after the DR event, the user wants
the same temperature that they had before the DRE or a colder/
warmer one (summer case/winter case respectively). Ultimately,
it needs to be answered if their perception of comfort is different
compared to the hours that preceded the DR event.

The rebound effect as a shift in peak-load has been noticed in
several experiments, but mostly focusing on the power rebound
right at the end of the DR event [29]. The multiple rebounds that
can be observed in the following hours (due to additional setpoint
changes) has not been commonly studied in the literature. In a
recent experiment by Christensen et al. [30], that was conducted
in winter, the rebound effect was reported several times in the
hours after the DR event. Christensen et al. noticed an increase in
the heating power due to the shifting of the demand. The rebound
effect phenomenon was observed not just in long-term-DREs, but
also in faster events. However, the rebound effect was not fully
characterised in terms of occupants’ behaviour. In the study pro-
posed by Broka and Baltputnis [31], the rebound effect is only cov-
ered from a financial point of view. Moreover, the rebound cases
considered, are not real but simulated, analysing several scenarios
from the supplier’s point of view while the consequences on the
energy consumption are not examined.

To the best of the authors’ knowledge, a comprehensive study of
the multiple rebounds after the users’ thermostat overrides and
the temperature preferences in the period before and after a DRE
has not been carried out yet. This paper aims to cover such a gap
in the literature by focusing on how the DREs affect occupants’
thermostat usage behaviour before and after the event and on
the energy consequences of this behaviour.
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Our study is based on the Donate Your Data (DYD) dataset [32].
To help scientists investigate how occupants engage with their
thermostats, the thermostat manufacturer Ecobee created the
DYD campaign, that collects anonymised thermostat use data
directly from the users. Several authors have shown interest in
the DYD dataset, approaching it from different points of view and
perspectives [33343536]. About users’ interaction with the ther-
mostat, Kane and Sharma [37] studied the time that it takes for a
user to override a setpoint schedule when uncomfortable. They
explained that every manual setpoint change was due to complex
interdependencies between the building physics, the users’ physi-
ology, the social cognition, the type of thermostat and the actions
users are willing to take. The interesting conclusion of their work
was that more than half of manual setpoint changes were not a
consequence of a programmed setpoint change, i.e. users were
overriding decisions they previously made. It has been further
observed that indoor temperature control depended on how the
users supposed the thermostat worked (their mental model), more
than on the actual thermostat’s functioning [38394041]. Sarran
et al. [29] used the DYD database to study overrides during DR
events and found an overall override rate of 12.9 %. They observed
a negative impact of households’ overrides on the power demand
reduction’s potential of the DR event. It was further noticed that
people that frequently override their scheduled setpoint during
normal days are more likely to interact with their thermostat also
during a DR event. This conclusion suggests that the overrides can-
not be related just to environmental and physical factors: habits
play a key role in their prediction. A decision tree analysis con-
firmed the influence of habitual setpoint change behaviour of the
users on the DR overrides.

Using the database of the Ecobee DYD program, this paper aims
to study the implications of manually modified setpoint tempera-
tures before and after the DRE, in particular focusing on the beha-
viour of occupants who showed less acceptance of the DRE. Hence,
both the users who interrupted the DRE and those who adjusted
the setpoint temperature before DRE are included in the analysis.
In other words, our work is designed to investigate all the DREs
that did not end with a scheduled setpoint. We do this to have a
complete vision of the effects of user behaviour on the DR’s effec-
tiveness. In the rest of the paper, both types of users will be
referred to as overriders, since they override the programmed
schedule and, in both cases, the thermostat does not return to
the scheduled setpoint value. Hence, in our analysis, we propose
a classification of overriders through a data-driven clustering anal-
ysis, that allows us to learn more about the groups of people that
behave similarly, and with that information, improve the design
of demand response events. In Section 2, the approach used for
the analysis of the database and the methodology used for simulat-
ing the different behaviours are explained; in Section 3, results are
presented; in Section 4 the main conclusions of the study are
delineated.
2. Methodology

2.1. The dataset

The DYD campaign allowed Ecobee’s users to share their ther-
mostat data, after a necessary process of anonymisation that
removes any personal information. The DYD dataset includes both
data and metadata and it is updated quarterly with new partici-
pants. Metadata refers to home and householders’ characteristics
and it includes information such as the home identifier (as an
anonymised code), the thermostat model, the country, and the
number of occupants. Data refers to the information collected by
the Ecobee thermostats (in 5-minutes intervals) and it includes,
3

among others, date, time, schedule selected, event occurrence,
indoor temperature, setpoint temperature, relative humidity, out-
door temperature and motion detection.

To understand the analysis presented in this paper, it is useful
to first understand how the Ecobee thermostats work, especially
during a DRE. When choosing the settings for the thermostat, users
have to define a daily profile temperature, by setting different set-
point temperatures at different times of the day through schedules.
There are some default schedules (awake, away, home and sleep)
and, in addition, users can create customised schedules. Users are
asked to choose a starting hour and a setpoint temperature for
each one of the schedules. Any action that modifies the schedule
is called event. Examples of thermostat-controlled events are smart
recovery, smart home, smart away and, of course, Demand Response
events. Hence, the timesteps in which a DRE occurs are clearly
shown in the dataset.

For our analysis, we only used a subset of the DYD dataset made
of 13,145 homes (data collected up to 2019). This includes 11,327
(86 %) Canadian homes and 1818 (14 %) US homes. Among the
whole dataset, 1398 homes signed up to participate in the demand
response events program (1156 from Canada and 242 from the
United States). As we wanted to study DREs in the summer period,
we decided to first remove winter months from the dataset, as well
as homes that did not have an active cooling system. The dataset
was filtered according to the following conditions:

� mean monthly outdoor temperature higher than 15�C;
� presence of an active cooling system.

After this filtering, 990 thermostats were left for the study.
Among them, 1509 DR events were detected (1.52 events per ther-
mostat on average). Note that in this part of the section we are con-
sidering all the DR events of the dataset, including both the ones
followed by a scheduled setpoint temperature and the ones with
user-adjusted setpoint return.

In our analysis, we chose not to consider occupancy measure-
ment, since some inconsistencies have been observed in the data.
In the most common situation this was related to a privacy con-
cern: some occupants did not share information about occupancy.
Besides, the literature has shown that a considerable percentage of
false detections are registered when it comes to evaluating the
occupancy of homes [42]. It is called false positive the case in
which the motion sensor detects human presence, but the users
are not actually at home, and it is called false negative the case
in which at least one user is occupying the house, but the motion
sensor is not able to detect this presence. The percentage of false
and true detections depends on the detection mechanism [43],
being the passive infrared (PIR) motion sensors more reliable in
detecting presence than absence. For this reason, the interpretation
of the results that consider the ‘Occupancy’ parameter was
excluded.

As anticipated in the Introduction, Sarran et al. [29] focused on
the DR events that were interrupted by the users before their nat-
ural end. Notwithstanding, their conclusion led us to notice that
other users affect the missed power reduction due to the DRE with-
out interrupting it but by changing the setpoint before the event.
Indeed, it has been observed in many cases that, prior to the
DRE, the setpoint temperature was not the scheduled one, but
one chosen by the user through a manual change as in preparing
for the event. As the users knew when a DRE is due to start (day-
ahead notification), they could adjust the thermostat setpoint tem-
perature before the beginning of the event, in order to mitigate its
effect on the indoor temperature. We called this manual change to
the programmed schedule to anticipate the DREs a Hold Action
(HoA). In general, any user’s manual adjustment of a scheduled
program can be referred to as Hold and, depending on how the user
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has configured the thermostat, the action has a certain duration,
that can be fixed (a few hours) or indefinite (a manual interaction
is then needed to return to the scheduled program). Consequently,
occupant behaviour can affect the DRE’s effectivity and the overall
missed power reduction in two occurrences: (1) the user chooses
to interrupt a DR event, interacting with the thermostat and affect-
ing the duration of the DRE with a User Adjustment (UA), and (2)
the user adjusts the setpoint temperature before the DRE with an
HoA, affecting automatically the setpoint temperature at the end
of the event because the thermostat falls back to that value when
the DR event is over. To our knowledge, this is the first work that
contemplates this particular, but relevant case. In our analysis of
the DYD dataset, we designate as Adjusted Demand Response
Events (ADREs) the DR events ending up with a setpoint different
from the scheduled one, i.e. cases (1) and (2), and we distinguish
them from the Non-Adjusted Demand Response Events (non-
ADREs) that return to the programmed schedule (see Fig. 2 for an
overview). Finally, we are also interested in analysing and studying
the rebound effect in the post-event period, so we defined
rebounds in the dataset as the decreases in the setpoint tempera-
ture set by the users after the end of the DRE. Thus, we isolated
a subgroup of the ADREs that are followed by one or more
rebounds (i.e., further adjustments) and we called them
ADREs + R (Fig. 2).
2.2. Clustering of post-DRE set-point profiles

Analysing the setpoint temperature series by eye, we noticed
that somehow people’s behaviour followed some patterns. Hence,
we used clustering in order to be able to classify the different pro-
files according to criteria that cannot be distinguished by eye.

Clustering is one of the most popular data mining techniques. It
consists of grouping a set of observations by means of their similar-
ity. As a result, the observations within clusters are more similar to
each other than observations between clusters according to the
chosen criteria.

The clustering will be used to characterise the setpoint profiles
after the DREs. To focus on the problem at hand, we selected from
the dataset the subgroup of ADREs + R as defined in the previous
section. Thus, we excluded the group of users that, once selected
their user-adjusted setpoint temperature for the post-event period,
do not interact anymore with the HVAC, i.e. cases without addi-
tional rebounds. We applied agglomerative hierarchical clustering
[44], which starts assigning each value to its cluster and then it
proceeds iteratively. Thus, at each stage, it joins the two most sim-
ilar clusters using a measure of similarity, until there is just a single
cluster. The hierarchical strategy was chosen based on the fact that
the times series had different lengths, and we could visually
Fig. 2. Sketch of the concept of Adjusted Demand Response Events (ADREs), the
demand response events whose effectivity is affected by human behaviour. In the
picture, HoA = Hold Action, UA = Users’ Adjustment.
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inspect how the number of clusters would affect the groupings.
The strategy does not require variables to be continuous, contrary
to other well-known methods such as k-means. To decide which
clusters should be combined, a measure of dissimilarity between
sets of observations is required. In most methods of hierarchical
clustering, this is achieved by the use of an appropriate metric (a
measure of distance between pairs of observations), and a linkage
criterion that specifies the dissimilarity of sets as a function of the
pairwise distances of observations in the sets. Since our purpose
was to classify the overriders’ profiles, we decided to use a
shape-based metric named k-Shape [45] to group the users by
the shape of the curve that the setpoint presents. K-Shape uses a
normalised version of the cross-correlation measure, in order to
consider the shapes of time series while comparing them. After
that, it creates homogeneous well-separated clusters. In order to
compute the pairwise distances of observations in the sets, we
used the Unweighted Pair Group Method with Arithmetic mean
(UPGMA) criterion [46]. Using this, the distance between two clus-
ters is defined as the average distance between each point in one
cluster to every other point in the other cluster.
2.3. Simulation

To quantify the missed power reduction due to overrides and
rebounds, we created a model on EnergyPlus [47] using real build-
ing geometries from the metadata available in the dataset. The
simulation refers to the cooling energy need during the summer
of 2019 in a Canadian home (i.e. the efficiency of the cooling sys-
tems was not accounted for). To choose the dwelling used for the
model, we isolated homes that were subjected to the same DR
event and we chose one case from each identified cluster. Among
them, we chose the case that was more complete in terms of meta-
data available, from which we extracted the geometric parameters
(total area of the house = 100 m2), the number of occupants (3
occupants) and the number of floors of the building (one floor);
then, we applied the same scenario to the rest of the simulated
cases.

Information about the building fabrics was not available in the
dataset. Hence, we acquired the construction elements of the
envelope from the default ASHRAE models, available in the OpenS-
tudio’s library. In particular, the thermal transmittance of the roof
and the external walls correspondent to Climate zone 6 were
respectively 0.186 W/m2K and 0.426 W/m2K.

For the weather data, the epw file of Toronto was first selected
[48]. The file was then edited using outdoor temperature values
from the dataset [49] to diminish potential disparities due to speci-
fic year conditions. According to the DYD handbook, the outdoor
temperature of the Ecobee dataset was obtained from the nearest
weather station. Also, since we used the same model with different
setpoint temperature profiles to show the difference from one
another, this uncertainty did not have much effect on the final
comparison.

Once the model was created, the real data from the DYD dataset
was used to calibrate the model in terms of other factors such as
thermal mass or internal heat gains from equipment (gains for
the equipment set to 1.5 kW, number of people set to 3 during
occupied period). The setpoint temperature used in EnergyPlus is
taken from the DYD dataset. Fig. 3 shows an example of the com-
parison between the real data and the simulation in terms of
indoor temperature. Following the ASHRAE Guideline 14 [50], the
model was calibrated through the Normalized Mean Bias Error
(NMBE) and the Coefficient of Variation of the Root Mean Square
Error (CV-RMSE). In this case, the NMBE was equal to 1.12 %, while
the CV-RMSE was equal to 1.95 %, so the model can be considered
validated with respect to the internal temperature.



Fig. 3. Comparison between the indoor temperature extracted from the dataset and the indoor temperature obtained through EnergyPlus. The blue line represents the real
trend of the indoor temperature, taken from the DYD dataset. The turquoise line represents the indoor temperature obtain as output of the EnergyPlus model. The yellow line
shows the setpoint temperature, taken from the real data and used as input in the energy simulation. For the colour version of the picture the reader is referred to the online
version of the paper. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The model was used to calculate the power consumption during
a day in which a DRE occurred and during a day without any event.
The missed power reduction obtained was then compared to other
cases (one for each cluster) in which the occupants overrode the
event and in which rebounds were detected. It is important to have
in mind that the aim of the simulation is not to assign a qualitative
value to the clusters, but rather to estimate the impact of different
users’ behaviour on the DRE’s effectiveness.
3. Results

3.1. Overview of all DR events

We first concentrated on studying the DREs present in the data-
set, in order to have a more complete understanding of the phe-
nomenon before focusing on the overriders’ behaviour in the
post-event period. Through a visual inspection of the dataset, we
detected that, concerning the evolution of temperature throughout
the DR event, three main cases could be found, and they have been
sketched in Fig. 4. In the first case, the setpoint temperature
remained constant throughout the whole duration of the event
(Fig. 4.a). In the second case, the setpoint temperature’s increased
gradually during the event, from a cooler to a warmer temperature
(Fig. 4.b). This case suggests an attempt to avoid an abrupt temper-
ature change. In the third case, one can clearly distinguish a first
Fig. 4. Sketch of the different evolution of the setpoint temperature during the DR
event as designed by the aggregator. a) Constant in time. b) Increasing intensity. c)
With Precooling. The light blue timeframe represents the DRE. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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phase in which the setpoint temperature decreases (Fig. 4.c). This
evolution of temperature suggests an attempt of cooling down
the home to prevent the warm discomfort caused by the DR event.
This first phase of preparation is called precooling, while the sec-
ond phase, the real DRE, is often referred to as the setback stage
in the literature. Among the 1509 DR events considered, 452 were
preceded by a precooling, which means approximately 30 % of the
total, while 237 (about 16 %) are characterised by an increasing
setpoint temperature. While the remaining majority is the con-
stant case (54 %).

In the analysis, we focused on all the aspects that can help to
describe DR events: when they start, when they end, how long they
last, how many DR events can be experienced in the same house,
which is the reaction of the users, and so forth. Beginning with
the starting time of the day, the great majority of events started
between 14:00 and 15:00, with the most recurrent value being
14:30. Also for precooling events, most of the events started
between 14:00 and 15:00. Thus, on average the precooling event
starts half an hour before the actual DR event. Precooling stages
of more than 50 min are also common, and they are likely to be
related to the events that started between 15:00 and 16:00. For
what it concerns the temperature-increase phase of the DRE, the
most recurrent duration is between three hours and three hours
and a half, being the mean value of 151 min (Fig. 5.a). As the his-
togram shows, there are events whose duration exceeds five hours.
The two peaks in the histogram (at 120 min and 180 min) repre-
sent the most frequent DREs, i.e. events that are sent simultane-
ously to a greater number of homes. Besides the time, the other
characterizing factor for the DR events is the temperature. An
increase in the setpoint temperature of 2.2�C when the DRE starts
is observed as the most recurrent (Fig. 5.b), especially in the events
that are constant in time (purple histogram).

Fig. 6 shows the mean values of outdoor temperature, indoor
temperature and setpoint temperature during a DRE. The mean
outdoor temperature during the DREs is 28�C. The indoor tempera-
ture’s histogram presents a more symmetric distribution, being the
mean value equal to 24.4�C, which is a reasonable value for a Cana-
dian home in summer. According to the ASHRAE ranges of thermal
comfort [51], this is a value that could lead to a slightly cold ther-
mal environement but that can be considered comfortable. When it
comes to analysing the setpoint temperature during summer DREs,
the graph is less intuitive. Most of the events are characterised by
temperatures between 25 and 27�C, but higher values are also
recurrent. The higher values are likely to be used as set-back tem-
perature, set when active cooling is not necessary although the



Fig. 5. a) Histogram that represents the duration of the Demand Response events; b) Histogram that represents the increase of the setpoint temperature when the DRE starts.
The blue histograms refer to all typologies, the purple histogram refers to the type (a) from Fig. 4 – DREs constant in time. For the colour version of the picture the reader is
referred to the online version of the paper. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. a) Histogram of the mean outdoor temperatures during the DR events; b) Histogram of the mean indoor temperatures during the DR events; c) Histogram of the mean
setpoint temperatures during the DR events.

Fig. 7. Distribution of the percentage of adjustments probability at different time
bins (among ADREs). Interval notation of the x-axis: reversed bracket indicates that
the endpoint number is excluded from the interval, normal bracket indicates that
the endpoint number is included in the interval.
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HVAC is turned on. They are used in particular for the Schedule
Away, but they have also been detected as a last phase of the
DRE in the cases of increasing setpoint (Fig. 4.b). The mean value
of the setpoints during the DRE was seen to be 26.3�C.

3.2. Adjusted DR events either by HoA or DR interruption

Over the 1509 DREs considered, 38.5 % of them (581) were
ADREs. It is common to send the same DREs to several homes at
the same time. Hence, to have an idea of the number of ADREs
per single event, we isolated the DREs that were concurrently sent
to a larger number of dwellings:

� 20–08-2019 (314 ADREs out of 976 DREs, 32 %);
� 16–08-2019 (30 ADREs out of 128 DREs, 23 %);
� 12–07-2018 (21 ADREs out of 55 DREs, 38 %);
� 30–08-2019 (19 ADREs out of 54 DREs, 35 %);
� 21–08-2019 (17 ADREs out of 53 DREs, 32 %).

We will consider the totality of ADRE in the analysis, but study-
ing more in detail this subset of ADREs, we noticed that only an
average of 13 % of them are interrupted earlier by a users’ adjust-
ment (as seen in previous research by Sarran et al. [29]) while the
rest are the ADREs preceded by an HoA. It is also interesting that,
apart from the interruptions during the DRE, 16 manual interrup-
tions are registered during the precooling phase (around 3 % of
the DR with precooling).

3.2.1. Behaviour during the DR event
Among the ADREs, we analysed the duration of the DR event.

Fig. 7 shows the distribution of the cumulative percentage of DR
event duration. The abscissa axis represents the total duration of
the DR event, where every bin represents the upper limit of the
6

interval (time since the event started). The graph shows a net
change of the trend at the bin corresponding to 180 min. This
can be explained by considering the biggest peak in the histogram
in Fig. 5, where most programs are designed to end after 3 h of
activation.

Focusing on the indoor temperature reached during the first
three hours of the event, Fig. 8 shows a comparison between the
ADREs and the non-ADREs, i.e. those DR events that were allowed
to run completely and returned to a scheduled setpoint (Fig. 2). The
reader is reminded that the amount of data that composed the two



Fig. 8. Mean indoor temperature in the first three hours since the event started a) ADREs b) non-ADREs. The error bar represents the standard error with a 95% confidence
level. Interval notation of the x-axis: reversed bracket indicates that the endpoint number is excluded from the interval, normal bracket indicates that the endpoint number is
included in the interval.
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subsets is different (581 events in a) and 928 in b)). In Fig. 8, the
error bar represents the standard error, which measures the statis-
tical accuracy of an estimate (not to be confused with the standard
deviation, which measures the dispersion of the data around the
mean value). The standard error is strictly related to the sample
size: the bigger is the dataset, the smaller is the error. The differ-
ence in the indoor temperature when the event started (approxi-
mately 0.2�C cooler in the ADREs subset) is mainly due to the
adjustments due to a manual change (lowering of the setpoint
temperature) prior to the event (HoA). If we focus on the delta
temperature, and not on the absolute values, the increase for the
two subsets is similar (0.6�C for ADREs, 0.7�C for the non-ADREs).
This consideration suggests that the increase in the indoor temper-
ature is not a primary cause of the adjustments, as confirmed in
[29].
3.2.2. User behaviour after the DR event
As the other focus of our analysis is the post-event period in the

ADREs, it was seen interesting to investigate the setpoint temper-
ature detected right after the event, when the schedule is not fol-
lowed (for both UA and HoA). In this analysis, we worked with a
dataset of 528 samples (slightly reduced compared to the total of
581 events), since anomalies were detected during some DR
events, probably due to internet connection failures.
Fig. 9. Decrease of the setpoint temperature for all ADREs (left); Decrease of the setpoin
brackets (right). Interval notation of the x-axis: reversed bracket indicates that the endpo
number is included in the interval.

7

The distribution of the difference in the setpoint temperature
can be observed in Fig. 9 (left) for all ADREs. The average temper-
ature difference is 2.5�C. The peak in the histogram of 2.2 �C can be
explained considering the larger number of DR events that were
not adjusted during the DRE, but only before the DRE.

Fig. 9 (right) shows the decrease of the setpoint temperature
applied during the user adjustment only (UA). The abscissa axis
represents the total duration of the event (time elapsed from the
beginning of the DR event). The plot shows only the events overrid-
den in the first 100 min in order to include only cases in which
users manually interrupted the DRE before its programmed end.
For larger durations of the event, we cannot distinguish without
further analysis the ADREs preceded by a HoA from the ADREs
interrupted by a UA. The number of samples considered for every
box is shown in brackets. The ordinate axis of Fig. 9 (left) repre-
sents the downward setpoint variation (i.e. how many degrees
the users lowered the temperature when they interrupted the
event). It can be seen that the more the duration increases, the
more the users want to feel cool rather than neutral. It is important
to have in mind that a greater drop in temperature corresponds to
a bigger loss in energy efficiency and in the DRE strategy’s
effectiveness.

Studying in detail the same event (20–08-2019) in two different
homes (Fig. 10), it was evident that the override was not the only
t temperature in correspondence of an ADRE (UA), the number of samples beeing in
int number is excluded from the interval, normal bracket indicates that the endpoint



Fig. 10. Comparison between a non-ADRE and an ADRE (the same event in two
different homes).

Fig. 12. Elbow method computed to decide the optimal number of clusters to be
used in the analysis, before proceeding to the visual inspection of the dendogram.
The data points have been shown with a logarithmic trend line to smooth noise. The
differential change data refer to the secondary y-axis (on the right).

Fig. 13. Dendogram using a division of 10 clusters (only ADREs + R).
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cause of the missing power reduction. Fig. 10 shows the variation
of the setpoint temperature during the same day for two different
houses, one with the override, and the other without.

The blue line represents a home in which the event started and
ended as planned by the third party, while the orange line repre-
sents an ADRE (in this case, interrupted by the user). In fact, the
increase of temperature up to 25�C represents the non-ADRE,
which is supposed to last from 15:00 to 18:00 (there is a little
phase of precooling too). The orange line drops to approximately
24�C at 17:00, hence one hour of potential energy saving is lost.
Still, occupants in the second home (the orange line) seem to be
not comfortable: they keep diminishing the setpoint temperature
by ranges until they reach, at the end of the day (i.e. in the coolest
part of the day), a setpoint temperature even lower than the one
they used to have and accept earlier in the same day. It is a clear
case of additional rebounds due to the event. This comparison
has been done to show the reader that the reaction of different
users to the same DRE can be largely different. In the following sec-
tion, we will characterise occupants’ behaviour after the DR event
(through clustering of overriders’ profiles) and we will delineate
what consequences such actions have on the overall consumption.

3.3. Overriders’ profiling (after the DR event)

In this subsection, we will describe the results from our cluster-
ing strategy that was applied on the time series of the setpoint
Fig. 11. Length of the series, i.e. duration of the Hold Action afte
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temperature after an ADRE (UA and HoA), to study the effect that
the DRE has on the user choices over the rest of the day. We will
refer to the period between the end of the ADRE and before return-
ing to the set schedule, in which the setpoint temperature is man-
aged by the users, as ‘post-ADRE’.

From the 528 detected events, 64 % of them consisted of cases
without additional rebounds, which means that the representative
shape of more than half of post-ADREs is a straight line. In other
words, there is no further adjustment of the setpoint after the DR
events. The duration of the post-ADREs without additional rebound
ranges between 10 min and 11 h 50 min, being 5 h 40 min the
mean (this duration depends on the hold action set by occupants).
r the event (left) and setpoint temperature boxplots(right).



Table 1
Percentage of series that belong to each cluster. In bold those that are greater than 2 %. The sub-sample considered is the so-called ADREs + R, that represent approximately 36 % of
the ADREs.

Cluster 1 2 3 4 5 6 7 8 9 10

Observations (%) 1.5 3.95 0.38 9.02 0.38 15.79 1.13 2.63 0.19 0.75

Fig. 14. Time series from clusters 2, 4, 6 and 8, containing more than 2 % of data each. The series represent the setpoint temperature controlled by the users after the DRE, i.e.
they started when the DRE finishes and they end when the users return to the programmed schedule. Please notice that the X-axis represents the length of the time series (the
vertical grid divides the x-axis into five portions of two hours) and the Y-axis the setpoint temperature in�C.
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Also, the setpoint ranges from 18.9 up to 31.7 �C and presents an
average of 22.8 �C (Fig. 11).

Once we separated the ADREs without any additional rebound,
we applied the agglomerative hierarchical clustering with the
shape-based metric on the ADREs + R. Hierarchical clustering
allows the choice of the number of clusters. The segment of
time-series considered as an input for the cluster refers to the per-
iod post-DR.

The selection of the number of clusters used for this study was
done through the elbowmethod [5253], which consists of calculat-
ing and plotting the sum of squares at each number of clusters, and
then looking at a change of slope in the graph to determine the
optimal number of clusters. As seen in Fig. 12, the change on slope
of the elbow method graph crosses zero when the number of clus-
ters is 10, indicating that 10 is the optimal number of clusters
according to this method.

We also made sure that such a number of clusters do not pro-
vide groups with too many or too few observations by visual
inspection of the dendogram, which is a diagram that shows the
hierarchical relationship between items, as it can be seen in Fig. 13.

Also, the percentage of observations of each cluster can be seen
in Table 1. Excluding the 64 % of ADREs without rebounds after the
event, the ADREs + R considered are 190 (36 %). Among the 10 clus-
ters, we selected only those that contained at least 2 % of the data.
In this way, four main clusters were seen to appear (clusters 2, 4, 6
8) for further analysis. 23 time-series are considered outliers based
on the fact that they are classified in a cluster with very few other
observations (clusters 1,3,5,7,9,10) and are discarded for the fol-
lowing analysis. The cluster selection is independent of the number
of observations that each series has, it only depends on the number
of series of which a cluster is composed. Every time series can have
a different length, and the algorithm obtains the characteristic
shape to classify the different groups.

Fig. 14 represents the series belonging to clusters 2,4, 6 and 8, as
they contain the bigger percentage of observations. As already said,
the time series represent the setpoint temperature chosen by the
user, so they end when the setpoint temperature returns to the
scheduled value. The time series were recorded every-five minutes
and the vertical grid divides the X-axis of Fig. 14 into five portions
of two hours.

Looking at the time series, some recurrent characteristics can be
found in the shape. We will describe the prevalent shape of each
cluster. Cluster 2 seems to be characterised by very mild changes
in the setpoint temperature. In some cases, these changes are fol-
lowed in a short period by others that counterpoise the first ones,
returning to the setpoint at the beginning of the time series. Clus-
Fig. 15. Violin plots that depict the duration of the series (le
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ter 4 has a prevalence of time series with an increase in the set-
point temperature in a second stage. There is indeed also some
decrease, but they are not prevailing. Cluster 6 presents a preva-
lence of time series in which the setpoint temperature chosen for
the override is maintained constant for a long period. Then,
approximately at half of the series, a decrease in the setpoint is
detected. Cluster 8, the one with the smallest number of samples,
presents setpoint temperatures that are constant for almost the
entire time series, with a change or right at the beginning or right
at the end of the series. We have used clustering to highlight differ-
ences that one cannot distinguish by eye, hence it is normal that
some of the profiles within the same clusters can look dissimilar
if just the shape is considered. To investigate what these distinc-
tions in patterns are due to, we conducted further analysis in the
rest of the section..

In Fig. 15 (left), we have depicted violin plots of the length of
the series per cluster. The duration of the time-series within each
cluster is relatively uniform, meaning that the clustering mainly
focuses on other parameters of the time-series and highlighting
the robustness of the methodology selected. In the right part of
Fig. 15, we have depicted a violin plot with the number of changes
per cluster. We observe that clusters 4 and 8 contain some series
that present more than three changes.

In order to better understand the differences in the number of
changes and behaviour which are somehow related to physical
characteristics of the environment at the end of the DRE, in
Fig. 17 are shown the violin plots of the indoor and outdoor tem-
perature right before the override, as well as of the delta setpoint
temperature in correspondence of the override and the delta set-
point detected during the post-DRE. Fig. 16 clarifies graphically
what the deltas are referring to.

To understand the differences of the delta setpoint in corre-
spondence of the user’s adjustment, it is worth underlining that
this parameter is clearly affected by the prevalence of cases in
which the variation is 2.2�C (i.e. no additional adjustment during
the DR event). Another clarification needed is that the violin plots
of the post-DREs rebound are representing the algebraic sum of the
setpoint change, hence the cases of great drops in temperature that
are followed by a return to the previous value, are
counterbalanced.

From the violins, we can have a more global vision of the char-
acteristics of the clusters. Cluster 2 and Cluster 6 are alike, they
represent the users with the smallest drop in temperature when
overriding. The indoor and outdoor temperature values in the
two clusters are similar, as well as the number of interactions that
the users made. In addition to the initial setpoint drop, occupants
ft) and the number of changes that they present (right).



Fig. 16. Time series of an ADRE + R.
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in both cases lowered again the temperature of an average of 1 �C
for cluster 2 and 1.25�C for Cluster 6, suggesting a long thermal dis-
comfort in these homes. Hence, the difference between these clus-
ters lies in the length and the shape of the time series. Cluster 4 and
Cluster 8 are the ones that present the highest outdoor tempera-
ture and the highest delta setpoint temperature during the over-
ride. Their number of interactions is also alike, while the indoor
temperature is quite different, presenting a difference of 1 �C.
Hence, it is interesting to notice the differences in the average delta
setpoint temperature in the post-ADRE. Users from cluster 4 pre-
Fig. 17. Violin plots that depict the delta setpoint chosen by the users when overridin
rebound after the event, for each main cluster. To a better comprehension of the time f

11
sent an average of 0.63�C, contradicting their previous choice of
lowering that much the temperature during the override. Differ-
ently, users from Cluster 8 end the time series with approximately
the same setpoint temperature that they chose to override.

It is also interesting to notice that the users with the greater
indoor temperatures experienced at the end of the DR events (i.e.
users of Cluster 8) are those with the larger delta T setpoint (differ-
ence of about 0.5 �C compared to the others) and with no corrective
rebound. While Clusters 2 and 6, which are characterised by a less
abrupt change of the delta T setpoint, have a negative mean
rebound of around 1 �C. This is in line with the discoveries about
thermal alliesthesia: in non-steady conditions, users subjected to
thermal displeasure do not search for thermal neutrality, but
rather for positive pleasure associated with counteracting thermal
sensations [5556]. This result also suggests that rebounds can be
more critical than the delta T setpoint in terms of magnitude and
that the utility should avoid sending aggressive DREs to those users
that could override the thermostat with high rebounds, in particu-
lar those of Cluster 6, that can make a net negative effect.
3.4. Rebounds quantification

To quantify these differences in occupants’ behaviour in terms
of missed power reduction, we considered that the most appropri-
ate strategy was isolating and comparing DREs that had similar
characteristics but that represent different users’ profiles, i.e. dif-
ferent clusters. In other words, we wanted to find similar situations
(in terms of hour of the day, environmental characteristics and
intensity of the DRE) in order to observe the different occupants’
reactions to a same input. We considered that the sample for the
simulation should include one case for each cluster plus a case
without override, although the comparison does not pretend to
hierarchise the clusters. We managed to find 4 out 5 cases with
g, the indoor and outdoor temperature right before the override, and the setpoint
rames, please refer to Fig. 16.
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the following common characteristics (the case from Cluster 8 pre-
sents some minor differences):

� same date: 20–08-2019 (Case Cluster 8: 13–08-2019);
� same province (to maintain similar outdoor conditions):
Ontario (Canada);

� same starting hour: 15:00 (Case Cluster 8: 13:00);
� same setpoint temperature during the event: 25�C;

In the first one (case without override, Fig. 17.a), the DRE ends
at 18:00 as programmed, without any intervention by the users.
Apparently, the occupants did not feel discomfort afterwards, since
they did not lower the scheduled setpoint temperature. In the late
evening, they even increased the temperature over a period. This is
the ‘perfect’ case scenario, in which not only it was managed to
avoid the consumption during the peak hour, but also to obtain
Fig. 18. Setpoint temperature over a DRE day in five different homes: a) Case without ove
from Cluster 8. Note that the blue area symbolises the actual duration of the DRE, that c
hours in total). For the colour version of the picture the reader is referred to the online ver
the reader is referred to the web version of this article.)
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an overall power reduction over the day. In the second case (case
from cluster 2, Fig. 18.b) the DRE is preceded by an HoA, so the
event has its scheduled duration and the setpoint set afterwards
was equal to the one selected before the DR event. Around 21:30
a rebound of more than a degree Celsius is detected, followed by
an increase in the setpoint temperature (higher than the one dur-
ing the DRE itself) around 22:30. In the third case (case from clus-
ter 4, Fig. 18.c), the DRE managed to last just one hour, since the
override occurred at 16:00. The temperature chosen was 5�C lower
than the temperature during the event, causing a severe energy
expenditure. In addition, after some hours with a higher setpoint,
the temperature dropped again to 20�C. In the fourth case (case
from cluster 6, Fig. 18.d) the DRE was interrupted by the users at
17:30, i.e. half an hour before the scheduled end, and the setpoint
temperature chosen was equal to the one selected before the DR
event. However, a rebound of more than one degree occurred
rride; b) Case from Cluster 2; c) Case from Cluster 4; d) Case from Cluster 6; e) Case
ould have been interrupted and therefore finishes before the utility intended (three
sion of the paper. (For interpretation of the references to colour in this figure legend,



Fig. 19. Total cooling power during and after the DRE in a) Case without override; b) Case from Cluster 2; c) Case from Cluster 4; d) Case from Cluster 6; e) Case from Cluster 8.
Note that the blue area symbolises the actual duration of the DRE, that could have been interrupted and therefore finishes before the utility intended. For the colour version of
the picture the reader is referred to the online version of the paper. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Table 2
Average cooling power and total cooling energy need of the cases simulated with
EnergyPlus from 15:00 till 24:00. Average power is divided into peak hours (15:00–
18:00) and non-peak hours (18:24:00).

CASES
SIMULATED

AVERAGE
POWER
(15:00–18:00)

AVERAGE
POWER
(18:00–24:00)

ENERGY
NEED
(15:00–24:00)

Case No DRE 2.12 kW 1.73 kW 17.05 kWh
Case No Override 0.68 kW 1.81 kW 13.24 kWh
Case Cluster 2 0.93 kW 1.75 kW 13.63 kWh
Case Cluster 4 2.80 kW 2.07 kW 21.21 kWh
Case Cluster 6 1.09 kW 2.16 kW 16.59 kWh
Case Cluster 8 1.50 kW

(13:00–16:00)
1.91 kW
(13:00–16:00)

16.29 kWh
(13:00–22:00)
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around 21:00, hence part of the saved energy was lost. In the fifth
case (case from cluster 8, Fig. 18.e), the override occurred two
hours after the beginning of the DRE. The temperature chosen
was maintained for a considerable number of hours and, around
20:00, it was slightly raised (of approximately half-degree Celsius).

It is worth reminding that we are not using the real consump-
tion of the selected homes, because in that case the comparison
would be affected by other parameters, e.g. the envelope or to
the internal loads, rather than by the users’ behaviour. Hence,
the schedules are simulated on the same building energy model,
in the post-event period (Fig. 19). Every case is compared to the
results obtained with a flat schedule (22.7�C over the whole day),
that is the hypothetical power consumption if the DRE did not
occur.

The average power used in peak hours and non-peak hours is
shown in Table 2. In the case without override, it can be clearly
appreciated the effectiveness of the Demand Response event on
power shifting, since the average power in the peak hours is dras-
tically reduced. The case from cluster 2 presents an override right
before the programmed end, a rebound that lasted for a short per-
iod (approximately-one hour) and an increase in the setpoint at the
end of the day. For this cluster, the overall consumption was
reduced and the peak power was shifted, hence the DRE was effec-
tive. In Cluster 4 it is particularly evident that the missed power
reduction due to the rebound is not negligible. The setpoint tem-
perature chosen after the event (and later on in the evening) is very
low (a delta of 5�C compared to during the event). The overall con-
sumption needed to reduce the thermal discomfort of those users,
13
as well as the average power consumption during the peak hours,
is enormously higher than the scenario without DRE. The case from
Cluster 6 shows that, despite the event being stopped just half an
hour before its programmed end, the rebound reduced the power
reduction’s potential of the DRE. In this case, the power is shifted
to a cheaper time frame, but the average power consumption is
quite higher than the case without override. The overall energy
consumption is slightly higher compared to the case without any
event. Finally, the case from Cluster 8 (that is considered until
22:00, in order to have the cumulative sum of the same number
of hours for all the cases) is characterised by an increase in temper-
ature, instead of a rebound. Despite that, the overall consumption
is quite high, since the DR is overridden after 2 h and the occupants
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maintained for five consecutive hours the setpoint temperature
chosen for the override, i.e. they did not return to their scheduled
temperature. The power shifting is just partly achieved.
4. Conclusion

In this paper, we analysed patterns of thermostat settings
before, during and after demand-response events (DREs), with a
particular focus on the behaviour of occupants who showed less
acceptance of the DREs. Smart thermostat usage data including
around 1500 DREs have been evaluated using data analysis and
clustering techniques. From the data, reactive behaviour was
observed during the DREs, but to a lower extend (in 13 % of the
DREs). Moreover, it was observed that a share of users (one in four
approximately) manually set a hold action before a DR event,
instead of following the programmed schedule. That can be caused
by the day ahead notifications that the occupants receive before a
DRE, thus indicating an anticipative behaviour. Depending on
when the override occurs and the chosen temperature afterwards,
we observed very different patterns. The setpoint decrease after an
override was sometimes very high, leading to a large rebound and
a low efficiency of the DR program. Finally, clustering was used to
analyse the setpoint pattern after the DREs. Additional rebounds
could be observed in 36 % of the cases. These patterns can only par-
tially be explained in terms of physical factors (indoor and outdoor
air temperatures).

The different patterns highlighted by this analysis can be used
to exploit DR strategies’ potential since it can lead to the design
of tailored DR events. This means, that discriminating patterns of
overriders’ behaviour can increase the effectiveness of the strate-
gies of direct control. The optimum duration of the DRE to avoid
overrides and rebounds should be calculated taking into account
the clustering proposed in this work. Also, this can be very useful
in predicting how a user would react to an event depending on
the cluster to which they belong. Our results suggest that the
one-fits-all formula is not appropriate for energy flexibility strate-
gies since it does not take into account the different behaviour of
users. As designing a tailored DRE for each user would be impossi-
ble and time-consuming for the power company, our paper sug-
gests that a data-driven solution towards personalized DREs can
make a great difference in people’s acceptance, once the demo-
graphics of the participants are taken into account with specific
analyses.

The design of DR events tailored with respect to patterns of
behaviour can be then enriched by taking into account several
other factors, starting from the physical characteristics of the
envelope to the connection between the energy flexibility and
the thermal mass of the dwelling [57585960]. [61]. Hence, we
encourage future researchers to look into the issue of different fab-
rics, to investigate whether they can induce a difference in the
comfort perceived by the users. Grouping the consumers into
typologies would open the door to personalised interaction with
users and energy contracts: the design would not be limited to
sending events with different characteristics depending on the
occupants’ tolerance, but it could also involve different ways of
communication considering the subjective interaction of the users
with the thermostat. Beyond the different patterns of the clusters,
the main point we want to highlight is that users have diverse
behaviours when reacting to a DRE, and that can surely eliminate
the effect of the flexibility strategies. Summarising, the work pre-
sented here covers an aspect that has been unexplored before
and that have large implications with the power shaving and the
energy reduction of demand response events. It is firmly believed
that the findings of this paper will help on the design of DR pro-
grams and it will increase their effectiveness. [54].
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