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Preface 
 
The Austrian Robotics Workshop (ARW) emerged as a series of annual events by the Aus-
trian robotics institutions, during which there is an exchange of thoughts and ideas. This 
workshop has been taking place since the beginning of the 21st century and is organized 
alternately by the individual robotics institutions in Austria, each time focusing on different 
topics. 
 
This year's Austrian Robotics Workshop (ARW2022) is focusing on the topic of “robotics for 
assistance and in healthcare”. While being open to many facets of robotics, the ARW 2022 
is including, but not limited to topics such as mobile manipulation, multi robot coordina-
tion, artificial intelligence for sustainability. The contributions for the 2022 workshop cov-
ered a wide range of topics, ranging from industrial robots, service robotics to sensor-
based applications. A student session was dedicated to ongoing or early work to encourage 
Master- and PhD-students to present and discuss their research topics. Students and 
young researchers from individual institutions and robotic companies presented their sci-
entific work and thus entered into a lively exchange of ideas with the other researchers 
from other robotics institutions. 
 
We would like to thank all authors, reviewers, presenters and speakers for their contribu-
tions to the workshop. Furthermore, we would like to thank Federal Ministry for Climate 
Action, Environment, Energy, Mobility, Innovation, and Technology, OVE - Öster-
reichischer Verband für Elektrotechnik, GMAR – Gesellschaft für Mess-, Automatisierungs- 
und Robotertechnik, IEEE Robotics and Automation Society Austrian Chapter and 
Carinthia University of Applied Sciences – FH Kärnten for their support and contributions 
to the workshop. 
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Offroad Terrain Classification for Mobile Robots*

Wendelin Walch1, Matthias Eder1, Konstantin Mautner-Lassnig2 and Gerald Steinbauer-Wagner1

Abstract— In recent years, the capabilities of mobile robots
have increased significantly, opening up new potential ap-
plications in a variety of settings. One area where mobile
robots show great promise is in offroad terrain classification,
where the ability to accurately identify and navigate different
types of terrain is critical. In this paper we present a new
pipeline for terrain classification in offroad environments. The
main contributions of this pipeline are a combined offroad
dataset utilizing publicly available datasets and minimizing
manual labeling, a validated network architecture for optimized
generalization to new environments, and a post-processing step
to improve the reliability of the classification in the context
of offroad navigation. The proposed approach was evaluated
using publicly available data as well as newly collected data
from offroad environments.

I. INTRODUCTION

Terrain classification is a highly active research field in
the computer vision and mobile robot domains. Providing
semantic information about the environment around mobile
robots from camera images opens new application areas. Per-
forming tasks in offroad terrain is still a struggle for mobile
robots, due to the lack of understanding of the environment
around the system. The use of terrain classification aims to
improve the semantic understanding of the robot’s environ-
ment. While terrain classification in structured environments
such as in automated driving is already performed with good
results [20], transferring the research results to unstructured
environments such as offroad areas is still a challenge [11].
Terrain classification overlaps strongly with the problem of
semantic segmentation. Thus, many approaches use Convolu-
tional Neural Networks (CNN) trained on annotated camera
images [13], [28]. Such methods heavily depend on a large
amount of training data.

Due to the huge diversity in unstructured environments,
the camera images used for training need to cover a wide
range of information about scenes and vegetation as well as
seasons, light, and weather conditions. While the former is
a challenge for the (automated) annotation of the images,
the latter is a challenge for the acquisition of a large
enough dataset. Another issue is, that CNNs trained for
terrain classification typically work well only in the specific
area in which the training data was recorded, reducing the
applicability of the trained network to other scenarios.

*This work was supported by ARTI Robots and partially funded by the
Austrian Research Promotion Agency (FFG) with the project Palona.

1Wendelin Walch, Matthias Eder and Gerald Steinbauer-Wagner are
with the Institute of Software Technology, Graz University of Tech-
nology, Graz, Austria. {wendelin.walch, matthias.eder,
steinbauer}@ist.tugraz.at

2Konstantin Mautner-Lassnig is with ARTI Robots, Gössendorf, Austria.
k.ml@arti-robots.com

To overcome these challenges, we propose an adapted
pipeline for general reliable offroad terrain classification
using CNNs. First, to reduce the needed time for training
data collection we reuse already publicly available offroad
datasets. We combine and rearrange these datasets to a single
one (CombSet), which represents a far richer dataset covering
a wide range of environments under various conditions and
providing a large amount of annotated images for training the
terrain classification. Second, a broad evaluation of state-of-
the-art CNNs for image segmentation was conducted to find
a CNN architecture that is well-suited for a general offroad
terrain segmentation. Based on the best performing network
architecture a new terrain classification pipeline was devel-
oped that comprises a training step with optimized labels and
a post-processing step based on confidence levels and spatial
relations to improve the classification results to be useful
for automated navigation. To evaluate the proposed pipeline
in particular concerning generalization to new environments,
new offroad data was collected in three different areas within
Austria.

The remainder of the paper is organized as follows. In the
next section we will discuss related research. In Section III
we will present the proposed pipeline for terrain classification
in more detail. In the following section the results of the
experimental evaluation are presented. In Section V we draw
some conclusions and discuss future work.

II. RELATED RESEARCH

In this section we discuss related work on various ap-
proaches for terrain classification, publicly available datasets
in this context, and methods for image annotation.

A. Terrain classification

The authors of [17] implement a path prediction in struc-
tured environments using three different network structures
to predict a driveable path out of a single image where tracks
or roads are visible. The output of the trained CNN are seg-
mented images containing the framings of the detected paths.
As offroad environments often do not contain a path or track
to follow, other approaches are required to find free space to
navigate on. Therefore, the authors of [13] introduced a self-
supervised ground segmentation network which uses stereo
pair images, disparity, and intensity of the image to identify
the ground. The authors of [4] focus on terrain traversability
of slopes and obstacles using a stereo camera. Therefore,
3D points are sampled form the stereo camera into a 2,5D
grid and fitted by B-Splines to estimate the slope. Based
on this information, the traversability of the environment
can be derived. The presented approach is computationally
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expensive and thus relies on external infrastructure to achieve
the ground segmentation in driveable and non-driveable
terrain. Using full segmented images, the authors of [22]
introduce importance-aware semantic segmentation (pixel-
wise annotation) for urban environments. This is used to
focus on possible risks for autonomous driving during the
training of the network and to evaluate their importance.
This way, it is possible to assign e.g. higher importance to
pedestrians than to other static obstacles. In [16], transfer
learning is performed to transfer scenes between on-road
and offroad scenarios to construct annotations of the offroad
scene. This works well for coarse annotation and shows that
with a pretrained network, training of a new network is
faster than starting from random initial values. This approach
is also used in [28] where a pretrained network called
DeconvNet is introduced. This network is trained with data
from the Pascal Visual Object Classes (Pascal VOC) dataset
[9], showing that it is also possible to improve performance
with synthetic data in an offroad environment.

B. Datasets

There are multiple publicly available datasets for self-
driving cars in urban environments (e.g. KITTI [1] and
CityScapes [6]) which consist of different modalities to
tackle different research topics. Most of the datasets pro-
vide annotated images using different classes for urban
environments such as road, building, or traffic lights. For
unstructured offroad environments fewer image datasets with
semantic annotations are available. The Yamaha-CMU Of-
froad Dataset (YCOR) [23] is the only dataset containing
images recorded in winter. However, the used vehicle is
often seen on the bottom of the recorded images making
it not applicable for the work on terrain classification. Other
datasets (e.g. [7], [25]) are also not applicable for terrain
classification due to the provided data types or missing
annotations. Offroad datasets with the correct modality and
a pixel-wise annotation of the image are Freiburg Forest
[30], Robot Unstructured Ground Driving (RUGD) [33],
and RELLIS-3D [18]. Each dataset has slight differences in
camera setting, lighting, weather conditions, and annotation
labels.

C. Annotation

The crucial part of datasets for terrain classification using
a supervised learning process are the annotations or some-
times called labels. The annotations consist dense pixel-wise
semantic classes. Often, the pixels hold a class identification
number which refers to a specific semantic class such as
vegetation or road. The standard approach to generate anno-
tations is to manually annotate image by image (e.g. in [33])
which is time-consuming and error-prone. As assistance for
the manual process, different tools are available providing
features, such as edge detection or tracking the annotations
over the following video frames [2], [27]. Post-processing
techniques using a dense Conditional Random Field (CRF)
can be applied to densify gained annotations retrieved by the
annotation tools [23].

To motivate humans for manual annotation and to improve
the annotation quality, gamification (interactive consensus
agreement games) was used to generate image annotations
which worked well for classification tasks [29]. The idea
to use video games to generate annotations was also used in
[26] which proved that the technique produces usable annota-
tions and improves performance for real world applications.
Using synthesized scenes to generate data is performed in
different fields such as object detection [10], and indoor
scene understanding [14], but not yet for offroad scenes.

III. METHODOLOGY

This section describes the proposed terrain classification
pipeline for offroad environments in detail. First, the creation
of a new combined dataset using already existing offroad
datasets is presented. Second, it is described how existing
CNN architectures which were previously already used for
terrain classification were evaluated to find one that general-
izes best. Third, a post-processing step based on confidence
and spatial relations is presented which is used to optimize
the segmentation result for navigation applications.

A. Combined Offroad Dataset (CombSet)

For the terrain classification we chose to combine multi-
ple datasets containing RGB images, which provide dense
information about the surrounding scene. The goal is to
create an offroad terrain classification dataset that is large and
diverse enough to train a neural network that generalizes well
for different environments. The main goals of combining
existing datasets are to avoid manual data collection and
labeling as well as to represent different conditions and
scenarios well. This way, datasets having different scenes,
weather conditions, camera settings, or even seasons are
combined into a comprehensive data collection that can be
used to train a reliable image segmentation.

To consider as many situations as possible, several avail-
able datasets were combined into a new dataset called Comb-
Set. For the CombSet dataset we combine three publicly
available datasets: (1) Freiburg Forest [30], (2) RUGD [33],
and (3) RELLIS-3D [18]. These datasets combined hold
14036 images with different ground-truth annotations. Each
of them brings in its own features, helping to address the
variety in offroad terrains. RUGD represents a unique view
close to the ground which results in irregular boundaries
and no noticeable structures like geometric shapes, vanishing
points, or horizontal lines in the images. RUGD contributes
a lot of different terrains as well as some semi-urban images
from a village with man-made obstacles. Freiburg Forest con-
tributes different forest-like locations recorded multiple times
on different days. This leads to different light conditions
in the same location and lens flares, which greatly impact
the camera image. Rellis-3D provides a lot of open field
scenes with man-made obstacles and different vegetation as
well as bodies of water. In addition, in this dataset, trees are
not represented in the majority of the image backgrounds in
contrast to the other datasets. These three datasets together
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represent a diverse dataset concerning used cameras, repre-
sented vegetation, light conditions, camera position/view, and
observed structures. This will help to represent the diversity
of the offroad scenes well for the semantic segmentation.

A crucial part of CombSet generation is the clever merging
of the original semantic classes from the datasets into a
combined annotation for CombSet. The challenge is to
combine the semantic classes with the best match in terms of
semantics from each dataset. When analyzing the defined se-
mantic classes of the used datasets, different annotations for
similar classes could be observed, making them incompatible
with each other. To solve this issue, a closer evaluation of
the semantic classes was performed to identify common class
labels for CombSet.

Fig. 1. CombSet sample images with the merged semantic classes.

For this, eight general semantic classes were identified:
(1) road/path, (2) grass, (3) building, (4) water, (5) obstacle,
(6) vegetation, (7) traversable terrain, and (8) sky. Road/Path
represents all classes representing man-made tracks. The
building class represents objects which do not change their
position and mark reference points in the scene. The obstacle
class combines all objects which can move such as vehicles
and persons or objects which are too small for generating a
reference point like a pole or sign. All pixels which do not
fit into a defined class are represented in the CombSet as an
obstacle due to the missing information and their potential
risk in navigation. For the class vegetation, non-traversable
natural objects such as trees, bushes, and other defined
vegetation are combined. Traversable terrain combines all
defined classes which are traversable but do not appear
frequently enough to justify an own class. This class also
represents different characteristics like a rock-bed which is
traversable in contrast to a single rock. Although a puddle is
a water body that is not very deep and is no lethal threat to
the mobile robot, it is merged into the water class because
of its similarity. The classes grass and sky are unchanged
from the original datasets. No other classes were merged
into these classes. This has an impact on the training of the
neural network when considering the pixel-class distribution.
Sample images with the new semantic classes can be seen
in Figure 1.

B. CNN Comparison
To identify potential CNN architecture candidates for

terrain classification, various network structures were trained
and evaluated using CombSet. For deployment on a mobile
robot, we assume limited computational resources. This is
a crucial factor in choosing the architecture for the se-
mantic segmentation used in offroad terrain classification.

The evaluated CNN architectures in this work are: (1)
Global Convolutional Network (GCN) [24], (2) AdapNet
[32], (3) AdapNet++ [31], (4) RefineNet [21], (5) Mobile-
UNet [19], and (6) DeepLabV3+ [5]. These architectures
can be trained and run on single GPU units. Moreover,
the selected architectures employ various measures to keep
used resources low. DeepLabV3+, RefineNet, and GCN are
using a Residual Network (ResNet) [15] framework as front
end. This was pretrained with the ImageNet [8] dataset.
AdapNet and AdapNet++ are initialized with the pretrained
weights of ResNet. The number of layers and their sizes in
ResNet influences the used resources as well. In the original
implementation of most networks, the ResNet101 structure
was used. In consideration of the resources later for the
deployment on a mobile robot the ResNet50 was used which
led to lower resource usage. All architectures were trained
with the same parameter, optimization function, and training
data (see Section IV-A for details).

C. Post-Processing
The output layer of the CNN provides an image containing

for each pixel an array with the length of the semantic
classes holding their probabilities. The class with the highest
probability is usually seen as the predicted class (winner
takes it all), even if the probabilities are distributed rather
uniform.To increase the reliability of the segmentation result,
the output is post-processed. For this, we propose the use
of a Confidence Score (CS), an indicator for the reliability
of the class prediction of each pixel in a given image. CS
is a threshold where each prediction probability p lower
than CS (p < CS) is considered a weak prediction and
is set to be void which is treated as an obstacle. Pixels
with a high probability (p ≥ CS) will be assigned their
corresponding classes. The resulting predictions can then
be used for tasks such as autonomous robot navigation by
further combining the results into a binary class (traversable,
non-traversable). Due to the application of CS and blurred
boundaries between larger structures such as streets and grass
the resulting binary traversability image shows several tiny
groups of pixels without classification which are with high
probability part of its surrounding class. Thus, we added
another post-processing step which conducts a morphological
closing operation with a kernel of 9x9, to smoothen the
final traversability analysis. The derivation of an optimal CS
threshold is discussed in the following section.

IV. EVALUATION & RESULTS
In this section we presents the detailed results on the evalu-

ation of the performance and generalization of common CNN
architectures for offroad terrain classification using CombSet.
Moreover, we present results for the selection of the optimal
Confidence Score. Finally, we show an evaluation of the best
scoring network using newly recorded and segmented data,
which is not part of CombSet.

A. Evaluation of CNN Architectures
The training of the different networks was conducted

for 200 epochs on a Nvidia Quadro RTC 8000 GPU with
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CUDA 11.3 and Tensorflow 2.6.0. RMSprop was used as
the optimization function with an initial learning rate of
α = 0,0001 and decay of β = 0,995. As loss function, cross
entropy loss with softmax [3] was used. The training occurs
in batches of 10 images. After each epoch, a validation of
the actual performance of the CNN is performed. As metrics,
the mean accuracy of the prediction and the mean Intersect
over Union (mIoU) [9] are used.

The results of the CNNs trained with CombSet can be
seen in Table I. The RefineNet architecture performs best,
slightly better than the GCN architecture. However, a direct
comparison of the segmentation results shows more precise
boundaries for the GCN architecture. As a good separation of
semantic classes is an important part for the offroad terrain
classification we choose the GCN architecture as the best
performing architecture which will be further analyzed.

Network mIoU Accuracy
AdapNet 0,6411 0,8812

AdapNet++ 0,6575 0,8655
DeepLabV3+ 0,0235 0,0376

GCN 0,6839 0,9020
RefineNet 0,6985 0,9032

MobileUNet 0,6094 0,8384

TABLE I
TRAINING RESULTS OF DIFFERENT CNN ARCHITECTURES USING

COMSET. GCN WITH LOWER PERFORMANCE BUT BETTER SEPARATION

OF REGIONS WAS SELECTED AS BEST NETWORK CANDIDATE.

B. Network Generalization
To further evaluate the generalization performance of

the GCN network architecture trained with ComSet, new
data was recorded for validation. Therefore, three recording
sessions were performed with two different mobile robots
in three different locations in Austria: (1) the military
training ground Seetaler Alpe, (2) the University Campus
Inffeldgasse, and (3) the military training ground Allentsteig.
As robot platform, Husky from Clearpath Robotics and
Mercator [12], a universal offroad platform, were used.

Figure 2 shows an example image and the corresponding
segmentation from unseen data recorded at the military train-
ing ground Seetaler Alpe. The segmentation shows various
wrong classifications which renders the trained network not
applicable for this new dataset. As a root cause for this issue,
a different camera mounting was identified. While the camera
in the validation set was tilted by 15 degrees, the camera
setting in CombSet was always set to be horizontal.

To confirm this assumption, a new sensor setup was tested
on the university campus Inffeldgasse using two identical
cameras, mounted horizontally as well as tilted by 15 de-
grees. Figure 3 shows the segmentation results for both
camera setups, with the horizontally aligned camera in the
top row and the 15° tilted camera in the bottom row. A direct
comparison of the two segmentation results confirms that the
tilted camera leads to misclassifications by the trained GCN.

However, as these recordings do not represent a full
offroad environment, further data at the military training

Fig. 2. Data recorded at the military training ground Seetaler Alpe. Input
image to the GCN recorded with ZED2 camera (left). Output image of the
GCN (right).

Fig. 3. Data recorded at the Campus Inffeldgasse at Graz UNiversity
of Technology. Horizontally aligned camera (top) and 15° tilted camera
(bottom). Input image (left), GCN segmentation (middle), and mapping of
the segmentation to the category driveable and non-driveable (right).

ground Allentsteig was recorded. There, the recorded data
was manually annotated to provide a quantitative evalua-
tion as well. Figure 4 shows recordings from Allentsteig
with the manually added annotations. Having a look at
the segmentation on the right side one can see that it
validates the consideration of the camera setup influences
the segmentation.

Fig. 4. Data recorded on the military training ground Allentsteig. Hori-
zontally aligned camera (top) and 15° tilted camera (bottom). Input image
(left), manually added annotation (middle), and GCN prediction (right).

A quantitative evaluation of the network results on the
validation data can be seen in Table II. As baseline, 100
images from the CombSet testset were selected for a direct
comparison using mIoU and accuracy as metrics. It clearly
shows the influence of the proper camera setting.

C. CS Threshold

An investigation of different CS thresholds using the
CombSet data showed the best trade-off between removed
true negative and true positive pixels at 0.76. Using a

9
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Dataset accuracy mIoU
CombSet Baseline 0,8735 0,6484

Allentsteig
Horizontal Camera 0,7814 0,4234

Allentsteig
15 degree Camera 0,5544 0,2562

TABLE II
QUANTITATIVE EVALUATION OF THE INFLUENCE OF THE CAMERA POSE

USING 100 IMAGES FROM THE TEST SET OF COMBSET DATASET AS

BASELINE AND ALLENTSTEIG DATA WITH BOTH CAMERA POSES.

threshold of 0.99 would remove more than 19% of the image
information where 13,24% are true positives. With a CS
threshold of CS = 0.76 the numbers of removed wrongly
and correctly segmented pixels are equal. The whole pipeline
and the steps between can be seen in Figure 5, where an
image from the CombSet test set is segmented and CS is
applied as well as the post-processing. There we can see that
the resulting post-processed image still contains some void
pixels which refers to bigger areas without information and
should be considered as obstacles. Anyhow, we achieved an
image segmentation with dense information about the scene
without much interference for the navigation.

Fig. 5. Confidence Score approach using a test image from CombSet. Input
image (top left), Annotation (top right), GCN segmentation (middle left),
affected pixels in red by CS of 0.76 (middle right), segmentation mapped
on driveable and non-driveable with the affected pixels in black (bottom
left), and post-processed image (bottom right).

To validate the performance of GCN on unseen data,
images from the Allensteig recording session were processed
as well. Figure 6 shows a scene in the forest with challenging
light conditions. Figure 7 shows an open scene with a car and
the mobile robot oriented directly to the sun. The predictions
show a decent performance for scene understanding, as well
as a reliable segmentation that can be used for navigation.

Fig. 6. Results of the GCN and CS for new unseen data from the Allentsteig
recording session. Scene show challenging light conditions. Input image (top
left), annotation (top right), GCN segmentation (bottom left), prediction with
CS and post-processing step (bottom right).

Fig. 7. Results of the GCN and CS of new unseen data from the Allentsteig
recording session. The scene is facing direct into the sun and provides a car
as obstacle. Input image (top left), annotation (top right), GCN prediction
(bottom left), segmentation with CS and post-processing step (bottom right).

V. CONCLUSION

In this work, a pipeline for offroad terrain classification
was presented. It can segment images from an unstructured
offroad environment into eight semantic classes, relevant
for navigation. As basis, three publicly available offroad
datasets were combined into the dataset CombSet which can
be used to train offroad terrain classification. CombSet is
realized to provide a larger dataset than actually available
datasets and represents a larger diversity in the images
of offroad situations. It is larger than every other offroad
dataset published to date with image pixel-wise annotation. A
selection of state-of-the-art CNNs for semantic segmentation
was trained and evaluated. The best performing network
was GCN which showed the best performance on the test
set. During the evaluation, influences of the camera setup
(position and orientation) occurred and were solved by
adjusting the camera setup.

The resulting segmentation is further processed to reach a
more reliable prediction for applications such as navigation.
The Confidence Score CS threshold is introduced which gives
the possibility to remove pixel segmentation which have
low confidence. The loss of information due to thresholding
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using the CS is partly compensated by post-processing
morphing operations. The resulting segmentation provides
dense information of the covered scene concerning driveable
and non-driveable segments. Overall, we showed that neural
network models trained for semantic segmentation on offroad
environments are generalizing well on new unseen data
when following the proposed approach. For future work,
the application of data augmentation will be investigated to
improve the generalization. Moreover, the transfer of the
segmentation to probabilistic gridmaps will be forced to
improve the reliability of the proposed pipeline.

REFERENCES

[1] H. Alhaija, S. Mustikovela, L. Mescheder, A. Geiger, and C. Rother,
“Augmented reality meets computer vision: Efficient data generation
for urban driving scenes,” International Journal of Computer Vision
(IJCV), 2018.

[2] Boris Sekachev, Nikita Manovich, Maxim Zhiltsov, Andrey Zha-
voronkov, Dmitry Kalinin, Ben Hoff, TOsmanov, Dmitry Kruchinin,
Artyom Zankevich, DmitriySidnev, Maksim Markelov, Johannes222,
Mathis Chenuet, a andre, telenachos, Aleksandr Melnikov, Jijoong
Kim, Liron Ilouz, Nikita Glazov, Priya, Rush Tehrani, Seungwon
Jeong, Vladimir Skubriev, Sebastian Yonekura, vugia truong, zliang7,
lizhming, and Tritin Truong, “opencv/cvat: v1.1.0,” 2020.

[3] J. S. Bridle, “Training stochastic model recognition algorithms as
networks can lead to maximum mutual information estimation of
parameters,” in Proceedings of the 2nd International Conference on
Neural Information Processing Systems, ser. NIPS’89. Cambridge,
MA, USA: MIT Press, 1989, p. 211–217.

[4] A. Broggi, E. Cardarelli, S. Cattani, and M. Sabbatelli, “Terrain
mapping for off-road autonomous ground vehicles using rational b-
spline surfaces and stereo vision,” in 2013 IEEE Intelligent Vehicles
Symposium (IV), 2013, pp. 648–653.

[5] L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for semantic
image segmentation,” CoRR, vol. abs/1802.02611, 2018. [Online].
Available: http://arxiv.org/abs/1802.02611

[6] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” CoRR, vol. abs/1604.01685,
2016. [Online]. Available: http://arxiv.org/abs/1604.01685

[7] L. Dabbiru, C. Goodin, N. Scherrer, and D. Carruth, “Lidar data seg-
mentation in off-road environment using convolutional neural networks
(cnn),” SAE International Journal of Advances and Current Practices
in Mobility, vol. 2, no. 6, pp. 3288–3292, 2020.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in 2009 IEEE
Conference on Computer Vision and Pattern Recognition, 2009, pp.
248–255.

[9] M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. M.
Winn, and A. Zisserman, “The pascal visual object classes challenge:
A retrospective,” International Journal of Computer Vision, vol. 111,
pp. 98–136, 2014.

[10] S. R. Fanello, C. Keskin, S. Izadi, P. Kohli, D. Kim, D. Sweeney,
A. Criminisi, J. Shotton, S. B. Kang, and T. Paek, “Learning to
be a depth camera for close-range human capture and interaction,”
ACM Trans. Graph., vol. 33, no. 4, jul 2014. [Online]. Available:
https://doi.org/10.1145/2601097.2601223

[11] B. Gao, S. Hu, X. Zhao, and H. Zhao, “Fine-grained off-road semantic
segmentation and mapping via contrastive learning,” 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 5950–5957, 2021.

[12] R. Halatschek, K. Ramanna, W. Url, and G. Steinbauer-Wagner,
“Universal offroad robot platform for disaster response,” in 2020 IEEE
International Symposium on Safety, Security, and Rescue Robotics
(SSRR), 11 2020.

[13] M. Hamandi, D. Asmar, and E. Shammas, “Ground segmentation
and free space estimation in off-road terrain,” Pattern
Recognition Letters, vol. 108, pp. 1–7, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167865518300631

[14] A. Handa, V. Patraucean, V. Badrinarayanan, S. Stent, and R. Cipolla,
“Scenenet: Understanding real world indoor scenes with synthetic
data,” CoRR, vol. abs/1511.07041, 2015. [Online]. Available:
http://arxiv.org/abs/1511.07041

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2015.

[16] C. J. Holder, T. Breckon, and W. Xiong, “From on-road to off: Transfer
learning within a deep convolutional neural network for segmentation
and classification of off-road scenes,” in ECCV Workshops, 2016.

[17] C. Holder and T. Breckon, “Learning to drive: End-to-end off-
road path prediction,” IEEE Intelligent Transportation Systems
Magazine, vol. 13, no. 2, pp. 217–221, 2021. [Online]. Available:
http://dro.dur.ac.uk/34081/

[18] P. Jiang, P. R. Osteen, M. Wigness, and S. Saripalli, “RELLIS-3D
dataset: Data, benchmarks and analysis,” CoRR, vol. abs/2011.12954,
2020. [Online]. Available: https://arxiv.org/abs/2011.12954
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An investigation of accuracy, repeatability and reliability of
Spot® from Boston Dynamics

Robert Fina1, Hubert Gattringer1, and Andreas Müller1

Abstract— The constantly increasing usage of quadruped
robots in science as well as in industry shows that the last
decade has experienced an immense leap in this technology.
Several commercial products are already available and have
been deployed in various applications. One of them is Spot®

from Boston Dynamics, a ready-to-use, highly agile, robust
mobile platform which is able to handle diverse situations.
Despite these qualities, the robot comes with one drawback,
the unknown system that is basically a black box. The goal
of this work is to establish a starting point to gain insights
about the accuracy, repeatability and reliability of the system.
Accuracy and repeatability are investigated with the help of
a highly accurate optical measuring system. The reliability is
examined in various field tests. It is confirmed that Spot®

convinces with high reliability and can undoubtedly be used
in diverse applications where positioning is involved, such as
inspections.

I. INTRODUCTION

With the steadily increasing requirements and demands in
the field of mobile robotics in general, specifically research
regarding legged robots has increased considerable in recent
years. Wheeled or tracked robots have significant limitations
in comparison to legged or, in particular, quadruped robots.
The latter two are able to move smoothly in different
terrains, on different grounds, and are even able to work
in complex or hazardous environments, meaning that
obstacles such as fallen trees, stairs or else can be handled
by these kinds of mobile robots. In order to enhance a
robot’s stability in difficult environments, advanced control
methods, such as MPC (Model Predictive Control)[16]
or Reinforcement Learning [12] can be applied. Despite
legged robots’ multiple advantages, only a limited number
is currently commercially available.

One of the outstanding examples is the quadruped
robot Spot®, the latest release from Boston Dynamics after
BigDog and LS3. Spot® can be classified as an agile robot,
being even able to counteract disturbances, such as being
pushed, and maintain its balance[7], [8]. Thus, Spot® can
be considered one of the most advanced and intelligent
quadruped robots [3]. All joints are electrically actuated.
Spot® is able to move or trod in all directions, is equipped
with SLAM (simultaneous localization and mapping),
providing the robot with all necessary information about its
surroundings, and thus enabling it to perform in a diversity
of complex terrains.

1 Institute for Robotics, Faculty of Mechatronics, Johannes Kepler
University, 4040 Linz, Austria

Besides the legged robots of the Boston Dynamic dynasty,
also the quadruped robot ANYmal from ANYbotics [2],
and Aliengo from Unitree [20] need to be mentioned, as
they can be considered similar to some extent. ANYmal’s
legs provide outstanding mobility, making this robot a
reliable instrument for difficult environments. The modular
structure of the software, based on ROS, makes it extremely
useful as a research platform. Aliengo is equipped with
a depth-perception vision system, and can thus also be
operated in adaptive complex terrains.

So far, quadruped robots are widely used in different
fields, thus tackling a variety of research. In [21], a
virtual reality interface is developed in order to enable an
operator to control multiple robots both synchronously
and asynchronously, making operation in dynamic
construction environments possible. Also focusing on the
dynamic construction environment, [1] enables construction
monitoring through recording with a legged robot. Due to
an increase in complexity when it comes to a simultaneous
operation of multiple robots, an approach to design the
operational governance of a heterogeneous multi-robot fleet
is proposed in [14] and [19].

Using mobile robots as substitutes for humans for
certain tasks can be an important aspect for increasing
human safety. Quadruped robots can be used instead of
humans in mines, for tasks such as installation, operation
and maintenance of machines and other equipment [17], as
well as for mapping [11]. They also found their way into
the health industry, e.g. as a substitute for guide dogs [15].
Legged robots can also be of help when it comes to dealing
with infectious diseases, as the ongoing Covid-19 pandemic
clearly shows. Tasks, such as a contactless monitoring of
vital signs [9], or even robots in ’caring roles’ [18] are of
significant importance. Nevertheless, specifically when it
comes to human interaction, social acceptance may not be
neglected [5]. Also, services and tasks related to a pandemic,
such as contactless last-mile delivery, disinfection, patrolling
and else can be carried out by mobile robots [10].

A. Spot® Use Cases

Boston Dynamics provides with Spot® a ready-to-use,
balanced platform in terms of costs, benefits and features,
with continuous development of the core software. However,
using Spot® also has its disadvantages. It is a black box,
and there is no access to the core software, wherefore its
behaviour is mostly not predictable. Spot®’s basic features
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and its Python API are a foundation which enables rapid
implementation of use cases. The basic features include the
access to the actual state of the robot, the sensor data, and
the control of the robot. The standard software allows to
command Spot® per waypoints or trajectories, and enables
autonomous mission operations. It is also simple to add
customised payload, which can communicate with the Spot®

core software. For clarification, the following examples are
discussed.

Zimmermann et al. [23] equipped Spot® with a light-weight
robot arm, similar to a tutorial by Boston Dynamics[6].
The difference is that Zimmermann did not use a Spot®

arm but one from Kinova Robotics. The movements of
the attached arm are disturbances to the quadruped robot,
and have to be considered. Zimmermann et al. show that
the task of fetching an object can be successful with the
following steps. First, an identification of model parameters
is carried out. A simple model of the mobile manipulator
with a position correction term, which compensates the
influence of the arm to the body, is introduced. As a final
step, a trajectory optimisation is performed to calculate the
velocities for Spot and the arm separately. This work shows
clearly that the black box behaviour can be compensated to
solve the given task, without any learning techniques.

2020, a team using Spot® won the DARPA Subterranean
Challenge, Urban Circuit. Bouman et al. [4] showed
how Spot® can be used for large-scale and long-duration
missions. The advantage over wheeled robots is that the
agility of an quadruped robot enables it to cope with uneven
surfaces, stairs, obstacles on the ground, etc. in urban
environments. The developed system NeBula (Networked
Belief-aware Perceptual Autonomy) combines a belief
manager, perception, and planning to enable autonomy in
extreme environments. NeBula builds a trust schematics of
the environment, which helps Spot® to be able to move
around safely. The reasons for that will be discussed in
detail in Section III. Therefore, the combination of the two
novel technologies is an outstanding example.

As it is shown, a quadruped robot can be used in a
vast range of disciplines. Spot® from Boston Dynamics was
already used in health care, construction, public service, and
in many other challenging environments. An analysis of the
black box Spot® is not done yet. Therefore, a closer look
at the system, with the architecture described in Section II,
is carried out in this work. The accuracy, and repeatability
are analysed and the behaviour in different environments is
observed. Results are discussed in Section III.

II. SYSTEM ARCHITECTURE

To observe the behavior under different circumstances and
environments, only Spot® itself is necessary. For the analysis
of the accuracy and the repeatability a high-resolution mea-
surement system is required, as is an application to repeatable
command the robot.

A. Hardware Setup

The motion capturing system from Qualisys (MOCAP) in-
cludes 10 cameras (6 MP, image resolution of 3072×1984,
max. frame rate of 450 fps) working at a rate of 100 Hz. The
accuracy of the system is sub-millimeter. The connection be-
tween the MOCAP and the control station of the robot is hard
wired, whereas Spot® and the control station are connected
wireless, as can be seen in Fig. 2. The measurements took
place indoor in an industrial environment, see Fig. 1.

Fig. 1: The motion caption lab, where the measurements for
the accuracy and repeatability took place.

B. Software Setup

The Python API provides the robot’s operator with the
possibility to command the robot through velocity, pose, and
mission commands. In this work, the Python API is used
to command Spot® to different positions to analyses the
accuracy and repeatability. It is not used to investigate the
behaviour of the robot in different situations. The position
data is extracted from Spot® with 70 Hz with the Python
API. The architecture is depicted in Fig. 2.

III. SYSTEM ANALYSIS AND RESULTS

The functionality of Spot® strongly depends on the
perception of its environment. Therefore, the system was
analysed regarding its behaviour under different conditions,
which just comes done to reducing the ability to perceive
the environment by covering cameras. Spot® is also tested
in different environments, e.g. soft surfaces.

The accuracy and repeatability analysis is performed
without any visual limitations.

A. Reliability

Spot® can be controlled by a remote controller or by
using the Python API. An operator can use the remote
controller to give direct commands to the robot, which can

Fig. 2: Software and hardware architecture.
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be interpreted as velocity control, or to arrange a mission,
which Spot® autonomously executes. The remote controller
is used to command the robot with various visual limitations
in different environments to analyses its behaviour in this
work. The test set includes outdoor - different grass heights,
slopes, floor grid, etc. - and indoor tests - soft surfaces,
such as a mattress of height 15 cm.

Five cameras are mounted on Spot®, one on each side,
except at the front where there are two. Some tests were
run where a varying number of cameras were occluded. It
is observable that by reducing the robots visibility the gait’s
stability decreases. The lower limit that the robot can still
handle well is three cameras. A working camera in walking
direction is always recommended.

Tests on non-solid surfaces showed two effects. When
the surface, which Spot® perceives, does not correspond
to the ground, such as high grass, it causes problems. The
stand ends in a different place than calculated which leads
to strong instabilities and stress for the hardware. The
system starts to jiggle when the robot is moved on a soft
surface - a mattress of height 15cm - and its body height is
changed to the maximal limit.

Surfaces like floor grids that cover ducts or similar
are not a major obstacle for Spot®. Because of the camera
angles, the floor grid is not perceived as uniform ground, but
neither is it considered a gap, which has to be avoided. It
has been observed, during the outdoor testing, that it is not
a challenge to move the robot over terrain or in unstructured
environments. A major advantage of quadruped robots is
that uneven surfaces are not a concern.

B. Accuracy and Repeatability

The system defines two inertial frames, the vision frame
and the odom frame. The orientation and origin of both are
set, when the robot boots up. The pose in the odom frame
is evaluated over time through the kinematics of Spot®. The
vision frame represents the pose over time by incorporating
the odom frame information and visual information of the
robot’s environment. The vision frame and odom frame
data are compared for the analysis of Spot®’s accuracy
and repeatability, as a ground truth, data from a motion
capturing system is shown.

A total of four different trajectories were driven 50
times each. The data present in this work is recorded with
the default walking height of 61 cm. The trajectory set
includes

• the line walk, where the goal is to walk two meter
forward and backward,

• the sideways walk, where the goal is to walk two meter
left or right,

• the rectangle walk, where the goal is to walk a
rectangle-shaped trajectory with a side length of two
meters, and

• the points walk, where the goal is to walk to different
poses.

The rectangle walk and points walk trajectories are depicted
in Figure 3.

(0, 0) (2, 0)

(2, 1)(0, 1)

(a) rectangle
walk

(0, 0)

(1.5, 1.5)

(1.5, 0)

(0, 1.5)

(3, 0)

(3, 1.5)

(b) points walk

Fig. 3: The trajectories rectangle walk and points walk
used for the accuracy and repeatability measurements. (x, y)
represent the positions in the odom/vision frame, which are
commanded.

In Table I the results are listed and the end positions of
the robot, for each test scenario, are depicted in a 2D map
in Figures 5 to 8. The odom frame data is not included,
due to the low accuracy and repeatability, as can be seen
in Table I. The repeatability and accuracy is high when
the vision frame is used as a reference, as is confirmed
with the measurements by a motion capturing system. A
comparison of both measurement methods - odometry and
motion capturing - by a Bold-Altmann diagram shows that
the odometry can be used as an accurate measurement
alternative, as can be seen in Figure 4.
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Fig. 4: A Bold-Altmann diagram comparing the motion cap-
turing system and the Spot®’s vision odometry measurement
from the rectangle walk scenario.

The start position of each trajectory differs from (0, 0),
because at the start the robot is sitting and has to stand up to
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walk, which changes the body position. The results show that
Spot® can be used in industrial and scientific matter without
concerns about accuracy and repeatability.
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Fig. 5: Endpositions of Spot® in a 2D map of the forward
walk scenarios.
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Fig. 6: Endpositions of Spot® in a 2D map of the sideways
walk scenarios.

C. Synthesis

The analysis showed that Spot® struggles when the ground
is incorrectly assessed. The surface, the robot observes, has
to be the way it seems to the robot, meaning that if it looks
solid it should be, otherwise Spot® has a hard time walking.
The ground should not be too yielding in order to be able
to stand and walk on it in a stable manner. Three cameras,
at three different sides, should work correctly for a stable
and reliable gait.

Some effects can be counteracted with different settings
of Spot®. A ground friction coefficient can be set to cope
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Fig. 7: Endpositions of Spot® in a 2D map of the rectangle
walk scenarios.
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Fig. 8: Endpositions of Spot® in a 2D map of the points
walk scenarios.

with different ground properties - the default value is 0.6. A
smaller value decreases the step size and the step frequency
to be able to walk on slippery surfaces. It is recommended
to stay in the interval of [0.4, 0.8]1 The step height can be
set to three different levels, Low, Medium and High, where
High is recommended to improve the ability to navigate2.
The gait can be changed from walk to crawl, where three
feet are always in contact with the ground which enhances
the stability of the robot.

It is shown that Spot®’s accuracy and repeatability
are high if the vision frame is used as the inertial frame.
The odom frame should be avoided as a reference.

1https://dev.bostondynamics.com/protos/bosdyn/api/proto reference.html
#bosdyn.api.spot.TerrainParams

2https://support.bostondynamics.com/s/article/Tunable-platform-settings
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TABLE I: List of standard deviation, variance and mean distance of the endpositions measured in different frames and
scenarios: forward walk (f), sideways walk (s), rectangle walk (r), and points walk (p).

Odom Frame Vision Frame MOCAP System
f s r p f s r p f s r p

Standard
Deviation in cm

8.56 28.41 29.31 81.48 1.03 1.23 0.53 0.56 1.15 1.96 0.70 1.78

Variance in cm2 73.33 807.18 859.12 6638.86 1.07 1.52 0.28 0.32 1.32 3.86 0.49 3.16
Mean Value in cm 17.52 56.61 45.26 149.38 2.66 2.45 0.88 0.81 2.58 4.16 1.08 1.83

IV. OUTLOOK
The analysis in this work shows that Spot® is a reliable
and accurate quadruped robot. Quadruped robots have
advantages in unstructured environments making them well
suited for operations in disaster areas. Further outdoor
testing to verify the accuracy in terrain and unstructured
environments using a Real Time Kinematic (RTK) as ground
truth is an interesting next investigation.

The increasing usage rate of quadruped robots in the
public and the increased market opportunities raise new
questions in the field of human robot interaction (HRI) as
well as ethical ones, like Moses et al. and Yunus et al.
analysed in [22], [13]. HRI is mainly studied in industrial
environment with mobile/static manipulators. Robots like
Spot® open up new opportunities for HRI.

The cooperative handling of tasks by a mobile robot
and a robot arm - meaning the mobile manipulator - still
raises many questions. Due to the history of the institute of
robotics with serial robot arms, a special light-weight serial
robot arm is developed, which will be mounted on top of
Spot® to investigate methods to handle the disturbance to
the system and the impact on accuracy and repeatability.
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Berg-und Hüttenmännische Monatshefte, vol. 166, no. 2, pp. 53–58,
2021.

[18] S. Sumartojo and D. Lugli, “Lively robots: Robotic technologies in
covid-19,” Social & Cultural Geography, pp. 1–18, 2021.

[19] M. Tranzatto, F. Mascarich, L. Bernreiter, C. Godinho, M. Camurri,
S. Khattak, T. Dang, V. Reijgwart, J. Loeje, D. Wisth, et al., “Cerberus:
Autonomous legged and aerial robotic exploration in the tunnel and
urban circuits of the darpa subterranean challenge,” 2022.

[20] UnitreeRobotics. UnitreeRobotics Aliengo. [Online]. Available:
https://www.unitree.com/products/aliengo/

[21] D. Wallace, Y. H. He, J. C. Vaz, L. Georgescu, and P. Y. Oh,
“Multimodal teleoperation of heterogeneous robots within a construc-
tion environment,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 2698–2705.

[22] A. Yunus and S. A. Doore, “Responsible use of agile robots in
public spaces,” in 2021 IEEE International Symposium on Ethics in
Engineering, Science and Technology (ETHICS). IEEE, 2021, pp.
1–5.

[23] S. Zimmermann, R. Poranne, and S. Coros, “Go fetch!-dynamic grasps
using boston dynamics spot with external robotic arm,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 4488–4494.

16



D
ra

ft

A low-drift LiDAR-based odometry for subterranean areas

Hamid Didari1 , Eva Reitbauer2 , Christoph Schmied2 , Gerald Steinbauer-Wagner1

Abstract— This paper proposes a low-drift LiDAR-based
odometry estimation for navigating robots in a subterranean
environment. Due to the limitations of subterranean areas,
sensors like Global Navigation Satellite System (GNSS) and
cameras are limited in use. An alternative data source that
can be used in subterranean areas is LiDAR. Due to lack
of global information and measurement noise, pose estimation
based on LiDAR is subject to drift. In this work, we introduce
a solution to reduce LiDAR odometry drift. LiDAR odometry
estimates the robot’s pose by matching subsequent point clouds.
Due to the lack of an absolute measurement system, the
pose estimation has a cumulative error. A slight drift in
the attitude estimation causes a massive error in the overall
pose estimation. The proposed method tackles this problem
with a filter for redundant information caused by flat ground
and utilizes an Inertial Measurement Unit (IMU) to provide
reliable information on the robot’s attitude and fuses it with
an Extended Kalman filter (EKF). The proposed method was
tested on a dataset recorded in a highway tunnel and compared
to state-of-the-art approaches. The final results outperform the
state-of-the-art solutions in pose estimation in a subterranean
environment.

I. INTRODUCTION

Robotic systems are rapidly developing and employed in
various fields to assist humans. In particular, robots are being
utilized to work in complex environments for applications
ranging from mining [13], search-and-rescue [8], industrial
monitoring [3] to planetary exploration [6]. Pose estimation
plays a critical role in making robots able to perform tasks
and is one of the fundamental problems for autonomous
robots. It provides the knowledge of robot’s pose and instant
feedback to the pose controllers. The pose of a robot can be
estimated in various ways depending on what type of sensors
are used. Each sensor type (e.g., LiDAR, radar, camera,
GNSS) has advantages and disadvantages. For example, a
global localization technique based on GNSS provides high
accuracy on a highway, but it typically fails to work correctly
inside a building.

One of the main criteria for selecting a sensor for es-
timating the pose are the conditions inside the working
environment. This work focuses on subterranean areas, which
typically have low light and bad signal reception, making
both camera and GNSS less valuable options. LiDAR, which
provides distance measurements from surrounding environ-
ments, may bypass the two mentioned issues and it has been
widely used in robotic systems [16],[15]. Besides advantages

1Hamid Didari and Gerald Steinbauer-Wagner are with the Institute
of Software Technology, Graz University of Technology, Graz, Austria.
{hamid.didari, steinbauer}@ist.tugraz.at

2Eva Reitbauer and Christoph Schmied are with the Institute of Geodesy,
Graz University of Technology, Graz, Austria. {eva.reitbauer,
schmied}@tugraz.at

compared to GNSS, LiDAR works in a local frame, and it
suffers from drift over time. One way to reduce the drift
of LiDAR odometry is loop closure. Loop closure is a
fundamental part of many Simultaneous Localization and
Mapping (SLAM) algorithms that helps correct the estimated
pose of the robot by finding a loop in the map. One way
of having a loop closure is to utilize a bag-of-words [20],
which detects similarities between two scenes by feature
clustering to construct a dictionary. However, a robot might
never return to a previous location. Thus it is essential that
LiDAR odometry is able to work well alone.

SLAM based on LiDARs has been the cornerstone of
mobile robot mapping and navigation research. Leingartner
provides a comparison between different sensors and map-
ping algorithms in a tunnel environment [11]. According to
their results, Gmapping [5] is one of the best performing
algorithms in a 2D setting, but it requires reliable odometry
data. Moreover, the results confirm the environmental chal-
lenges for vision-based approaches due to the lack of light
and features.

3D SLAM algorithms based on LiDARs typically utilize
a scan registration approach, estimating the relative trans-
formation between two scans. Iterative Closest Point (ICP)
[1] is a well-known scan registration algorithm that iterates
between finding corresponding points from two consequent
scans, estimating the transformation between them, and
minimizing a cost function. Other variations of ICP with
different cost functions and correspondence methods have
been developed [12],[19].

This paper introduces a LiDAR odometry system to esti-
mate the pose of a robot in a subterranean area. With each
new scan, the proposed system first uses filters to reduce
the size of the point cloud and remove stationary points.
Furthermore, it estimates the transformation matrix between
the current and last point cloud based on Generalized Iter-
ative Closest Point (GICP)[19] and it calculates the robot’s
pose. Furthermore, the cumulative errors are compensated by
utilizing sensor fusion techniques using IMU data.

Due to the cumulative error in pose estimation, the robot’s
attitude drifts over time. Previous works utilize the Flat-
Ground Assumption (FGA) and argue that the robot should
not have a pitch/roll axis attitude, thus resetting the attitude
frequently to compensate for the error.

The main difference between the proposed method and
previous works is the use of an EKF with IMU data to
correct the drifting errors on the attitude instead of using the
FGA. While the IMU-based EKF produces similar results in
most cases, it can outperform the alternatives in an uneven
ground scenario. Furthermore, a Z-filter is introduced to
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remove stationary/pseudo-stationary points in the output of
the LiDAR. Moreover, we utilize the EKF, which is presented
in [18] to improve the estimation of the pose.

The remainder of the paper is structured as follows.
Section II covers related works. Section III explains the
proposed method in detail. After that, Section IV describes
the experiments and the analysis of results to show the
effectiveness of the proposed method. Finally, Section V
concludes the work.

II. RELATED WORKS

In this section, we review the related work on LiDAR-
based odometry estimation. Cartographer [7] is a Graph-
based SLAM, and it uses IMU and LiDAR data. Car-
tographer utilizes two steps. First, it estimates an initial
transformation using IMU data. Then it uses LiDAR data
to improve the estimation through scan matching between
the current point cloud and a local map that is created with
recent point clouds. Furthermore, it creates a global map
from local maps and re-arranges local maps between each
other so that they form a coherent global map.

HDL-Slam [10], like Cartographer, is a Graph-based
SLAM approach. It uses GICP to match the two-point cloud.
Since the odometry that comes from the matching point cloud
drifts significantly on the z-axis, it assumes that the robot
moves on flat ground. Whenever the LiDAR contains enough
points on a flat area, it corrects the estimated attitude and
position. This assumption works well in the area where the
flat ground assumption is true, but it will not work on uneven
ground.

In our previous work (Reitbauer et al., [18]), we devel-
oped an Extended Kalman Filter (EKF) to fuse information
from LiDAR, wheel odometery, and IMU. We used GICP
to estimate the pose from LiDAR and used both wheel
odometry and the estimated pose from GICP as observations
in the measurement update of the filter. The IMU was
used as a reference navigation sensor to propagate the filter
state in the time update. In this work, we enhace the pose
estimation from LiDAR data by using keyframes and an
attitude correction, and insert the enhanced pose into the
EKF presented in [18].

III. METHOD

This section presents the details of the proposed method. A
block diagram of the proposed method is shown in Figure 1.
First, we explain how we estimate the robot’s pose by
utilizing the transformation matrix between two point clouds.
Then we go into the details of recent algorithms for point
cloud matching. After that, we explain the filters that are used
on the point clouds. Furthermore, we present the EKF that is
used for fusing the acceleration vector of IMU with LiDAR
data to prevent the estimated attitude from drifting. Finally,
we utilized the presented EKF in [18] to improve results and
feed the scan matching algorithm with an initialized seed.

Fig. 1. The block diagram of the developed package for pose estimation.
The blue boxes are sensors, the green box shows the parts developed in this
work, and the red box is the EKF that is presented in [18] for sensor fusion.

A. Pose Estimation

One way to calculate the robot’s pose X is to multiply the
estimated transformation matrices between two point clouds
to each other over time, as shown in Equation 1:

X =
t

∏
i=2

Ti,i−1 (1)

where Ti,i−1 is the transformation matrix between the point
cloud i and i−1 and t is the number of current point cloud.

Due to the limited accuracy of the LiDAR, there is inherent
noise in the point clouds. Using the mentioned method will
result in a cumulative error over time. Utilizing keyframes is
an approach to reduce the cumulative error [9]. By selecting
a point cloud as a keyframe and comparing all subsequent
frames to it, the error remains constant for a short period.
The keyframe is updated when the robot moves/rotates more
than a certain threshold. The first point cloud is selected as
the first keyframe in the proposed method. The robot’s pose
can be estimated by multiplying the transformation matrices
between all keyframes, as shown in Equation 2:

X =
k

∏
j=2

Tj, j−1Tk,t (2)

where Tj, j−1 is the transformation matrix between the point
cloud j and j−1, which are chosen as keyframes, Tk,t is the
transformation between the current point cloud and the last
point cloud, which was chosen as a keyframe and k is the
number of keyframes.

The registration of 3D point clouds is an ongoing research
issue, and there are various different methods. One com-
monly used method is Iterative Closest Point (ICP). ICP is
a matching method that works with a source point cloud
(P) and a target point cloud (Q) [1]. The algorithm searches
for corresponding points in these point clouds (pi and qi)
and estimates the optimal transformation Ti by minimizing
the Euclidean distance between corresponding points. The
algorithm will iterate the process until a termination criterion
is satisfied.

The state-of-the-art implementation of ICP utilizes
SVD [14] to minimize the cost function given in Equation 3.
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f =
N

∑
i=1

||pi −T qi||2 (3)

A significant drawback of the ICP algorithm is the inherent
weakness against noisy data. Since the algorithm works
directly on points from the point cloud and tries to minimize
the distance between two points, the result is directly affected
by sensor noise.

Normal Distribution Transformation (NDT) [2] employs a
voxel-based association. By dividing the space into voxels
and fitting a normal distribution to the points in each voxel,
the problem of noisy data can be mitigated. The transfor-
mation matrix is estimated by maximizing the likelihood of
two-point clouds under the distributions of voxels. NDT also
requires less calculation due to voxelizing the space, So it is
faster to compute.

Another way of handling the noise issue is to utilize the
Generalized ICP (GICP) [19]. Instead of matching corre-
sponding points, GICP utilizes the covariance matrices of
neighborhood points to calculate the transformation matrix:

p̃i = N (p̂i,C
p
i )

q̃i = N (q̂i,C
q
i )

(4)

where p̃i and q̃i are distributed according a normal
distribution(N ) with the mean values q̂ , p̂ and for the
neighborhood covariance matrix of points Cp

i and Cq
i . The

transformation error can be defined as:

di = p̃i −T q̃i. (5)

Moreover, the distribution of di can be calculated as:

di ∼ N (q̂i −T p̂i, Cq
i +TCp

i T t)

= N (0, Cq
i +TCp

i T t).
(6)

Finally, the cost function for GICP is given in Equation 7:

fGICP = ∑
1

dT
i (C

q
i +TCp

i T T )−1di. (7)

B. Point Cloud Filtering

The large output size of the LiDAR point cloud combined
with the presence of noise in the data leads to the inevitable
use of filtering techniques [17]. The first essential filter
is downsampling points. By reducing the amount of data,
the cost/time of computation decreases while maintaining
important information about the environment. Also, it helps
to remove some outlier points. We utilize voxelizing as a
downsampling filter. Moreover, we utilize an outlier rejection
filter to remove any remaining outliers.

Due to the nature of the matching algorithms,
stationary/pseudo-stationary points in the output of the
LiDAR (e.g., the ground in front of the LiDAR always
produces similar points in the point cloud, which looks
stationary to the algorithm) will result in inaccurate pose
estimation. Diaz et al developed a ground filtering algorithm
for autonomous driving [4] and achieved promising results

for detecting ground points. Since the main purpose of our
study is localization, not navigation, we do not need to
remove the ground points accurately. Ground points usually
have the same height in the point cloud, and they can be
removed by utilizing a filter on the z-axis (Z-filter). This
filter has far less accuracy for detecting ground points than
Diaz’s work, but it is good enough for localization, and
it has far less computational cost. This work assumes the
points which have less height than 20 cm belongs to the
ground.

C. Attitude Correction

As mentioned before, attitude drift is one of the main
reasons for drifting LiDAR odometry over time. For instance,
a 1-degree Drift over pitch angle leads to a 1.7 m error in
100 m. The attitude’s error can come from drifting over time
or an error in scan matching. HDL-SLAM algorithm uses
FGA to tackle this problem, but the assumption does not hold
for all cases. These errors can be compensated by fusing the
gravity vector from IMU using EKF. The EKF state vector
can be defined as:

xk = {φ ,θ ,ψ}, (8)

where φ ,θ ,ψ are the Euler angles and these angles measures
by pose estimation. So, The transition matrix (F) matrix in
EKF equations is equal to the identity matrix:

F = I. (9)

The acceleration measurements from IMU are a combina-
tion of gravity and the dynamic acceleration of the robot:

aIMU = ag +ad , (10)

where aIMU is the output acceleration vector, ag is the
gravity vector, and ad is the dynamic acceleration vector. The
dynamic acceleration is equal to zero when the robot does
not move or has a constant speed and the IMU measures the
gravity vector. This information can be used to compensate
for the error in the angles. For detecting the impact of
dynamic acceleration on the IMU measurement, g′ is defined
as:

g′ = |1− ||aIMU||
||g|| |, (11)

where g is the normalized gravity vector in the world frame.
The value of g′ is equal to zero if the IMU output is equal to
the gravity vector. The dynamic acceleration would result in
a bigger or smaller size of the IMU vector, which increases
the value of g′. When g′ is less than a threshold (εg′ ), we can
assume that we don’t have a dynamic acceleration and use
IMU acceleration as a gravity vector. But if this is bigger
than εg′ , the IMU vector contains dynamic acceleration, and
we couldn’t use it for angles correction. In this work, we set
εg′ to 0.05. Bigger value for εg′ causes errors in angles.

The expected measurement (ẑ) is the normalized gravity
vector. It can be estimated by transforming the gravity vector
from the world frame to the robot frame:
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ẑ = h(x) = R(x)

0
0
1

=

 sin(θ)
−sin(φ)cos(θ)
cos(φ)cos(θ)

 (12)

where R(x) is the rotation matrix from the states. The
measurement residual is computed as:

ỹ = aIMU − ẑ (13)

The linearised observation functions can be written as:

Hk =

 0 cos(θ) 0
−cos(φ)cos(θ) sin(φ)sin(θ) 0
−sin(φ)cos(θ) −cos(φ)sin(θ) 0

 (14)

The EKF procedure can be summarized as :

• Prediction:
– The states are updated by pose estimation
– Predicted covariance estimate P̂k = Pk−1 +Q

• Correction:
– Measurement residual ỹ = aIMU - ẑ
– Innovation covariance Sk = HkP̂kHT

k +R
– Kalman gain Kk = P̂kHT

k S−1
k

– Updated state estimate xk = x̂k +Kkỹ
– Updated covariance estimate Pk = (I −KkHk)P̂k

where R and Q are noise covariance respectively for mea-
surement and prediction.

D. Sensor Fusion

We utilize the IMU acceleration vector for correcting the
attitude of LiDAR pose estimation. Besides that, IMU can
be used to improve the accuracy of pose. Another sensor that
can also be used in subterranean areas is wheel odometry. In
our previous work [18], we developed an EKF which uses
a pose from LiDAR as well as wheel odometry data in the
measurement update and an IMU with a strapdown algorithm
in the time update. The proposed method of this paper takes
the enhanced pose estimation with keyframes and the EKF
using an acceleration vector and inserts the estimated pose
into the EKF presented in [18].

IV. RESULTS

This section presents the experimental results of the pro-
posed method and compares it to state-of-the-art LiDAR-
based odometry solutions. We first introduce the dataset that
is used for evaluation. Then, since the point cloud matching
algorithms play a vital role in pose estimation, we compare
the mentioned algorithms for point cloud matching in section
III to each other. Furthermore, we present the impact of each
part of the proposed method on pose estimation. Finally,
we compare our method to other approaches. We used the
Euclidean distance between the estimated pose and ground
truth in the XY (2D) and the XYZ axis (3D).

A. Tunnel dataset

The tunnel dataset was recorded at Zentrum am Berg in
Eisenerz, Austria. The robot was equipped with a Velodyne
LiDAR (model: VLP-16) and an IMU (model: XSens MTi-
G-710). The robot was navigated in the tunnel manually,
and the ground truth was obtained by tracking the robot
with two Leica total stations. The total travel distance for
the robot is 135 meters. Figure 2 shows the robot and tunnel
environment.

Fig. 2. Picture of the robot and tunnel environment.

B. Scan Matching

Scan matching is the central part of our pose estimation,
and its performance directly affects the quality of the pose
estimation. Thus, we compared the mentioned algorithms
for point cloud matching in section III to choose the best
scan matching method. For comparison, the transformation
matrix between two point clouds is estimated by them and
then by utilizing Equation 2, the pose is estimated. In
Table II, the Euclidean distance between the final estimated
position and ground truth in 2D and 3D for different scan
matching methods is presented. The error of the vanilla ICP
is 127.94 m which is expected due to the inherent weakness
of its cost function against noisy data. Although NDT has
more robust against noise, it did not show good performance
because of the high similarity in the tunnel environment.
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different point cloud matching algorithms for the tunnel dataset.

GICP does not have the inherent weakness of ICP. Thus,
it had the best performance, which is 42.5 m in 2D and
46 m in 3D. Moreover, this performance can be improved
by utilizing keyframes. Figure 3 shows the errors of scan
matching algorithms on traveled distance. ICP and NDT
couldn’t estimate the transformation matrix well, resulting in
a significant cumulative error. GICP also suffers cumulative
error but far less than ICP and NDT. Since the GICP
outperforms the alternatives, it is chosen as the scan matching
method.

TABLE I
ERROR OF ICP, NDT,GICP, AND GICP WITH KEY FRAME.

Method 2D-error (m) 3D-error (m)
ICP 127.94 128
NDT 124.8 125.2
GICP 42.5 46
GICP-Key-frame 39.89 40.45

C. LiDAR-BASED POSE ESTIMATION

In order to evaluate different variants of the proposed pose
estimation pipeline, we determined the error between the
estimated pose and ground truth in the X, Y, and Z axis.
The result can be seen in Figure 4. Z-filter indicates the error
of using Z-filter together with GICP. Despite improvement
it still shows a significant error. As well the Z-filter-key-
frame illustrates the effect of utilizing keyframes. There is
a significant improvement in 2D, but it still shows a big
error in 3D. To reduce the error in 3D, an IMU is employed.
The Z-filter-key-frame-IMU shows the effect of using IMU
together with other parts. As shown in the figure, the error
in the axis was reduced significantly. The pose estimation

is further enhanced by utilizing the work of [18] for sensor
fusion.

Fig. 4. Comparison between the effect of different variants of the proposed
pose estimation pipeline.

D. Evaluation Against the State-of-the-Art

For comparison with other works, HDL-SLAM [10] and
our previous work [18] was chosen. HDL-SLAM is a well-
known LiDAR-based SLAM, and it uses GICP for point
cloud matching. Thus it is a good candidate to compare
the result of this work to it. Finally, we compare our
results to work presented by our previous work because
we employed the same sensor fusion setup. Figure 5 shows
the performance of HDL-SLAM, our previous work and the
proposed method. HDL-SLAM suffers from cumulative error
more than the proposed method and our previous work. The
proposed method performed better than our previous work
In 2D and 3D.

TABLE II
SUMMARY OF ACCURACY RESULTS ON TUNNEL DATASET

Method 2D-error(m) 3D-error(m)
HDL-SLAM 41.25 42.74
HDL-SLAM-FGA 39.34 39.65
GICP-Z-filter 8.28 20.72
GICP-Z-filter-key-frame 1.95 8.72
GICP-Z-filter-key-frame-IMU 1.73 1.77
Reitbauer et al. [18] 1.50 2.40
Proposed-method 1.17 1.20

Table II shows the final error (Euclidean distance) in 2D
and 3D for the different methods. HDL-slam tries to optimize
the trajectory over time and due to stationary points in the
point cloud, it failed to improve the estimation. By using
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our approach and removing stationary points with a Z-filter,
the final error drops to 8.29 m in 2D and 20.72 m in 3D.
The drift over the z-axis is mainly caused by drifting in
roll and pitch angle. This drift can be reduced by utilizing
IMU. Furthermore, using the keyframes, the final error can
be reduced to 1.95 m in 2D and 8.72 m in 3D. It can be seen
in the table by using IMU, the error in the 3D is reduced
to 1.77 m which is less than for the approach from [18],
however, the 2D error is 23 cm larger than in [18]. Finally,
by employing EKF that is presented [18] to improve the
estimation, we reach 1.17 m and 1.20 m error in 2D and 3D
which is less than 0.9 percent of the traveled distance.

V. CONCLUSIONS

This paper proposes a LiDAR-based odometry system to
estimate a robot’s pose in a subterranean area. This study
shows that by removing stationary/pseudo-stationary points
in point clouds, the accuracy of GICP can be improved.
Furthermore, by using IMU data for attitude correction,
pose estimation accuracy can be improved. The effective-
ness of the proposed method is shown with an empirical
experiment using a real-world dataset acquired in a tunnel
setting. The proposed method reaches 1.17 m and 1.20
m error in 2D and 3D which is less than 0.9 percent of
traveled distance, outperforming the state-of-the-art solutions
in this experiment. Moreover, the proposed method benefits
usability in an uneven ground scenario. In the future, a better
filter for removing stationary/pseudo-stationary points will be
designed.
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Abstract—Using the soft robotics in the development of the col-
laborative robots will be a new innovative method. The flexibility
of the soft robots makes them safe and more cooperative. In this
work, an additive manufacturing approach is used to develop
a soft and stretchable capacitive pad, this approach makes the
design process more convenient and easier to provide the sensor
with new potential. This paper outlines the evaluation of the
soft capacitive pad in terms of tactile and proximity sensing.
In future work, this sensing pad will play an important role
in the development of a soft robotic gripper. In previous work,
the operational principle of similar sensors is discussed, in this
work we focus more on the design and the sensor performance,
during stretching, for both tactile and proximity aspects. During
the evaluation process, a normal tactile force (2 N to 16 N) is
applied on the pad, which led to a change in capacitance (3 pF
to 7 pF). Also, the sensing pad is evaluated under a strain test
by 5 cm. As a result, the capacitance of the tactile sensing layers
is increased (0.6 pF to 1.5 pF), and decreasing values for the
proximity sensors (1.4 pF and 1.5 pF).

Index Terms—soft robotic grippers, soft sensors, stretchable
sensors, capacitive sensor, additive fabrication, 3D-printing.

I. INTRODUCTION

Different robotic applications are contributing into our life
including grasping robots [1], [2] and haptics [3]. In addition
to human-robot interaction [4], where the safety aspect in this
interaction is essential [5].

Due to the fact that the soft robots are flexible and more
adaptable than the rigid robots, that need limited and com-
plicated control, this makes the soft robot better suited for
human-robot interaction and for dealing with soft and delicate
objects.

In order to correctly utilize the soft robotics into various
applications, it is important to embed sensors into these soft
systems for sensing their environment and precise control.
These sensors are used to deliver internal information of the
system itself [6], also to give information about the external
environment. The capacitive sensing principle is chosen among
the others in the soft sensors fabrication due to its robustness
and easy manufacturing.

The fabrication of the soft systems is more possible and
feasible using new fabrication techniques like multi-material
additive manufacturing. For instance, using Galinstan, or sil-
ver nanowires (AgNWs) with Polydimethylsiloxane (PDMS)-
based layers for flexible and stretchable conductive traces
widen the abilities of new high-tech sensors and their utiliza-
tion.

Furthermore, different complicated tasks can be performed
using the integrated sensors including grasping objects [7] and
objects identification [8]. In addition to dealing with objects
in terms of classification and grasping, these sensors can
provide information about the material [9], and detect how
rough the object surface is and its temperature. Next section
discusses the related literature to manufacturing and capacitive
sensors potentials using various fabrication techniques, also
how these sensors are utilized in robotic applications. Section
III provides overview of the electronic unit used in measuring
the changes in capacitance, also it describes sensor design
and its fabrication process, in addition to the setup used
for conducting the intended experiments. The fourth section
presents the experiments steps and the results. Last section
views the conclusions and the future steps.

II. RELATED WORK

In the simplest form of a capacitive sensor, two conductive
plates/conductors form the capacitor, however, one conductor
is enough to provide change in capacitance. These sensors
can be manufactured easily and they are ideally fitting to
other systems, similar sensors are fabricated using PyzoFlex
technology [10]. Furthermore, these sensors can be operated
in coupling and proximity modes. For applications, they can
be applied in object shape detection [11], tactile and proximity
sensing. An important aspect is that the sensor can have
different conductive layers in one fabrication process to form a
sensor which is capable of sensing both tactile and proximity,
simultaneously.

In [12], a carbon nanotube-based sensor is developed with
range of r = 5N. In [13], a 3D force sensing setup is
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Fig. 1. The main electrodes of the capacitive pad. Where the upper two layers
form the proximity sensor, and the lower layers construct the tactile sensor.

developed utilizing capacitive sensors. Also, in [14], a sys-
tem for directed force measurement is done using an array
of capacitive sensors. A high sensitivity capacitive sensors
(s = 3mN) is developed in [15], where nanoparticles are used
in doping silicone. In [16], a capacitive sensor integration with
soft robotic finger is shown.

More detailed version of the paper is presented in the IEEE
I2MTC (The International Instrumentation and Measurement
Technology Conference) 2022, held in Ottawa, Canada.

III. SYSTEM DESCRIPTION

A. Capacitive Measurement Unit and Sensing Principle

The used electronic measurement unit is designed at the
Karlsruhe Institute of Technology (KIT). This unit is the new
modified version on the one in [17]. The unit has the following
specs: data rate with maximum value of dr = 400Hz,
resolution with maximum value of r = 50 fF, supporting
8 sensors, with both differential and single-ended modes,
active shielding, and in-phase-quadrature (IQ) measurement.
An exciter frequency of fexc = 81 kHz fexc = 81 kHz is
applied with single-ended mode in this paper. Where the tactile
and proximity sensing are conducted by the IQ-channels,
Fig. 1. As described in the previous figure, the active shielding
wire provides protection of the proximity sensing layer, and
significantly decreases its effect on the tactile sensing layers.

The simplified formula of the parallel-plate capacitor is
represented as follows:

C = εrε0
A
d (1)

Where A refers to the plates’ surface area, and d refers
to the distance between the plates. This formula provides
easier understanding of the relation between the change in
capacitance and the physical deformation of the sensor.

The applied normal force on the sensor decreases the
distance between the plates, thus the capacitance increases.
When stain force is applied to the sensing pad, the area
increases while the distance between the plates decreases.

B. Capacitive Sensors Design and Fabrication

The sensing concept behind the sensor is related to the
interfering with the sensor’s electric fields by human touch or
other object. Here, the tactile effect will decrease the distance

between the plates where the electric fields are formed. On the
other hand, when an object or human body crosses the electric
field, this is interpreted as a disturbance in the capacitance.
Two modes can be used for measurement; in the single-ended
mode the capacitive measurement is achieved between the
transmitter and ground. On the other hand, the measurement
can be done using differential mode, [18], [19]. The transmitter
is connected to an excitation signal with a specific frequency.
The cables/electrodes used in the measurements are relatively
easy to manufacture using a variety of materials, [20], where
they will be durable, tiny, and flexible, also when stretchable
material is applied in the fabrication process like Galinstan,
these electrodes can be elastic and compressible, [16]. In this
paper, the sensor is fabricated layer by layer, such that the
tactile sensing part has upper and lower layers/plates, same
thing goes for the proximity function, where proximity sensors
are placed at the top of the tactile sensors. In Fig. 2, the
tactile/force sensors are design from two circular plates with
upper and lower diameters of 6mm and 8mm, respectively.
On the top of the pad, each proximity sensor has two identical
upper and lower layers, where the bottom and top widths
are 13mm and 6.5mm, respectively. With main and tapering
lengths of 23.5mm and 11mm, respectively. The dielectric
layers of the pad are fabricated from EcoFlex 10-fast silicone,
while the conductive buses are done from liquid metal, Galin-
stan. These buses are formed by applying the Galinstan into
the cavity of the required printed pattern. where the dielectric
material is applied at the top of each Galinstan layer. Finally,
coaxial electrodes are sued to make the connection with the
end of each Galinstan bus for external read-outs.

Fig. 2. The capacitive pad sensors design. a) The lower layers of the pad
form the tactile sensors. b) The upper layers of the pad form the proximity
sensors and covering the overall pad.

C. Evaluation Setup

In this work, the sensing part of the experiment includes
the capacitive pad and its sensing unit. While the deformation
part consists of the UR3e robot (provides repeatability of
+/- 0.03mm) with custom-made end-effector to conduct each
experiment, Fig. 3, this figure also shows the stretching end-
effector of the experiment. Where two main experiments are
applied to the sensing pad: strain/stretching the pad horizon-
tally; and compressing the pad by a normal force vertically
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using the tactile end-effector, Fig. 4. These end-effectors are
3D-printed and are connected to a 3D-force sensor from
SCHUNK.

Fig. 3. The experiment setup. The figure shows the used setup in this work,
where the same setup shows the end-effector of the strain experiment. a)
shows the capacitive pad. b) shows the Schunk-Axia80 force sensor. c) UR3e
robot’s end-effector. d) the capacitive measurement unit.

Fig. 4. The tactile end-effector used to apply a normal force on the pad using
the 3D-printed red pointer.

IV. RESULTS AND DISCUSSION

A. Strain test

This test concludes stretching the pad for a distance of
50mm horizontally using the robot, Fig. 3a. While the robot is
applying the strain test over a 10 steps, the strain force and the
change in capacitance (for tactile and proximity) are logged
simultaneously.

After the first strain distance of 5mm, both sensors show a
counter behaviour is semi-linear way. This behaviour can be
interpreted by the deformation of the sensor’s thickness, where
the applied strain increases the pad’s length and decreases its
thickness; the distance between the capacitors plates. As a
result, the capacitance increases.

The capacitance change of the proximity sensors behaves in
opposite manner comparing with the tactile sensors. This can
be explained by the deformation of the proximity plates, where
the strain action lengthens the pad while reducing the area of
these plates, as a result, this will decrease the capacitance.

B. Normal tactile force

Different end-effector is 3D-printed with suitable pointing
area to apply a normal force on each tactile sensor, Fig. 4. The
normal force is applied into the pad for 0.5mm per step. This
leads to decreasing the distance between the tactile capacitive
plates, thus the capacitance will increase, Fig. 5. All tactile
sensors share the same behaviour, despite the rate of change
for each; this is resultant from a mismatch in the thicknesses
of the dielectric and conductive layers during manufacturing.
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Fig. 5. The change in capacitance value of the tactile sensors under applied
normal force.

V. CONCLUSIONS

This paper shows the manufacturing process of a stretchable
pad with capacitive sensing principle. The pad sensing capa-
bilities; tactile and proximity, are discussed in terms of design,
working principle, and evaluation. The use of Galinstan as the
conductive material, and the EcoFlex as dielectric and main
substrate, demonstrates practical and easy fabrication. The
tactile part of the pad consists of four circular sensors, these
sensor show similar behaviour against the applied pressure;
due to a nonuniform thickness of the fabricated dielectric
and Galinstan layers, the sensors vary in terms of sensing
magnitudes. The strain test led to decrease the proximity
sensors capacitive measurements, as the deformation reduces
electrodes areas, while the tactile sensors values increased
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as their thickness decreases. The future outlook focuses on
evaluating the proximity capability by sensing different ma-
terials. Also, utilizing the overall pad, with modified design,
into robotics-related application.
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Comparing Supervised and Unsupervised Machine Learning Methods
for Traffic Sign Classification

Peter Hönig1, Lucas Muster1, Mohamed Aburaia1 and Wilfried Wöber1,2

Abstract— Traffic sign classification is typically implemented
using supervised machine learning methods, primarily CNNs.
But these methods are prone to overfitting and lack explain-
ability due to their ”black box” characteristic. Compared to
supervised methods, unsupervised machine learning methods,
such as autoencoder and GAN, are great at dimensional-
ity reduction and feature extraction and have already been
successfully applied for image classification. To investigate if
unsupervised learning methods perform significantly different
than supervised learning methods, this study compares perfor-
mances of a supervised VGG16 classifier, an autoencoder-based
classifier and a GAN-based classifier, using the GTSRB dataset.
Results show accuracy scores of 98.4% for the VGG16 classifier,
84.7% for the autoencoder-based classifier and 11.0% for the
GAN-based classifier.

I. INTRODUCTION

As stated in the SAE International standard J3016C [15],
cars with autonomy level 3 or higher are in need of traffic
sign recognition, a method composed of object localization
and image classification. State of the art traffic sign clas-
sification is performed primarily with convolutional neural
networks (CNNs) [18], [16]. Lately, unsupervised learning
methods, originally designed for dimensionality reduction
and feature extraction [5], have been successfully applied
for classification of handwritten digits in [8] and [1], as
well as image classification in medical imaging [19]. Based
on these successful applications of unsupervised learning
methods for classification, this study aims to investigate the
effect of supervised and unsupervised training procedures
for traffic sign classification, regarding accuracy. In this
study we contribute to the state of the art by conducting a
comparative study of three classification models. A VGG16
[17] model is compared with two classifiers, based on gen-
erative adversarial networks (GANs) [12] and autoencoders
[2]. The GAN-based classifier and the autoencoder-based
classifier are trained in an unsupervised manner. All three
models are trained and tested using the German-traffic-sign-
recognition-benchmark (GTSRB) dataset. Accuracy scores
are calculated and McNemar tests [14] are conducted to
compare the models’ performances.

This paper proceeds with an overview of the state of the
art in chapter II. Selected methods are described in chapter
III. Results are presented and discussed in chapter IV and a
final summary and outlook is given in chapter V.

*This work was not supported by any organization
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II. STATE OF THE ART

In a prior study from 2011 [18], the GTSRB dataset
was composed and a classification challenge was held. The
highest accuracy score of 98.98% was reached by a super-
vised CNN classifier with a multilayer perceptron [7]. In
2018 a European dataset [16] was composed and the highest
accuracy score of 98.62% was reached with an 8-layer CNN
based on the VGG16 model [17]. [10] reviews findings in the
field of representation learning, a domain which investigates
unsupervised learning and its usage for classification and
transfer learning. Unsupervised learning methods can be
used as classifiers or as preliminary stages for classifiers.
[13] discusses the benefits of unsupervised learning methods
and their capabilities of learning representative features and
reviews multiple studies where the use of unsupervised
learning for classification improved speed and accuracy of
subsequent supervised learning tasks. More recent imple-
mentations of representation learning include the usage of
autoencoders [2] and principal component analysis (PCA)
[5], which have already been successfully implemented for
classification tasks [8], [1]. As discussed in [4], GANs [9]
have been used for representation learning as well [19].

III. MATERIALS AND METHODS

A modified VGG16 [17] classifier, a custom autoencoder
[2] and 43 deep convolutional GANs [12] are implemented
and trained using an input image size of 32x32, Python 3 and
the Keras API [6]. Training parameters are listed in table I.
The models are tested with the same test images. Accuracy
scores are calculated to compare the models’ performances.
McNemar tests [14] are conducted to evaluate if the models’
performances differ significantly.

A. VGG16 classifier

A VGG16 [17] model is chosen for the supervised CNN
classifier. Input image size is defined with 32x32x3. Since
VGG16 is built for an input image size of 224x224x3,
only three out of five convolution blocks are used, resulting
in a latent space size of 8x8x256. Pre-trained weights by
ImageNet [11] are used for initialisation.

B. Autoencoder-based classifier

The autoencoder [2] consists of an encoder and a decoder.
To build the encoder, the feature extraction layers of the pre-
trained modified VGG16 model are used. The decoder is
designed as the inverse model of the encoder. After the au-
toencoder training, the encoder is detached from the decoder
and the layers of the encoder are frozen. The frozen weights
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of the encoder layers are used for the feature extraction part
of a new VGG16 model with randomly initialized flatten and
dense layers. This pre-trained classifier with frozen feature
extraction is trained again.

C. GAN-based classifier

The GAN-based classifier is a combination of 43 unsuper-
vised deep convolutional GANs [12], using an input image
size of 32x32x1. Each of the 43 GANs is trained on a
single traffic sign class. After the 43 GANs are trained with
their individual traffic sign class images, the discriminators
are saved. The GAN-based classifier is represented by the
discriminators which act as binary classifiers to distinguish
between the images referring to the class they have been
trained on and images which do not refer to the class they
have been trained on.

TABLE I
MODEL TRAINING PROPERTIES

Model Input shape Epochs Batch size
VGG16 modified 32x32x3 30 878

Autoencoder 32x32x3 50 878
Autoencoder-based classifier 32x32x3 30 878

Each GAN 32x32x1 20 000 32

IV. RESULTS

The unsupervised learning methods did not outperform the
supervised learning method in regards to accuracy scores.
With an accuracy score of 98.4%, the VGG16 classifier
performed as expected, compared to prior traffic sign classi-
fication studies, using supervised CNNs [18], [16]. However,
it is not guaranteed that the VGG16 model learned represen-
tative features. The autoencoder-based classifier reached an
accuracy score of 84.7%. The unsupervised feature extraction
did not improve the models accuracy score. The GAN-based
classifier reached an accuracy score of 11.0%. This indicates
that GAN discriminators might not be suited for multiclass
classification of traffic sign images, based on the dataset and
GAN architecture used. One possible explanation is, that
GAN discriminators are trained to distinguish real from fake
images. The trained probability distribution of the discrim-
inator seems not to be transferable to distinguish between
trained images and novel images from foreign classes. The
null-hypothesis of the McNemar tests is that performances
of two observed models do not differ significantly [14]. For
all McNemar tests, the null-hypothesis was rejected since
p-values were below α = 0.05, indicating that all models
perform significantly differently.

V. SUMMARY AND OUTLOOK

A comparative study was conducted, comparing model
performances of a VGG16 classifier with an autoencoder-
based classifier as well as a GAN-based classifier. Results
show accuracy scores of 98.4% for the VGG16 classifier,
84.7% for the autoencoder-based classifier and 11.0% for
the GAN-based classifier. McNemar tests confirmed that the

models’ performances differ significantly. The supervised
VGG16 model performed as expected while the accuracy
score of the GAN-based classifier indicates that multiple
GAN discriminators, trained on individual classes, are not
suited for multiclass classification, based on the training set
and GAN architecture used. Future research could apply
post-hoc evaluation techniques [3] to investigate if represen-
tative features have been learned. Only by understanding if
representative features have been learned, CNNs might be
applied in fields with strict safety requirements.
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Evaluation of Reinforcement Learning Algorithms for the online 3D Bin
Packing Problem*

Johanna Gottwald1, Patrick Streck1, Maximilian Beinhofer1, Markus Hofmarcher2, Michael Widrich2

Abstract— Optimizing the filling degree of load carriers
packed by robots is typically done by using heuristics. Miss-
ing information about future item sizes and the possibility
of rotating items increases the intricacy of the optimization
problem. As Reinforcement Learning (RL) has been shown
to be efficient in solving combinatorial optimization problems
(e.g. Alpha GO), this paper looks into the performance of RL
algorithms on the online 3D bin packing problem with rotation.
For this, three RL algorithms were tested on various settings
and their performance was compared to known heuristics. The
experiments showed that depending on the setting, RL is able
to achieve a similar or better performance than the heuristics.

I. INTRODUCTION

In warehouse logistics, maximizing the occupied volume
per load carriers (LC) has a high commercial value, as e.g.
costs per shipment and packing can be reduced. The resulting
combinatorial optimization problem is known as bin packing
problem (BPP) [6]. While in offline bin packing (BP), the
sizes of all pending items are given, in online BP only the
size of the current item is known. Thus, in online BP no
preliminary item ordering can be performed, which makes
it more interesting for robotics, as less complex warehouse
solutions are needed for supplying the individual items.
As generalizing to varying situations can be problematic
for heuristics, Reinforcement Learning (RL) could be an
alternative for solving the BPP [8].

There exists a broad range of research dealing with the
application of RL on the 3D BPP. While some papers propose
novel algorithms [11], others focus on the combination of
RL with other methods like attention networks [12][7]. This
paper aims at getting an insight into the possible performance
of different state-of-the-art RL algorithms on the online 3D
BPP with rotation. Therefore, a virtual environment of a
3D BPP was developed in which the three RL algorithms
Proximal Policy Optimization (PPO), Soft Actor-Critic (SAC)
and RUDDER were trained and their performance on various
settings was evaluated and compared to the one of heuristics.

II. PROBLEM STATEMENT

In this paper, an online version of the 3D BPP with
rotation is considered. As each object can be represented
by its bounding box, all items sampled over a finite time
interval are assumed to be cuboid. After sampling each item

*This work was partly supported by the Austrian Research Promotion
Agency (FFG) under grant 873923.

1J. Gottwald, P. Streck and M. Beinhofer are with
TGW Logistics Group GmbH, Marchtrenk, Austria
forename.surname@tgw-group.com

2M. Hofmarcher and M. Widrich are with the Institue of Machine Learn-
ing, Johannes Kepler University, Linz, Austria surname@ml.jku.at

Fig. 1. Example of a 4D tensor encoding a LC state and the size of the
current item as feature maps. The stated measurements are given in voxels.

has to be placed inside an LC, making use of a 90◦ rotation
of the item wrt. its z-axis if desired. An item assignment is
considered valid if the entire item is placed inside an LC
without exceeding its borders. Once an item is put into an
LC, its position cannot be changed. Moreover, items can only
be placed on top of an LCs’ content and cannot be shifted
below other items. Furthermore, at any time step, only one
LC is available for item assignment. If no valid position can
be found for the current item, the LC is closed and a new one
is used to place the item. Overall, the goal is to minimize
the total number of LCs needed to pack all sampled items.

III. ENVIRONMENT SETTING

RL is a goal-directed computational approach, where an
agent (a learner) is trained by interacting with its environ-
ment [10]. Based on the action performed in a certain state, it
receives a numerical reward signal and the next state. Overall,
the agent aims to maximize the total reward over time.

A. State Space

The state space is used to encode the discretized LC
state and size of the sampled item. For this, a 4D tensor is
used (example given in figure 1), where the first dimension
contains a map of the negative of the remaining heights at
the individual LC positions in voxels. The remaining tensor
dimensions comprise mappings containing the length, width
and height of the current item in voxels in each matrix entry.
This encoding was chosen to enable convolutional neural
networks (CNNs) to relate the LC state with the item size.

B. Action Space

For item assignment, the agent has to decide on a target
position in the LC and if the item shall be rotated. Therefore,
a discrete tuple action space is used, where the first entry
contains a boolean value, which decides the rotation action
(0: no rotation, 1: rotation by 90◦). The second entry consists
of a vector encoding the LC positions and an action for
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TABLE I
EXPERIMENTAL SETUP AND RESULTS

LC Setting
l ×w×h

Item Settings
l ×w×h

Items per
Episode First Fit Floor

Building
Column
Building

Random
Agent PPO SAC RUDDER

Setting 1 13×13×12 3×3×3 128 85.207% 85.207% 85.207% 32.647% 85.207% 85.207% 56.805%
Setting 2 12×29×16 4×7×4 132 53.103% 53.103% 53.103% 29.829% 66.379% 88.506% 66.379%
Setting 3 13×25×16 4×6×4, 8×4×4 108 53.048% 77.079% 48.965% 29.096% 77.434% 76.578% 56.883%
Setting 4 13×21×18 4×5×6, 10×4×3 108 38.113% 52.199% 40.115% 27.295% 42.063% 49.871% 54.089%
Setting 5 13×20×16 l,w,h in rage [2,6] 100 36.449% 47.731% 33.551% 26.234% 38.305% 43.127% 39.469%

The table shows the experimental setup as well as the average obtained filling degrees per episode in percentage. Each setting was tested for 500
episodes with 5 different seeds, with the episode length defined by the number of items to be packed.

closing the current LC and opening a new one. In the latter
case, the item is assigned to the top-left LC corner, utilizing
the chosen rotation action. The selected position encodes the
xy-coordinate, to which the top-left item corner is assigned.
For simplicity, it is assumed, that an item is placed with
its edges parallel to the ones of the LC. To avoid invalid
item assignments (e.g. collisions with the LC or over-height)
an action mask is used to filter those actions beforehand.
Further, as a perfectly centred position of the item on the
gripper of the robot is unlikely in practice, a tolerance of
one voxel is considered in the mask wrt. the item length and
width. Moreover, opening a new LC is only enabled by the
mask, if no valid assignment for the given item exists in the
current LC.

C. Reward
If an LC is closed, the negative percentage of the empty

LC space is given as reward. Otherwise, the reward is zero.

IV. APPROACHES
We tested the three RL algorithms PPO, SAC and RUD-

DER on the described problem setting and compared their
results to the performance of the First Fit (FF), the Floor
Building (FB) and the Column Building (CB) heuristic as
described by [11]. Additionally, the performance of an agent
which randomly interacts with its environments, under con-
sideration of the action mask, was used as a lower bound.

A. Heuristics
To select a target position, each of the heuristics iterates

over all LC positions row-by-row, starting at the top-left
corner. While FF assigns items to the first feasible position
in the LC found during iterating, FB chooses the position
that leads to the lowest feasible item location in the LC.
In contrast, CB selects the highest possible location in the
LC. If no position is found, the iteration is repeated with the
rotated item. If still no feasible position is found, the item
is assigned to the top-left corner of a new LC.

B. Proximal Policy Optimization
PPO [9] is an on-policy method, which learns a policy

by using a clipped objective function, which ensures that
the current policy is not destroyed by too large update
steps. In each iteration, several parallel actors collect data
by interacting with the environment for a certain amount of
steps. Afterwards, the collected experience is used to update
the networks via gradient ascent on the objective function.

C. Soft Actor-Critic
SAC [4] is an off-policy method, where an agent should

succeed at a task by interacting as randomly as possible
with its environment [4]. Hence, in addition to the expected
reward, the entropy is maximized. The obtained experience
is collected in a buffer, which is used to train a policy. We
used the discrete version of SAC as described in [2].

D. RUDDER
Assigning credit to actions that are responsible for rewards

in the future is a challenging task in RL [1]. RUDDER can be
used on top of other RL methods to tackle this problem. By
using a Long Short-Term Memory (LSTM)[5], the rewards of
an episode are redistributed and assigned to actions causing
delayed rewards. We use RUDDER in combination with
PPO, as described in [1].

V. EXPERIMENTS
We have evaluated the approaches described in section

IV on five settings of item- and LC-sizes. The respective
settings and results are listed in Table I. The item dimensions
were selected to cover different configurations, ranging from
a single item of cubic shape to several cuboid items of
random sizes in a given range. While in some settings the RL
algorithms gave better results than the heuristics (eg. Setting
2), in others at most similar performance was achieved (eg.
Setting 5). Comparing the results of the RL algorithms,
the off-policy method SAC on average achieved the highest
filling degrees. Further, RUDDER too showed the capability
of achieving a good performance (eg. Setting 4).

VI. CONCLUSION AND FUTURE WORK
In this paper, we tested three RL algorithms on various

settings of the 3D BPP. We compared their performance
with known heuristics and showed that RL has the capa-
bility of matching or improving the performance of the
selected heuristics. Due to the computational time needed for
training (especially with RUDDER), only a small range of
hyper-parameters was tested. By performing further hyper-
parameter experiments, the performance of the RL agents
could be improved (e.g. for RUDDER on Setting 1 and 3).
Moreover, runs with additional seeds should be performed
and statistical significance tests are needed to consolidate
the results. Furthermore, the algorithms were only tested in
a virtual setting until now. Hence, a realization utilizing a
pick-robot needs to be evaluated in a further step.
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Time-Optimal Swing-Up Trajectory Optimization for a Spherical

Inverted Pendulum Mounted on a Linear Robot

Simon Schmidt1 and Hubert Gattringer1 and Andreas Müller1

Abstract— This paper presents the time-optimal swing-up of
a spherical pendulum (SP) mounted at the end-effector (EE) of
an elastic linear robot. For the optimization, the pendulum is
separated and represented as a dynamical model with moving
base point. The corresponding Optimal Control Problem (OCP)
comprises the cost function (minimizing time and jerk) and the
physical constraints accounting for the constraints on position,
velocity, and acceleration limits on the base point (i.e. the EE).
The solution is calculated with a multiple shooting method
leading to the desired swing-up trajectories. The stabilization
of the pendulum is ensured by means of a time-variant Linear
Quadratic Regulator (LQR) that is designed along the desired
trajectories. Experimental results of the swing-up and the
stabilization of the pendulum at its upper equilibrium are
presented.

I. INTRODUCTION

Inverted pendulums are often studied benchmark examples

in the scientific community although they do not really have a

direct industrial use. However, their importance for education

and engineering curricula is undoubted since sophisticated

methods for dynamical modeling, parameter identification,

control and optimization can be studied. In this context,

different setups like single, double, and triple pendulums

on carts moving on a linear axis, rotary units or spherical

units exist. An overview and history of inverted pendulums

can be found in [6]. In [4], a spherical pendulum (SP)

on a 7-axis LWA Kuka robot is considered. They use a

special tailored swing-up optimization and a time-variant

LQR controller. As extension a fast re-planning method using

QP optimization is discussed in [9]. [8] present a method

for swing-up of an SP using energy based methods. Therein

only simulation results are available and the performance is

less in contrast to optimization based swing-up trajectories.

The LQR stabilization (without swing-up) of an SP mounted

on the end-effector (EE) of a redundant robot is shown in

[7]. The nullspace of the redundant robot is used for e.g.

obstacle avoidance. An inverted pendulum with 1 degree

of freedom (DOF) mounted on an industrial robot is also

considered in [11] where a special algorithm for the erecting

is demonstrated. An impressive swing up and stabilization

of a triple pendulum mounted on a linear moving cart is

reported in [3]. They designed special non-linear controllers

for this purpose. Concepts from discrete mechanics and

optimal control (DMOC) for the control of a Furuta (rotary)

double pendulum can be found in [5]. Therein simulation

1Simon Schmidt, Hubert Gattringer, Andereas Müller are with Insti-
tute of Robotics, Johannes Kepler University Linz, 4040 Linz, Aus-
tria {simon.schmidt,hubert.gattringer,a.mueller}
@jku.at

results are presented only.

In this contribution, we discuss the time-optimal swing-up

and stabilization of an SP mounted on the EE of a large

scale linear robot. In contrast to the papers mentioned above,

the robot used for erecting the pendulum is inherently elastic

due to its design. We use the multiple shooting method to

calculate the time-optimal trajectories, and a time-variant

LQR controller for the stabilization. A system overview

of the setup is shown in Fig. 1. To be able to better

differentiate between the robot and the SP, they are separated

in this figure. The modeling and optimization is done on

a standard computer where a code generation is used to

generate the real-time code for an Automation PC (APC)

running at a sampling rate of 800 µs. Hardware (APC,

torque controller - ACOPOS, input Modules -X20) from B&R

Industrial Automation is used as overall control device. The

torque controller communicate with the APC via Powerlink

bus while the encoders of the SP are read in on an X20

device that communicates via X2X bus system. The SP is

a special design with a mass of 0.4 kg and a length of

l2 = 0.66 m. Scancon encoders of type SCH16F resolve one

revolution with 5000 counts, see Fig. 2 for a photo of the

buildup. Light weight cables are used for the connection of

the encoders to the X20 modules not to disturb the swing-up.

The workspace of the linear robot is a cube with dimensions

of about 4×2×2 m. The linear robot has 5 DOF (3 linear,

2 rotatory at the wrist). In this study, only the 3 linear DOF

are used. The hardware limits of the robot can be found in

Tab. I, which are to be respected in the optimal control.

computer

optimization

code generation

Iz
Ix

Iy

APC

X20

X2X

ACOPOS

Powerlink

Fig. 1. System Overview

The paper is organized as follows. Section II presents
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Fig. 2. Photo of spherical joint

the dynamical modeling of the SP. The formulation of

the optimal control problem (OCP) can be found in Sect.

III. Details about the used control concept gives Sect. IV.

Experimental results conclude the paper in Sect. V.

II. SETUP AND MODELING

For the optimization and control, the inverted pendulum is

separated from the robot, see Fig. 3. It can be described by

two minimal coordinates, namely the two pendulum angles,

qT
P = (qP1 qP2). (1)

The motion is prescribed by the EE position rE(t) of

the elastic robot. The Lagrange equations serve as dynamic

equations of motion (EOM) written as

M(qP)q̈P +g(q̇P,qp) = B(qP)u, (2)

where M is the mass matrix, g contains the Coriolis, cen-

trifugal and gravitation effects. Also Coulomb and viscous

friction are included in g. The acceleration of the EE u = r̈E

serves as control input, which enters the EOM via the

control input transformation matrix B(qP) that depends on

the pendulums configuration qP. For control and simulation

purposes, the system is transformed to state space form. With

Iy

Iz

Ix

IrE

l1

l2

qP1

qP2

E

Fig. 3. Sketch of spherical pendulum

the state vector, containing also the position and velocity of

the EE,

xT = (qT
P q̇T

P rT
E ṙT

E) (3)

the dynamical model is

ẋ =









q̇P

M−1(B(qP)u−g(qP, q̇P))
ṙE

u









:= f(x,u). (4)

III. OPTIMAL CONTROL PROBLEM

The goal of the optimization is to find a feasible solution

for the motion of the pendulum from the lower to the upper

equilibrium in minimal time. Since the optimized trajectories

will be executed by the physical robot, which is elastic, it is

desirable to ensure smoothness of the trajectories. In order

to obtain such a smooth trajectory, the jerk of the EE is used

as input for the OPC

uopt =
...
r E . (5)

Therefore, the overall state used in the optimization problem

is set to

xT
opt =

(

xT r̈T
E

)

. (6)

The corresponding dynamical system is

ẋopt =

(

ẋ

uopt

)

:= fopt(xopt ,uopt). (7)

The variables to be optimized are the final swing-up time

te and the jerk uopt(t) of the EE. The overall OPC can be

formulated as

min
te,uopt

∫ te

0

(

1+ kuT
optuopt

)

dt (8)

subject to

xopt,min ≤ xopt ≤ xopt,max (9)

uopt,min ≤ uopt ≤ uopt,max (10)

ẋopt = fopt(xopt ,uopt) (11)

xopt(0) = xopt,0 (12)

xopt(te) = xopt,e (13)

The cost function (8) is a trade-off between time-optimal

solution and the minimum overall jerk. This trade-off can

be controlled by the weight k. Since the focus is on fast

trajectories, a small k is used. Inequality constraints (9)

account for physical constraints on the pendulum (position

and velocity) as well as on the robot (EE position, velocity

and acceleration). For a specific example, considered in

the next section the used values can be found in Tab. I.

Equation (10) represent jerk input constraints, while equality

constraints (11) account for the system dynamics (7).

Initial and terminal constraints in (12) and (13) for the

pendulum are

qT
P(0) = (−π 0), qT

P(te) = (0 0), (14)

q̇P(0) = 0, q̇P(te) = 0, (15)
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TABLE I

LIMITS ON THE ROBOT MOTION

min max unit

qP1 −2π 2π rad
qP2 −0.1 0.1 rad
q̇P −20π 20π rad/s
rEx xE0 −0.1 xE0 +0.1 m
rEy yE0 −0.25 yE0 +0.1 m
rEz zE0 −0.75 zE0 +0.75 m
ṙEx −1 1 m/s

ṙEy, ṙEz −1.5 1.5 m/s

r̈Ex −2.5 2.5 m/s2

r̈Ey, r̈Ez −3.5 3.5 m/s2

u −100 100 m/s3

and for the robot they are

rE(0) = rE0, rE(te) = rEe, (16)

ṙE(0) = 0, ṙE(te) = 0, (17)

r̈E(0) = 0, r̈E(te) = 0. (18)

The OCP is solved with the direct Multiple Shooting

method [2] using N shooting intervals. The ODE (11) is inte-

grated numerically with a Runge-Kutta scheme of 4th order.

This shooting method is implemented within the CASADI

framework (an open-source tool for nonlinear optimization)

[1] along with the IPopt solver (a software package for large-

scale nonlinear optimization using an interior point method)

[10].

IV. CONTROL

For the stabilization of the pendulum on the desired trajec-

tory and the upper equilibrium position a time-variant Linear

Quadratic Regulator (LQR) is utilized. The desired trajectory

(xd ,ud) is the result of the OCP substituted into the state

vector (3) (xd equals xopt reduced by r̈E,opt ; ud = r̈E,opt). By

introducing the deviations x = xd +∆x and u = ud +∆u for

the state and the input, respectively, the linearized system

reads

∆ẋi = Ai∆xi +Bi∆ui (19)

where i = 1, . . . ,N accounts for the discretization of the

desired trajectory from the shooting method. The system

matrices Ai,Bi can be calculated from (4) by

Ai =

(

∂ f

∂x

)∣

∣

∣

∣

xd,i,ud,i

, Bi =

(

∂ f

∂u

)∣

∣

∣

∣

xd,i,ud,i

. (20)

The LQR minimizes the cost function (weighting between

squared state values by Q and squared input values by R)

minJi = min
1

2

∫ t

0
∆xT

i Q∆xi +∆uT
i R∆uidt (21)

resulting in an optimal (time-variant) control law

∆ui = Ki∆xi (22)

along the desired trajectory. Fig. 4 shows the overall control

scheme. The LQR (∆u) delivers in combination with the

desired accelerations from the optimization r̈E,d the required

control accelerations r̈E,c. To use them as input variables

for the position controlled robot, these values have to be

integrated twice. An additional notch filter accounts for the

vibrations due to the elastic robot. It is designed to cancel out

the first eigenfrequency of the robot. The filtered signal rE,c

is the desired position for the robot. A standard PD-controller

calculates the motor torques M of the robot drives. The state

x containing the EE-position/velocity of the robot rE , ṙE as

well as the pendulum angles/velocities are measured and fed

back.

r̈E,d
xd

rE,c

r̈E,c

M

x

rE

K

Notch filter

1/s2

position control

robot with pendulum

Fig. 4. Control Scheme

V. EXPERIMENTAL RESULTS

The experimental implementation of the previous sections

shows details for the swing-up and stabilization. A discretiza-

tion of the OCP of N = 100 intervals leads to a swing-up

time of the SP of te = 2.1s. The optimization took tcpu = 8s

on a standard computer. The weighting between time- and

jerk-optimal input is chosen to k = 10−5. Start- and endpoint

of the robot swing-up positions are defined equal as

rE0 = rEe =





0.2
−0.6

1



m. (23)

Alternatively, the endpoint of the robot can be set free (within

the constraints), leading to a slightly lower swing-up time.

The weighting matrices for the LQR design are chosen

constant as

Q = diag[1,1,10−4,10−4,10,10,10,

10−2,10−2,10−2] (24)

R = diag[1,1,1] (25)

for all discretization steps. Fig. 5 shows desired and mea-

sured angles of the pendulum. It can be seen that the swing-

up is mainly done by the first pendulum angle qP1 that

changes from −π rad to 0 rad. Angle qP2 has only small

deviations around 0 rad. The measured and the desired values
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coincide very well. A comparison between the desired- and

the measured EE-positions can be seen in Fig. 6. Again the

signals coincide very well, especially in the first 1.5 s. There

are small deviations in the last phase of the swing-up in

the time range between 1.5 and 2.1 s since this critical for

a successful experiment. It seems that this deviations start

approximately at a horizontal angle qP1 of −π/2, which is

a singular position for this problem. Nonetheless, the overall

experiment works very well. The critical phase in the swing-

up starting at 1.5 s can also be seen in the desired controller

accelerations r̈E,c in Fig. 7 as increased control action.

A youtube video of the swing-up experiment as well

as some changes of stabilized set-points can be found at

https://www.youtube.com/watch?v=_naHO1ECrf8

.

VI. SUMMARY AND OUTLOOK

This paper presents the successful swing-up of a custom

built spherical pendulum mounted at the EE of an elastic

linear robot. Future work will focus on calculation of optimal

trajectories for different (unstable) set-points. In a further

step the whole robot dynamics including the wrist degrees

of freedom will be used. Up to now, the parameters of the

pendulum used in the model and optimization are taken
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4

t in s

r̈ E
,c

in
m

/s
2

r̈Ex,c

r̈Ey,c
r̈Ez,c

Fig. 7. Control signal r̈E,c

from CAD data. The accuracy of these parameters can be

increased by an identification process.
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Door Pose Estimation and Robot Positioning for Autonomous Door
Opening

Ulrich Mitterhuber1, Raimund Edlinger1, Roman Froschauer1 and Andreas Nüchter2

Abstract— For autonomous robots to deliver value in human
centered environments, they must be able to autonomously
open doors. For doing so, they have to overcome multiple
challenges, one of which is, to estimate the desired door’s
orientation and position. The information if the door handle
is on the left or right side of the door must also be obtained.
In this work, a novel method, solving the stated problems
is proposed. It’s perception is based on a sensor fusion of a
monocular camera based state-of-the-art deep learning object
detection algorithm with a 2D laser scan and subsequent line
estimation. Additionally, a differential drive controller, using the
advancement of continuous goal pose updating, is proposed.
During real-world experimentation with a differential drive
robot, the implemented system was able to position the robot
in front of a door every time with sufficient accuracy and is
thus found to solve the stated problem successfully.

I. INTRODUCTION

Autonomous mobile robots can be used in many cases
such as retail, industrial site monitoring or rescue robotics
just to name a few. To enable them operating in human
environments they must be capable to detect doors and
door handles, position themselves in front of them, manip-
ulate them and subsequently traverse through them. A door
traversing behaviour could be utilised in a fully autonomous
application such as in industrial site monitoring or as a semi
autonomous assistance function in for example search and
rescue applications.

The aim of this work is to tackle the above stated problem
by solving the first tasks required for autonomous door
opening. More specifically, a robot behaviour for detecting a
previously unknown door, estimating it’s pose, determining
the side at which the door handle is located and then
positioning the robot in front of the door at a specific
distance, is implemented. The implemented methods aim to
be executed in real time on embedded computing platforms
commonly used on autonomous robots.

To fulfill the stated objective, multiple algorithms were
developed which require the sensor input from a calibrated
monocular RGB camera with a minimum resolution of
320x240 pixels, a 2D laser scanner covering the horizontal
field of view (FOV) of the camera and an odometry source
for robot state estimation. The robots also must provide

*This work was not supported by any organization
1Ulrich Mitterhuber, Raimund Edlinger and Roman Froschauer

are with University of Applied Sciences Upper Austria, 4600
Wels, Austria ulrich.mitterhuber@fh-wels.at,
raimund.edlinger@fh-wels.at

2Andreas Nüchter is with Informatics VII - Robotics
and Telematics, Julius-Maximilians University Würzburg
andreas.nuechter@uni-wuerzburg.de

a velocity controller which accepts a linear and angular
velocity. For door pose estimation, a state-of-the-art deep
learning based object detection algorithm, more specifically
YOLOV51, is used to detect doors within camera images.
This information is then fused with a laser scan to determine
the pose of the door by using line estimation. For that,
three different line estimation algorithms are implemented
and compared experimentally. The side of the door handle in
the door is estimated using the output of the object detection.
Lastly, a differential drive controller using the contribution
of continuous goal pose updating is implemented.

The method relies on the conditions that before starting,
the robot is less than laser scanner’s maximum measurement
distance away from the door, there are no obstacles between
the robot and the door and the door is within the FOV of
the camera.

In the following pages first, in sec. II the current state-of-
the-art in door opening is examined. After that, sec. III and
sec. IV show the implemented methods with their postulated
hypothesis and their experimental validation respectively.
Sec. V sums up the findings and provides an outlook on
possible fields of applications and further improvements of
this work.

II. RELATED WORK

The field of research in opening and detecting doors
and estimating their pose has been very active for many
years. However, especially since the rise of deep learning,
many methods based on convolutional neural networks were
proposed.

An example of an older approach for opening doors is
the assistance system proposed in [9]. The human user of
the system has to use green laser pointer to indicate where
the door handle is. This point is then detected by the robots
vision system and the door opening procedure is started. It is
the only work discussed here, which needs a user to actively
interact with the robot.

The works proposed in [17], [10] and [14] are not focused
on door detection but rather include methods for door handle
detection. [17] proposed a deep learning based algorithm
while [14] used a template matching algorithm.

The authors of [8] proposed a mobile robot employing
a manipulator for autonomous disinfection operations. They
use a 3D model of a building and the Iterative Closest Point
algorithm [5] for detecting door handles and then refining
their pose after positioning.

1https://github.com/ultralytics/yolov5
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Fig. 1. System overview: The elements in green are developed in this work.

There were also some methods published in which the
robot’s objective only is to manipulate a door. Thereby the
door poses are already coarsely marked in a map or included
through prior information such as the robot’s pose. [15],
[23] and [12] for example each propose different methods of
opening or even traversing doors, however do not detect them
themselves. They all use the information provided through
the map but also employ point cloud processing algorithms
to refine the door pose. [3] on the other hand, proposes a
semi-autonomous system, for which the robot must be pre-
positioned well in front of the door. When the operator starts
the opening procedure, the robot uses a 2D laser scanner, and
the assumptions where it expects the door, to estimate it more
accurately.

The available methods which are detecting doors without
prior information can be further divided into two parts. First,
methods relying not on deep learning and second, deep
learning based ones.

Three examples for non deep learning algorithms are [21],
[16] and [4]. The method proposed in [21] uses uncoloured
3D point clouds while the one proposed in [16] uses coloured
3D point clouds to detect doors and estimate their poses in
3D space. [4] uses classical machine vision techniques and
the assumption that a door has many vertical and horizontal
lines to detect doors within camera images.

The works proposed by [2] and [20] use the same deep
learning based object detection algorithms to both detect
doors and door handles. They use the obtained bounding box
to choose a ROI in a depth map they obtain with a RGB-D
camera. A plane is then fitted into the depth map. With that,
the door pose becomes available. They estimate the pose of
the door handle in a similar fashion as well. The authors
of [11] also proposed a convolutional neural network to first
estimate a ROI representing the door. They then use the point
cloud and visual data from within the ROI to estimate the
door plane and find the door handle with non deep learning
methods. Lastly, [18] compares various deep learning based
algorithms to estimate if a door is open, semi-open or closed.
They do however not estimate the doors pose or detect door

handles.
The door pose estimation algorithm developed in this work

is similar to the one proposed in [2] and [20]. However,
it is based on a simpler sensor design which enables it to
employ model estimation methods with lower computational
requirements.

III. METHOD

Fig. 1 shows the methods developed in this work embed-
ded in their context of an autonomous mobile robot. The
elements in yellow and gray are required for the methods to
work and are therefore not part of this study while the ones
in green represent the methods developed in this work.

A. Door and Door Handle Detection

The developed door and door handle detection algorithm
is based on a state-of-the-art object detection method, more
specific YOLOV5 which is an improvement over the original
YOLO architecture proposed in [19]. It was chosen due to it’s
very good implementation, vast community support and the
ability to be executed in real-time on an embedded platform.

In order to enable the model to recognise doors and door
handles, a data set was created which consists of images
and labels of these objects. For its creation, own images were
taken and labeled. However, to increase its size and diversity,
images of publicly available datasets provided by the authors
of [18] and [2] were added as well. They had to be relabeled
partly but added a lot of diversity in terms of geographical
bias and camera parameters. In total, the dataset consists of
1022 images and labels with a class instance count 1031 for
doors and 1103 for door handles. A sample of the dataset is
shown in Fig. 2.

The exact dataset split for training and evaluation, the
specific hyper-parameter choices, the training results and the
model deployment are further explained in section IV.

B. Door Pose Estimation

As already noted in sec. I, this method relies on sensor
fusion. More specifically it uses a cooperative sensor fusion
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Fig. 2. Object detection dataset sample: Strong red indicates door and light
red indicates door handle.

approach whereby the data of the exteroceptive monocular
camera and the 2D laser scanner are combined. [1]

The motivation for fusing those sensors is that this enables
the method to leverage the recent developments in deep
learning machine vision algorithms which provide great
performance-efficiency trade-offs such as shown in works as
[19] and combine that with the efficiency of 2D laser scan
processing. This combination makes the method perfectly
suited for autonomous robotics. Furthermore, assumptions
which simplify the problem drastically are made. First, a door
is always seen as a plane perpendicular to the ground plane
and second, the often in robotics made simplification that
the world in which the robot’s base navigates is represented
as a 2D plane, where an object only has the three degrees
of freedom x,y, theta, is used. A visual representation of the
method, which is often referred to in the following algorithm
explanations, is shown in Fig. 3.

The input of the algorithm is comprised of door and door
handle bounding boxes delivered by the object detection
algorithm, the camera’s calibration parameters and a laser
scan. Since the different input artefacts are not delivered at
exactly the same time, they are approximately synchronised
with each other. It is important to note that the camera’s
and laser scanner’s optical centers must not be at the same
position. For all calculations, the points obtained by the laser

Fig. 3. Door pose estimation method overview.

scanner are transformed into the camera’s frame.
The algorithm’s first step is to evaluate if a valid door was

detected and chose one if multiple were detected. Choosing
one of multiple is done by finding the one with the highest
corresponding confidence score. The selected door must
however obey to a geometric rule which is that the box is
not allowed to go all the way out to the left or right image
end. This is done to ensure that the door is fully covered in
the image and therefore a bounding box representing only
the half of a door is not chosen.

With the door bounding box being chosen, in the next step,
it’s width and the camera’s parameters are used to calculate
vectors representing camera rays from image pixels. For the
left ray’s image pixel x coordinate, the x value of the left
vertical edge of the bounding box is taken and vice versa
for the right ray. The y coordinates for the ray calculation
are set to a constant value representing the height at which
the camera is mounted on the robot. The calculated rays are
then projected onto the 2D x,y plane. Fig. 3 shows the door
and door handle bounding boxes in red and the camera rays
in blue.

The 2D ray vectors are then used to calculate angles
representing the left and right edge of the bounding box. To
find the laser scan points which are within the ray angles,
first, a x,y point of each laser scan range point is calculated
which is then transformed from the scan frame into the
camera frame. After that, each point’s angle from the camera
center is calculated. Every angle that is between the range
of the left and right ray angle is assumed to be located on
the door. Laser scan range points with invalid values are
discarded. Fig. 3 shows the laser scan measurement points
in green.

The following step in the algorithm is to fit a 2D line,
representing the door pose, into the selected laser scan points.
For that, three methods to choose from were implemented.
The first one, which is further referred to as naive, connects
the leftmost to the rightmost point to construct the line. It
ignores all other points within the range and is therefore
expected to be very unstable when outliers are occurring at
the door edges. The second one uses the commonly known
ordinary least squares estimation to fit a line into all available
door-points. If there are no outliers at all, this method is
expected to deliver optimal results. Due to the fact that it is
expected that the algorithm has to cope with many outliers
because of already expected bounding box inaccuracies and
sensor errors, the third method chosen is the Random Sample
Consensus (RANSAC) proposed in [7]. It is a probabilistic
method commonly known in robotics for its ability to very
efficiently find models in noisy data. It is expected that the
RANSAC method yields the most accurate results in real-
world scenarios. To verify this hypothesis and thus determine
the best method for the task at hand, thorough experiments,
shown in sec. IV, were conducted.

Once a door line is estimated, the left and right edge
points of the door represented in 2D space are obtained. This
is done by calculating an intersection each for the left and
right camera rays with the estimated door line. Using those
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Fig. 4. Robot positioning control visualisation.

two points, the doors center coordinate x,y and its rotation
theta are calculated. Lastly, to obtain the goal pose to which
should be navigated in front of the door, a variable offset
is added normal to the door. It’s value needs to be chosen
while contemplating the workspace size of the manipulator
used on the mobile robot. Fig. 4 shows an estimated door
and goal pose.

Parallel to the steps above, the estimation of the door
handle side is executed. If there is a door handle bounding
box found to be within the selected door bounding box it is
determined if the center of the handle is in the left or right
half of the door. The information of left or right is provided
for further manipulation methods. With it, it is clear on which
side the door is to be opened and in which direction the
handle needs to be turned.

C. Differential Drive Positioning Controller

The controller implemented to move the robot from its
starting pose to the goal pose is based on the well known
differential drive controller proposed in [22]. Fig. 4 shows
the robot in its starting pose, a goal pose and the error which
is minimised by the controller.

Another hypothesis made here is that the final positioning
accuracy can be improved, if during the robot is moving
towards a goal pose, the goal pose estimation goes on and
the old estimation is updated continuously, instead of only
setting it once at the beginning. This is based on the assump-
tions that first, the door pose estimation is more reliable than
the pose estimation of the robot and second, that if the door
is at the beginning of the positioning partly occluded, the
view of the door will get better during positioning and with
that the goal pose estimation also gets more accurate. It is
expected that the door detection is only reliable if the robot
is far away from the door. For that, the euclidean distance
between the robot’s current pose estimation and the goal pose
is used to determine when to stop updating. The validity of
this hypothesis is evaluated during experimentation shown in
section IV.

IV. EXPERIMENTAL RESULTS

To validate the hypothesis made above and verify the
functionality of the developed methods, real-world experi-
ments were conducted. The differential drive robot platform

used for testing provided an odometry solely based on wheel
velocities, a wheel velocity controller, a 360 degree 2D laser
scanner with 1 degree angular resolution and a calibrated
RGB camera with a horizontal FOV of 60 degrees delivering
images with a size of 640x480.

A. Door and Door Handle Detection

For training the object detection model, the dataset was
split randomly into 715 train, 153 validation and 154 test
images. Training was executed on a PC comprising of an
AMD Ryzen 9 3950X CPU, 128 GB DDR 4 RAM and two
NVIDIA RTX 2080 Ti graphics cards running on Ubuntu
18.04. The batch size was set to 90 images with a size
of 640x640 each. For data augmentation random horizontal
flipping with a probability of 0.5, linear translation with a
factor of 0.1 and scaling with a factor of 0.5 were used.
YOLOV5 provides a few different model architecture types
from which the lightweight YOLOV5S was chosen. Training
was done from scratch and stopped after 154 epochs because
no improvements were made over the previous 30 epochs.
For model evaluation the mean average precision metric
(mAP), introduced for the PASCAL VOC challenge in [6],
was employed. When evaluating the trained model on the test
dataset, it achieved a mAP 0.5 of 90.1% and mAP 0.5:0.95
of 59.9%. Therefore it is concluded, that the model is able
to reliably detect previously unseen doors and door handles.
Some qualitative inference results are shown in Fig. 5. Both
images were acquired in the real world and are not included
in the training dataset. It can be observed that all doors and
door handles present in the images are detected.

For inference, the model was deployed within a ROS node
implemented in plain Python and PyTorch on the NVIDIA
Jetson AGX Xavier. It must be noted that no optimization
frameworks such as NVIDIA TensorRT were employed.
Nonetheless, the model is able to perform inference with
an input image size of 640x640 with a speed of above 30
frames per second.

B. Door Pose Estimation

To validate the hypothesis that the RANSAC based door
line estimation method is the most accurate one for this
task, a measurement series of 20 samples comparing each
method to a ground truth was taken. For each sample, the
robot was placed in a new scenario in which the door or

Fig. 5. Object detection: Qualitative inference examples.
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Fig. 6. Door line estimation methods comparison with an obstacle at the
left side.

an obstacle placement was changed. During experimentation
with the RANSAC method, the max trials parameter was
set to 1000 and the residual threshold to 0.01. Figure 6
shows one sample measurement with strong outliers at the
left side resulting from an obstacle. It can be observed that
the RANSAC method is the most and the naive method
the least accurate. Each estimated door line is subsequently
used to calculate the door’s estimated pose. The estimated
and ground truth door poses were then used to calculate an
absolute error for every dimension, e.g. x,y, theta, of each
estimated pose, for each sample. The three pose dimension
errors are then summed up resulting in a single error metric
for a given sample. With that, for each method, 20 samples
of total absolute pose errors representing their accuracy were
obtained. Tab. I shows the mean and standard deviations
calculated for each methods error data. To determine if the
collected data supports the hypothesis that the method based
on RANSAC is the most accurate, i.e. yields the lowest error,
two Z-Tests with known variances such as described in [13]
were executed. The significance threshold was set to 5%
. In both tests, the null-hypothesis was that both methods
are equally good while the alternative-hypothesis was that
the error of the naive and least squares method is higher
than the RANSAC method’s error. In both tests, the null-
hypothesis was reject and thus the data significantly supports
the hypothesis that the RANSAC method is the most accurate
one.

TABLE I
COMPARISON OF THE IMPLEMENTED LINE ESTIMATION ALGORITHMS

WITH REAL WORLD DOORS.

Method Mean [1] Standard Deviation [1]
Naive 0.3212 0.1774

Least Squares 0.1167 0.0667
Ransac 0.0311 0.0062

TABLE II
COMPARISON OF INITIAL AND CONTINUOUS GOAL POSE UPDATING IN

THE CONTROLLER.

Goal Updating Mean [1] Standard Deviation [1]
Initial 0.2492 0.0948

Continuous 0.0650 0.0361

C. Differential Drive Positioning Controller

To validate the hypothesis that continuously updating the
goal pose during moving the robot to the goal yields a
more accurate final placement than updating only once in
the beginning, an experiment was conducted. The robot was
placed at 18 different start poses from which it was already
able to estimate the door pose, i.e. the goal-pose. From
each start pose, positioning was once done with and without
continuous updating. The euclidean distance parameter for
stopping continuous updating was set to 0.2m. For estimating
the goal pose, the RANSAC method with the maximum
trials parameter set to 1000 and the residual threshold set
to 0.01, was used. Lastly, derived from the employed robot’s
manipulator workspace size, the goal offset was set to 0.5m.

After each positioning procedure, the error between the
reached and the ground truth pose was measured. To repre-
sent the positioning error within one metric, again the abso-
lute x,y, theta errors were summed up to form a total absolute
pose error. Tab. II shows the mean and standard deviation
of both method’s errors. To determine if the collected data
supports the hypothesis that continuous goal pose updating
yields a more accurate final pose, i.e. a lower positioning
error, than only estimating the goal once, a Z-test, such
as used before, comparing both method’s measurements,
was executed. The significance threshold was again set to
5%. The null-hypothesis was that both methods perform
equally good while the alternative-hypothesis was that non
continuous updating yields a higher error. When executing
the test, the null-hypothesis was clearly rejected and with that
the data significantly supports the hypothesis that continuous
goal pose updating improves the positioning accuracy.

V. SUMMARY AND OUTLOOK

This work aimed at solving the problem of detecting
doors, estimating their pose and controlling a differential
drive robot to a specified goal in front of the door. The
objective was successfully fulfilled by developing a novel
door pose estimation algorithm based on deep learning object
detection and 2D laser scan processing. It was also shown
that the implemented controller achieves a higher positioning
accuracy when the goal pose is estimated and updated
continuously while the robot is moving towards the goal
pose. The fields of application of the proposed method do not
only lie at autonomous door opening, but also in areas such
as environment exploration where the method could be used
to detect various objects autonomously, estimate their pose
and integrate them into an environment map. Future work
will include the creation of a more robust and diversified

40



D
ra

ft

dataset for the training of the neural network and deploying
the algorithm on other types of mobile robots.
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[18] J. G. Ramôa, V. Lopes, L. A. Alexandre, and S. Mogo, “Real-time
2d–3d door detection and state classification on a low-power device,”
SN Applied Sciences, vol. 3, no. 5, pp. 1–13, 2021.

[19] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[20] S. Roelofs, B. Landry, M. K. Jalil, A. Martin, S. Koppaka, S. K.
Tang, and M. Pavone, “Vision-based autonomous disinfection of high-
touch surfaces in indoor environments,” in 2021 21st International
Conference on Control, Automation and Systems (ICCAS). IEEE,
2021, pp. 263–270.

[21] R. B. Rusu, W. Meeussen, S. Chitta, and M. Beetz, “Laser-based
perception for door and handle identification,” in 2009 International
Conference on Advanced Robotics. IEEE, 2009, pp. 1–8.

[22] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to
autonomous mobile robots. MIT press, 2011.

[23] M. Stuede, K. Nuelle, S. Tappe, and T. Ortmaier, “Door opening
and traversal with an industrial cartesian impedance controlled mobile
robot,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 966–972.

41



D
ra

ft

Estimation of Robot-Specific Parameters for Robot Motion Models

Lea Zinkanell1, Matthias Eder1 and Gerald Steinbauer-Wagner1

Abstract— Localization is a well-studied problem in the field
of mobile robotics and is a challenging task as observations
like motion estimates or sensor readings are subject to errors.
To accurately estimate a robot’s pose, such errors need to
be considered and thus modeled. In this work, we focus
on estimating a robot’s pose after motion commands were
executed on it. Therefore, an approach to automatically estimate
the parameters of the classical Velocity Motion Model using
least squares optimization is proposed. It is assumed that the
commanded velocities differ from the actual velocities, as noise
is distorting the robot’s motion. The proposed approach was
tested on artificially generated measurements, samples acquired
using a simulated robot, and data acquired by conducting
experiments with a real robot. The results show that the
approach performs better for the measurements acquired with
the real robot than with the samples generated in a simulated
environment.

I. INTRODUCTION
Localization is an important problem in the field of mobile

robots. It denotes the estimation of the robot’s pose with
respect to the environment using sensor measurements. Ac-
curate knowledge of the robot’s location is needed to control
the robot and perform complex tasks, such as navigation
[12]. Because all aspects of mobile robot systems such as
sensing and acting are subject to noise, uncertainty, and non-
determinism localization becomes a state estimation problem
where the most likely state of the system is estimated based
on uncertain observations. Robot localization can be stated
as the estimation of the following conditional probability
p(xt |z1,..t ,u1,..t) where the unknown state xt at a time t
is the 2D (x, y; θ (yaw)) or 3D (x, y, z; α , β , γ (roll,
pitch, yaw)) pose and the observations are the collected
sensor measurements z1,..,t and control commands to the
robot u1,..,t until time t. Standard approaches for online
state estimation in Robotics are different variants of Bayes
Filter such as Extended Kalman Filter [11] or Particle Filter
[6]. All these methods employ a two-stage process where
first a prediction of the last estimated state towards the
new time step (x̂t ) using the control inputs is performed
which is then corrected using the actual measurements. For
the correction step a sensor model is used that estimates
how likely a measurement is in a given state p(zt |x̂t). A
good prediction or prior for the correction is important for
the performance of the state estimation. The prediction in
the context of localization is usually performed using a
probabilistic motion model that represents the conditional
probability p(xt |xt−1,ut) for a transition between the poses

1Lea Zinkanell, Matthias Eder and Gerald Steinbauer-Wagner are
with the Institute of Software Technology, Graz University of Tech-
nology, Graz, Austria. {lea.zinkanell, matthias.eder,
steinbauer}@ist.tugraz.at

xt−1 and xt . Various motion models were proposed in the
literature that are based on inputs from sensors such as
odometry or IMU [1], online estimations of robot motions
[10] or direct control inputs [8]. In this paper, we focus on
the so-called Velocity Motion Model where the motion of the
robot is controlled by a translational (v) and a rotational (ω)
velocity (differential drive) [12]. The conditional probability
of the pose transition is represented by zero-mean normal
distributed noise that is added to the control inputs. The
parameter of this additive noise depends on the environment
(e.g. floor) and the robot’s locomotion system. Thus, this
parameter needs to be determined or estimated beforehand to
obtain a good representation of the uncertainty in the robot’s
motion. Often these parameters are guessed or optimized
manually.

In this paper, we propose an approach to automatically
estimate the parameters of the classical Velocity Motion
Model using least squares optimization. In the first stage,
short random motion samples of the robot in the actual
environment are executed and the robot displacement is
recorded. In a second step, the parameters of the motion
model are optimized to represent the probability distribution
of the commanded motion best.

The remainder of the paper is structured as follows. First,
related work on the identification of uncertainties in robot
motion is discussed. In Section III the method for the
probabilistic estimation of robot-specific motion parameters
is presented. An experimental evaluation of the proposed
approach using simulated and real-world experiments is
presented in the next section. In Section V we conclude the
paper and discuss some future work.

II. RELATED RESEARCH

In this section we discuss relevant research which is
mainly related to estimating the robot’s motion (often re-
ferred to as odometry) and the reduction of systematic errors
and the estimation of non-systematic errors.

In [13], the author assessed an autonomous mobile ve-
hicle equipped with a motion controller. Since the motion
controller received localization information from the optical
wheel encoders, an analysis of the impact of errors from
such measurements by deriving the location estimator and
its covariance matrix was conducted.

In [2], Borenstein and Feng introduced practical methods
to measure and reduce common errors in differential drive
systems. Such errors include uncertainty about the effective
wheelbase and unequal wheel diameters and belong to the
class of systematic errors. To isolate and measure these
systematic errors, the authors discussed two test sequences:
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the Unidirectional Square Path and the Bidirectional Square
Path, which is known as the UMBmark test. While the
UMBmark test is only able to identify systematic errors,
the approach discussed in this work is not constrained to
a systematic error type and represents thus a more generic
approach.

Chong and Kleeman presented an accurate odometry sys-
tem, which includes modeling systematic and non-systematic
errors [5]. To calibrate the systematic errors, the authors
applied the UMBmark test [3]. To model the non-systematic
errors, the authors developed a novel error model, which also
used a normal distribution and expressed the errors using
a covariance matrix. In contrast to other models, complex
paths were divided into smaller segments and approximated
by either a circular arc motion, a straight line, or a rotation
around the center of the robot.

Martinelli presented an error model for an odometry
system for a synchro-drive and a method to evaluate it [9].
Four parameters were introduced, representing the systematic
error components and the non-systematic error components.
The non-systematic errors were modeled using a normal
distribution. The resulting covariance matrix depended on the
path the robot followed. The error parameters were estimated
by measuring the change in rotation and the position between
the initial and the final configuration of the robot for a given
path. The advantage of this method is that the actual path of
the robot did not need to be known.

Roy and Thrun proposed a statistical method for cali-
brating the odometry of mobile robots in [10]. Instead of
basing their method on acquired measurements, the authors
proposed an algorithm that uses the robot’s sensors to
automatically calibrate the robot during operation.

In [4] the authors proposed an approach for the simultane-
ous calibration of odometry parameters (e.g. wheel diameter
and base) and sensor placements (extrinsic parameters). The
approach uses measurements from the robot’s odometry and
a Lidar sensor and formulates the calibration as a joint
optimization problem. To collect data for the optimization
step meaningful motions need to be executed. Moreover, the
paper presents an analysis of the observability of parameters
and the choice of useful trajectories. A similar approach in
estimating the robot motion model is followed in this work.

III. METHODOLOGY
In this section, we present in detail the proposed proba-

bilistic approach to estimate the robot-specific parameters
of the Velocity Motion Model. We are interested in this
automated parameter estimation as this motion model is
standard in several realizations of localization and mapping
approaches such as Adaptive Monte Carlo Localization [12]
and its implementation within the ROS Navigation Stack [7].
In the next subsections, we will introduce the motion model
and its parameter more formally and describe the estimation
approach in more detail.

A. Velocity Motion Model
This motion model represents the state transition prob-

ability p(xt |ut ,xt−1) for a differential drive robot on a 2D

plane controlled by providing a translational (v) and a
rotational (ω) velocity. In the proposed model the velocities
are assumed to be constant for a short time window. Thus,
each movement of the robot forms an arc. The fraction of
the velocities describes the radius r of the arc, the mobile
robot is traveling on.

r =
∣∣∣ v
ω

∣∣∣ (1)

In order to apply the motion model, the following is assumed:
• the initial position and orientation of the robot (x,y,θ)T ,
• the commanded velocities v and ω , and
• the duration ∆t of the movement are known

The applied velocities are assumed to be constant during the
short period of time ∆t to allow an accurate approximation
for true motion of the robot. Based on these assumptions,
the successor pose (x′,y′,θ ′)T can be computed:x′

y′

θ ′

=

x
y
θ

+

− v
ω

sinθ + v
ω

sin(θ +ω∆t)
v
ω

cosθ − v
ω

cos(θ +ω∆t)
ω∆t

 (2)

Equation 2 represents the motion of the robot with constant
velocities on an ideal arc.

Due to non-systematic motion errors, such an ideal motion
can be hardly achieved in reality. Such errors disturb the
robot’s movement and negatively affect the estimation of the
successor pose. These motion errors need to be considered
in the probabilistic motion model. This is achieved by
assuming that the commanded velocities differ from the
actual velocities due to motion errors. The errors which
distort the commanded velocities are modeled as additive
random error variables εb, which have a zero mean and are
normally distributed with the standard deviation b. Using
these assumptions, the actual uncertain velocities v̂ and ω̂

can be modeled as:

(
v̂
ω̂

)
=

(
v
ω

)
+

(
εσv

εσω

)
(3)

The standard deviations of the translational and rotational
motion error are modelled separately. They represent the
magnitude of the uncertainty in the successor pose. Accord-
ing to the Velocity Motion Model the standard deviation
for the translational and rotational velocity error can be
computed as:

σv = α1|v|+α2|ω| (4)
σω = α3|v|+α4|ω| (5)

σv represents the standard deviation for the translational
error, while σω represents the standard deviation for the rota-
tional error. The standard deviations of the motion errors are
proportional to the velocities, consequently, the uncertainty
increases linearly with increasing velocities. This implies that
for higher velocities, the stronger successor positions will
deviate.

The different αi represent robot-specific error parameters.
α1 determines the influence the translational velocity v has on
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the standard deviation of the translational motion error, while
α2 determines the influence the rotational velocity ω has on
the standard deviation of the translational error. Likewise, α3
determines the influence v has on the standard deviation of
the rotational error, while α4 determines the influence ω has
on the standard deviation of the rotational error. The error
parameters αi model the robot’s accuracy w.r.t. commanded
motion, which implies that the larger the parameters are,
the less accurate the robot’s motion is. Usually, the error
parameters are assumed to stay constant, which makes it
possible to estimate them beforehand. The parameters are
assumed to be zero or non-negative.

By replacing the commanded velocities ⟨v,ω⟩ with the
noisy velocities ⟨v̂, ω̂⟩ in Equation 3, the noisy successor
pose can be computed as follows:x′

y′

θ ′

=

x
y
θ

+

− v̂
ω̂

sinθ + v̂
ω̂

sin(θ + ω̂∆t)
v̂
ω̂

cosθ − v̂
ω̂

cos(θ + ω̂∆t)
ω̂∆t

 (6)

Equation 6 can be used to predict the robot’s pose within
a state estimation approach.

B. Parameter Estimation

To be able to apply the motion model for a particular
robot system and environment, we need to identify the robot-
specific error parameters αi. An accurate estimation of the
error parameters is vital to provide precise predictions of the
robot’s successor pose. It has to be noted, that in the full
original motion model two more error parameters α5 and α6
are used to represent the error of the final rotation, which
were not considered in this work.

Algorithm 1: EstimateVMM
Input: Sampling Parameter: vmin, vmax, ωmin,ωmax,

∆t, Nv, Nω , Nmove
Output: Model Parameter: α1, ...,α4

1 ∆v = (vmax − vmin)/Nv.
2 ∆ω = (ωmax −ωmin)/Nω .
3 ⟨x,y,θ⟩= ⟨0,0,0⟩
4 for i = 1, ...,Nv do
5 for j = 1, ...,Nω do
6 u = ⟨vmin + i×∆v,ωmin + j×∆ω⟩
7 σu,v = 0
8 σu,ω = 0
9 for k = 1, ...,Nmove do

10 ⟨x′,y′,θ ′⟩= executeMotion(⟨x,y,θ⟩,u,∆t)
11 ⟨v̂, ω̂⟩= EstimateVel(⟨x,y,θ⟩,⟨x′,y′,θ ′⟩)
12 ⟨x,y,θ⟩= ⟨x′,y′,θ ′⟩
13 σu,v+= (v̂− v)2

14 σu,ω+= (ω̂ −ω)2

15 σu,v =
√

1
Nmove−1 σu,v

16 σu,ω =
√

1
Nmove−1 σu,ω

17 ⟨α1,α2⟩= solveOLS(⟨σu,v⟩)
18 ⟨α3,α4⟩= solveOLS(⟨σu,ω⟩)

For estimating the parameters α1, ..,α4 we use the Al-
gorithm 1. The algorithm comprises three major parts: (1)
motion sampling, (2) determination of velocity-depending
uncertainty, and (3) parameter estimation.

In a first step for each sampled velocity combination
⟨v,ω⟩ Nmove motion samples are generated (line 1 to 6). In
the current implementation the space of possible velocity
combination is uniform sampled using the velocity limits
of the robot platform (vmin, vmax, ωmin,ωmax) and a given
numbers (Nv, Nω ) for the subdivision of the two velocity
ranges.

The sampled velocity combinations are executed on the
robot system Nmove times for a time window ∆t and the initial
and end robot pose of that motion are tracked (lines 9 to 10).

By applying Equations 7 to 13 (inverse motion model)
[12] , one can retro-guess the actual executed velocities
during the motion sample and thus the additive motion
errors (line 11). The purpose of the original formalization
is to compute the probability of a potential successor pose,
based on velocity information and the starting position.
For the proposed approach we only use estimation of the
actual uncertain velocity pair ⟨v̂, ω̂⟩. Please note that this set
of estimations represents the probability distribution of the
executed velocities for each velocity pair.

µ =
1
2
(x− x′)cosθ +(y− y′)sinθ

(y− y′)cosθ − (x− x′)sinθ
(7)

x∗ =
x+ x′

2
+µ(y− y′) (8)

y∗ =
y+ y′

2
+µ(x′− x) (9)

r∗ =
√
(x− x∗)2 +(y− y∗)2 (10)

∆θ = atan2(y′− y∗,x′− x∗)− atan2(y− y∗,x− x∗) (11)

v̂ =
∆θ

∆t
r∗ (12)

ω̂ =
∆θ

∆t
(13)

Having acquired these set of measurements for each
combination of a translational and rotational velocity (u), in
a second step maximum likelihood estimation is applied to
estimate the standard deviation of the normally distributed
motion errors (σu,v, σu,ω ), which are offsets to the com-
manded velocities. The standard estimator for the standard
deviation of a normal distribution is applied in an iterative
way (lines 13 to 14). Please note that we assume an error
that has a zero mean.

Knowing the estimated standard deviations (⟨σu,v,σu,ω⟩)
for velocity pairs (u = ⟨v,ω⟩), the error parameters αi can
be estimated in a third step (line 17 to 18). According to
Equation 4 and 5 two linear equations for each sampled
velocity combination exist. Each equation comprises two
unknown variables, the error parameters α1 and α2 for the
standard deviation of the translational error, and α3 and α4
for the standard deviation of the rotational error. This leads
to two ordinary least square optimization problems for the
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parameters αi with an equation of the following form for
each sampled velocity combination u:

(|v|, |ω|)(α1,α2)
T = σu,v (14)

(|v|, |ω|)(α3,α4)
T = σu,ω (15)

The solving of the two optimization problems is done by
applying the ordinary least squares method (OLS) for the
proposed model. This method provides an optimal estimation
for the unknown variables based on the velocity combina-
tions and estimated standard deviations. The performance of
the ordinary least squares method depends on the quality
of the measured samples. It is also to be noted, that OLS is
sensitive towards outliers, which may distort the estimations.
Due to this sensitivity, it may be necessary to pre-process the
data before estimating the parameters.

IV. EVALUATION & RESULTS

To evaluate the proposed approach for estimating the
robot-specific parameter of the Velocity Motion Model three
experiments were conducted. In the first experiment artifi-
cially generated motion data with known parameters were
used to validate the basic algorithm. In a second experiment
motion data from a simulation of the Husky robot were used
to evaluate the algorithm on more realistic data. Although
the motion models in simulations are usually simplified,
collecting data including ground truth in larger quantities
is easier in simulation. Finally, the approach was evaluated
using data from a real Husky robot. The results of the three
conducted experiments will be compared and discussed in
detail in the following sections.

A. Experimental setup

For all experiments, the operating system Ubuntu 18.04
was used. Scripting was done in Python utilizing Python
libraries such as Matplotlib, Numpy, Math, Scipy, and Rospy.
The simulation of the robot was performed with the Gazebo
simulator and the standard Husky simulation package. The
simulated, as well as the real robot, were controlled using
ROS Melodic, which was also used to obtain information
about the robot’s current state. Simulation experiments were
conducted in an empty world environment using the standard
friction coefficients. Motion samples are obtained using
Gazebo’s internal ground truth. The real robot is equipped
with two 2D laser scanners which were used to measure the
robot’s displacement using a standard scan matching library.
Please note that the estimation of the robot’s displacement
only needs to be locally consistent. Thus, no global localiza-
tion approach is needed.

Initial tests with the real robot were conducted in a small
indoor space with wooden flooring. Further experiments were
conducted outdoors on asphalt.

See Figure 1 for the simulated and real robot setup.

Fig. 1: Simulated (left) and real robot (right) setup used in
the evaluation.

B. Method Validation on Generated Data

In this experiment the sampling algorithm for the Velocity
Motion Model as presented in [12] was used to generate
artificial motion samples. Please note that the distribution
of these samples represents the uncertainty encoded in the
probabilistic motion model. For the sake of validating the
approach true error parameters αi were set to:

α1 = 0.4753,α2 = 0.7482,α3 = 0.1001,α4 = 0.3720

Since the true error parameters αi were known, the es-
timations were directly evaluated by computing the differ-
ence between the estimated and the true error parameters.
Following that approach, the proposed method could be
validated, presuming the robot behaved perfectly according
to the velocity motion model. It was observed, that the
accuracy of the estimations strongly depended on the number
of samples.

Table I shows the estimated error parameters obtained
from the artificial data. In the experiment 100 velocity com-
binations with 100 sample movements each were obtained.
The estimations of the error parameters αi are quite accurate,
as the difference between the true error parameters and the
estimated error parameters is around 1 to 3 %. Figure 2a
depicts the distribution of the generated motion samples
(robot’s displacement) for a single velocity combination
using the ground truth motion parameter as well as using
the estimated parameter.

true estimated ∆ ∆/%
α1 0.4753 0.4792 0.0039 0.82
α2 0.7482 0.7557 0.0074 0.99
α3 0.1001 0.1039 0.0038 3.80
α4 0.3720 0.3633 0.0087 2.34

TABLE I: Actual and estimated error parameters derived
from artificial data. 100 velocity combinations and 100
samples each were used for the estimation.

Table II shows the performance of the approach using
only 10 velocity combinations and 10 motion samples each.
One can clearly so the degration in the performance of the
parameter evaluation.
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Fig. 2: Measured movement samples for a given velocity combination (v = 0.515 m/s,ω = 0.296 rad/s) versus a prediction
using the estimated motion parameters with the Velocity Motion Model (robot’s end position): a) using artificial data
generation, b) within the simulation environment, and c) using the real robot.

true estimated ∆ ∆/%
α1 0.4753 0.5296 0.00543 11.14
α2 0.7482 0.6525 0.0957 12.79
α3 0.1001 0.1121 0.0120 11.99
α4 0.3720 0.3930 0.0209 5.61

TABLE II: Actual and estimated error parameters derived
from artificial data. 10 velocity combinations and 10 samples
each were used for the estimation.

As a second metric, the normalized Kullback–Leibler
divergence DKL between the distribution of the measured and
the predicted end positions is used. This metric estimates the
similarity of two distributions and fits well for evaluating a
probabilistic motion model. In the calculation binning and a
2-dimensional histogram is used. The divergence computed
for 100 velocity combinations resulted in a distance of
0.006. This indicates that the predictions of the successor
positions are quite accurate. Consequently, it can be said,
that the proposed approach works well, assuming that the
robot behaves according to the Velocity Motion Model.

C. Error Estimation in Simulation

Experiments in the Gazebo simulator were conducted
using the standard simulation model of a Husky robot. To
obtain the motion samples, the simulated robot is com-
manded with constant velocities for a small time window.
To eliminate high uncertainties of the simulation if the robot
is commanded from a full stop, a controller is implemented
that first accelerates the robot to the desired velocities and
starts recording the initial and end pose after that. The
data obtained in the simulation this way was used for the
parameter estimation.

Evaluating data acquired in the Gazebo simulator was
more difficult, as the true error parameters of the simulated
robot model were not known. For this reason, it was impor-
tant to compare predictions and measurements visually, as
well as objectively by computing the KL-divergence for the
data set.

It has to be noted that for certain velocity combinations,
which form a small turning radius, the measurements deviate
much stronger in their successor positions, than for velocity
combinations, which form larger radii. The Husky robot is

0.9 m long, 0.67 m wide, and has four non-steerable wheels,
thus tight turns result in larger motion errors due to issues
like the clattering of the wheels over the floor. Due to that
issue, a minimum turning radius constraint of 1 m was
enforced.

Using the data recorded in the simulation the error param-
eters αi were estimated with the following values:

α1 = 0.007,α2 = 0.058,α3 = 0.0,α4 = 0.655

Since α4 was estimated to be relatively large compared
to the other error parameters, it appears that the rotational
velocity was subject to a larger error. Which is reasonable
for a skid-steered robot.

For each velocity combination, two 2D histograms were
computed, one for the predicted data set and one for the
measured data set. An example of a velocity pair can
be seen in Figure 2b. The KL-divergence was calculated,
by applying a bin-to-bin comparison. The results for each
velocity combination were summed up, resulting in the
KL-divergence for the complete model. The average KL-
divergence was calculated to be 0.61 when considering 100
velocity combinations with 100 movement samples each.
Compared to the KL-divergence for the generated data, this
is a rather high value. These results show that the proposed
approach together with the rather simple motion model does
not work as accurately as expected for the simulation data.

D. Error Estimation on a real robot

Following the evaluation of simulated data, experiments
with a real Husky robot were conducted. These experiments
were the most interesting because noise originating from the
surface properties and other environmental properties addi-
tionally influenced the robot’s motion. Since over-determined
equation systems produce more accurate results when con-
sidering more equations, 100 velocity combinations and 100
samples per velocity combination were measured for the gen-
erated and the simulated data. As the real-world experiments
with the robot were more time-consuming, only 30 velocity
combinations and 50 samples per velocity combination were
collected at the end. The velocities for the measurements
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were chosen according to a uniform distribution. The trans-
lational velocity v took values between 0.2 m/s and 1.0 m/s,
while the rotational velocity took values between −0.5 rad/s
and 0.5 rad/s.

For the data collected with the real robot, the error
parameters αi were estimated with the following values:

α1 = 0.044,α2 = 0.032,α3 = 0.051,α4 = 0.146

Based on these values, it can be concluded that the trans-
lational velocity has a bigger influence on the translational
motion than the rotational velocity. Similarly, it appears that
the rotational velocity has a bigger influence on the rotational
motion than on the translational error. The distribution of
the samples for an exemplary velocity pair can be seen in
Figure 2c.

The normalized KL-divergence was estimated at 0.42. As
this value is lower than in the simulated case, it indicates that
the proposed approach works more accurately for the real
Husky robot than for the simulated one. It can be concluded,
that the error parameters αi were accurately estimated for the
data recorded with the real Husky robot. The better match of
the real and predicted position are also visible in Figure 2c.

V. CONCLUSION

Motion prediction models are an important part of several
localization and mapping approaches. Estimating the robot-
specific parameters of such models is cumbersome. In this
paper we proposed an automated approach to estimate these
parameters which samples motion executions for various
combinations of translational and rotational velocities and
uses optimization-based parameter estimation to obtain the
model parameter.

The approach has been evaluated with artificial data, data
from a robot simulation, and data obtained with a real
robot. When using generated measurements to validate the
approach, it was observed, that the accuracy of the estimated
αi parameters heavily depended on the number of motion
samples. The more measurements per velocity combination
were considered, the more accurate the estimations of the
standard deviations of the motion errors were. In general
it cloud be seen, that if a robot behaves according to the
probabilistic motion model, the error parameters αi can be
accurately estimated.

By conducting experiments in the Gazebo simulator, it was
found, that the predictions appeared to be quite inaccurate,
compared to the predictions for the artificially generated
samples. A large rotational error was observed, causing
stronger deviations in the predicted successor positions,
than in the measured successor positions. In general it was
evident, that the simulated Husky robot did not behave as
expected. From an investigation of the obtained data it can be
assumed that the measured successor positions were simply
normally distributed. This lead to the conclusion, that either
the chosen motion model was not suitable for the simulated
Husky robot or that the error model used in the Gazebo
simulator need to be adapted to reflect real robot motions.
In general estimating the error parameters for simulated data

works, but that motion errors in the predicted samples are
largely overestimated, which implies that a different motion
model may be better suited.

By conducting experiments on a real robot it was observed
that the sample measurements were in general more accurate
than the measurements of the simulation. During these
experiments, the robot was also subject to environmental
influences, such as the ground texture. As the experiments
with the real robot were time-consuming, less measurements
were recorded, which may have affected the parameter
estimations.

By comparing the results of the simulation and the real
robot, it was concluded, that the proposed approach works
more accurately when used on a real robot. All in all it
can be said, that the proposed approach works sufficiently
accurate for real robots and can be applied for relative
position estimation and prediction.

For future work the influence of different environment
factors such as friction coefficients and surfaces need to
be considered. Moreover, an adaptation of the approach to
different motion models and different locomotion systems
would be interesting.
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SVM Classification of EMG Signals for Control of a Robotic Hand

Jakob Ziegler1, Maximilian Kallinger1, Hubert Gattringer1 and Andreas Müller1

Abstract— Over the last decades, research on robotic devices
for the replacement of lost limbs, such as actively actuated
prostheses, has been intensified. In this paper we present the
development of a low-cost robotic arm together with a sensor
bracelet for electromyographic (EMG) control. With a total cost
of about $300 the introduced system aims at contributing to
the development of inexpensive alternatives for commercially
available products. The muscular activity measured on two
positions on the forearm is used to recognize pre-defined hand
motions, or more precisely gestures and grasps. To this end, the
machine learning method support vector machines (SVM) is
used as classification algorithm, achieving a mean classification
accuracy of 89.45 %, with a minimum accuracy of 85.63 % and
a maximum accuracy of 98.02 % for the individual motions.
The recognized gestures and grasps are then executed on the
robotic device, whereby all five fingers of the hand segment are
actuated with servo motors and cables.

I. INTRODUCTION

In 2008, one in 190 adults in the United States was living
with lower or upper limb loss. This number is projected to
double until 2050 [1]. Although upper limb amputations are
about 20 times less frequent than lower limb amputations,
their impact on the quality of life is more detrimental [2].
The upper limbs are particularly important for most activities
of daily living, especially feeding and personal hygiene, as
well as for communication.

Advances in mechanical systems more and more offer the
possibilities to restore the lost functionality and dexterity of
impaired or absent upper extremities. Accordingly, sophisti-
cated prostheses are commercially available nowadays. They
are however very costly with prices up to $75000 [3], which
hinders a broader usage [4]. Latest advances in additive
manufacturing techniques, like 3D printing, might help to
overcome this issue. A recent study shows that nearly every
second adult with traumatic major upper limb amputations
abandons the prosthetic device. Next to comfort and weight,
unsatisfactory function has been identified as one of the
main reasons for rejection. This further fosters the research
interest in intelligent control of hand and arm orthoses and
prostheses, which already gained increased attention over the
past years. As control input, biological signals like elec-
troencephalography (EEG) or especially electromyography
(EMG) are thereby preferred over mechanical signals, e.g.
delivered by inertial measurement units or force sensors [5].
In contrast to mechanical signals, biological signals offer the
advantage to be accessible prior to the movement, as they are
the trigger for muscle contraction, and are therefore directly

1Jakob Ziegler, Maximilian Kallinger, Hubert Gattringer and Andreas
Müller are with Institute of Robotics, Johannes Kepler University of Linz,
4040 Linz, Austria jakob.ziegler@jku.at

related to the movement intention. Exploiting this so-called
electro-mechanical delay has the potential to minimize the
lag between the motion intention of the user and the reaction
of the robotic system.

This paper aims at contributing to the development of a
low-cost robotic arm with electromyographic control of the
hand segment. Two EMG sensors mounted on a specially
designed bracelet measure muscle activities on the forearm.
Based on these EMG signals pre-defined hand motions
are recognized utilizing the well-known machine learning
technique support vector machines (SVM) [6].

II. ROBOTIC ARM

In 2012 the french sculptor and designer Gaël Langevin
started to create InMoov [7], an open source 3D printed
humanoid robot. 3D printing templates and construction
recommendations of this robot served as a basis for the
present work. The current version of the robotic arm consists
of a hand and a forearm segment, see Fig. 1. Except for
screws, cables and springs all structural parts of the robotic
arm are 3D printed. The five fingers of the hand segment
can be actuated individually via cables (Fig. 2), which are
attached to servo motors with up to 196 N pulling force at
7.4 V supply voltage. Pretension of the cables is ensured
with springs. The original joints connecting the individual
finger segments are replaced by 3D printed parts made of
elastic filament, which results in less jerky finger motions.
As central control unit a micro controller (Arduino Due)
was used. Together with the bracelet measuring the muscular
activity of the human forearm, discussed in the next section,
the total cost of the system is about $300. In addition to the
rest position of the hand, four hand gestures or grasps are
implemented: stretched, fist, rock and tripod. Fig. 3 shows
a comparison of the pre-defined human hand motions and
their implemented robotic counterparts.

III. ELECTROMYOGRAPHIC CONTROL

A. EMG Bracelet

In addition to conventional control of the robotic hand, the
device shall be controllable by electromyographic signals.
To this end, low-cost surface EMG sensors (MyoWare) are
embedded in a specially designed forearm bracelet shown
in Fig. 4. The bracelet is made of elastic 3D printable
filament and consists of sensor mountings, which can be
assembled in a modular manner. This allows for an easy
integration of additional EMG sensors. In the current version
two EMG sensors are utilized, the bracelet therefore consists
of two interlocked parts and is fixed to the user’s forearm
with a fastener similar to a wristwatch. Each EMG sensor
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Fig. 1: Fully assembled robotic arm.

(a) (b)

Fig. 2: Flexion (a) and extension (b) of a single finger.

consists of two electrodes measuring the muscle activity
and one reference electrode. The current geometry of the
bracelet is meant to allow a positioning of the two sensors
according to forearm muscle groups responsible for finger
flexion and finger extension, respectively. As every hand
and finger motion imposes specific requirements on the
musculoskeletal system, there also have to be motion-specific
electromyographic activity patterns that are anticipated to
be measurable. Fig. 5 exemplarily shows the EMG signals
recorded for different hand motions. As can be seen there are
noticeable differences in the EMG signals of the individual
gestures or grasps, which shall be used for hand gesture
recognition using support vector machines (SVM).

In general, EMG signals are affected by many factors that
can be classified e.g. on their origin or their impact on the
signal [8]. Extrinsic noise sources, like cable motion artifact

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3: Pre-defined hand motions: rest position (a,f), stretched
(b,g), fist (c,h), rock (d,i) and tripod (e,j).

Fig. 4: The designed EMG bracelet for the usage of two
EMG sensors (top) and positioning of the bracelet on the
forearm of the user (bottom).
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Fig. 5: EMG signals of the hand motions stretched (top left),
fist (top right), rock (bottom left) and tripod (bottom right).
The motions are maintained in the first 5 s of the graphs.

or power line noise, can be effectively handled by up-to-
date electronics. On the contrary, intrinsic noise sources like
thermal noise and noise originating from the electrode-skin
interface as well as from the relative movement between
muscle and skin can be difficult to deal with [9]. The pattern
of the measured EMG signal during a specific movement
is additionally dependent on e.g. electrode placement, on
the number of recruited muscle fibers and fatigue [10],
varies from user to user and from day to day [11], and can
reach peak-to-peak values ranging from 100 µV to 10 mV
[12]. To increase the interpretability of muscle activities, the
according measured raw signals have to be transformed into
features. There exist three main categories that EMG features
can be assigned to, which are time domain, frequency domain
and time-frequency domain [13]. An extensive overview
of various EMG features can be found in [14], [15]. The
features used in this paper are chosen out of a larger feature
set, as they provided the best results in terms of computa-
tional effort and classification accuracy. Mean value, standard
deviation and mean frequency of the EMG signals within a
moving window of fixed length were used as features.
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B. Support Vector Machines

Support vector machines are frequently used in the field of
machine learning. Basically a SVM classifier separates data
with a so-called hyperplane in a way that the gap, or margin,
between the defined classes is maximized.

With the aid of the simple example illustrated in Fig. 6a)
an outline of the SVM classification algorithm is described
as follows: let xi ∈Rn, i= 1, ...,m be data points of a training
data set in an n-dimensional feature space that are classified
either as 2 or #. Define a vector w, which is perpendicular
to the separating hyperplane (assuming such exists), a scalar
b and a vector of labels y ∈Rm, yi ∈ {1,−1} with yi = 1 for
2-samples and yi =−1 for #-samples, such that

yi(wTxi +b)−1 ⩾ 0. (1)

Given two samples x2 and x# that lie directly on the
respective class borders, the margin between the classes
is defined as d = |x2 − x#|T w

∥w∥ . With the definition of
yi(wTxi+b)−1= 0 for samples directly on the class borders,
d can be written as d = 2/∥w∥. The corresponding optimiza-
tion problem is then

min
1
2
∥w∥2, (2)

subject to (1), which can be formulated by denoting

L(w,b,α) =
1
2
∥w∥2 −∑

i
αi[yi(wTxi +b)−1], (3)

where αi are Lagrange multipliers. In order to find w and b
that minimize (3), the function

Θ(α) = min
w,b

L(w,b,α) (4)

is introduced. Since (4) is an unconstrained minimization
problem, we know at the minimum point that ∂L

∂w = ∂L
∂b = 0,

which delivers

w = ∑
i

αiyixi (5)

∑
i

αiyi = 0, (6)

thus (4) may be re-expressed as

Θ(α) = ∑
i

αi −
1
2 ∑

i
∑

j
αiα jyiy jxTi x j. (7)

Solving (7) for αi, s.t. αi ≥ 0 and ∑i αiyi = 0 finally gives
the solution of the optimization problem. Only data samples
with a nonzero αi have influence on the definition of the
class borders and are therefore called support vectors. The
class of a new data sample u can now be determined with
the decision function h(u), where a positive sign means u is
of class 2 and a negative sign means u is of class #

h(u) = sgn(wTu+b). (8)

In the presence of outliers in the data set a slack variable
ξi ≥ 0 and a weight factor C > 0 can be introduced in order
to increase the robustness of the classification and to avoid

overfitting. This means outliers are allowed but penalized,
the corresponding optimization problem is then

min
1
2
∥w∥2 +C∑

i
ξi (9)

s.t. yi(wTxi +b)⩾ 1−ξi (10)

which again results in (7), but with the additional constraint
of 0 ⩽ αi ⩽ C. As (7) shows, the classification problem
mainly depends on the dot product xTi x j which can be seen
as some kind of similarity measure. SVM also provides
a comfortable method to classify data points that are not
linearly separable in feature space (as illustrated in Fig. 6b)
by mapping the data into a higher dimensional space using
a function Φ : Rn → Rl , l > n, xTi x j 7→ Φ(xi)

TΦ(x j). If the
dimension of this new feature space is high enough, a linear
separation eventually becomes possible, now depending on
the dot product of the transformed data. The idea is now to
use a kernel function k(xi,x j) = Φ(xi)

TΦ(x j) that delivers
the dot product of a higher dimensional space without
actually having to calculate the transformation. This renders
the optimization problem and the resulting decision function
to

Θ(α) = ∑
i

αi −
1
2 ∑

i
∑

j
αiα jyiy jk(xi,x j) (11)

h(u) = sgn(∑
i

αiyik(xi,u)+b) (12)

where k(xi,u) again serves as measure of similarity. Two
frequently used kernel functions are the radial basis function
(RBF) kernel

k(xi,x j) = e−γ(∥xi−x j∥)2
(13)

and the polynomial kernel

k(xi,x j) =
(
γxTi x j + r

)d
, (14)

which is applied in this paper.
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Fig. 6: a) Basic idea of SVM with two-dimensional data
samples linearly separated into the two classes # and 2 by
a hyperplane (dashed line), where the dotted lines symbolize
the class borders, and b) separation of data, which are not
linearly separable in feature space, using an RBF kernel. The
support vectors are illustrated by filled markers.
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C. Classification Model

To generate a training dataset, EMG signals were mea-
sured at a frequency of 500 Hz while each hand gesture
was maintained 30 times for approximately 5 s, followed by
another 5 s of rest. Accordingly, a classification of the five
classes rest, stretched, fist, rock and tripod is considered.
Since SVM classification belongs to the group of supervised
learning methods, a classification model has to be generated
in advance, i.e. calculating the optimal values for α and b
according to some training data, to be able to solve (12).
Each training data sample has to be labeled with respect to
one of the defined classes. A push button was used during the
measurements to manually label each feature vector xi ∈Rn,
containing the n = 6 features (3 per EMG sensor), of the
i = 1, ...,m samples per window. As stated above the mean
frequency (MNF) [14] is calculated next to mean value und
standard deviation of the EMG signal:

MNF =
∑

m
j=1 f jPj

∑
m
j=1 Pj

, (15)

where f j is the frequency of the EMG power spectrum
Pj at frequency bin j calculated via fast Fourier tranform
(FFT). All features are calculated within non-overlapping
time windows of 300 ms.
Due to the used polynomial kernel function, the classification
algorithm is dependent on the parameters C, γ , r and d,
which can be chosen arbitrarily. The overall accuracy and
robustness of the classification can be increased by fine
tuning those parameters, which was done empirically with
parameter values set to C = 1, γ = 1, r = 1 and d = 2. A
5-fold cross validation was employed to assess the classifi-
cation performance.

IV. EXPERIMENTAL RESULTS
A summary of the classification results presented as a

confusion matrix is shown in Tab. I. As can be seen, the
highest classification accuracy is achieved for the stretched
hand. This seems reasonable, as the muscle activities differ
visibly from the other gestures (Fig. 5), which show some-
what similar EMG patterns. Especially the EMG signals of
the gestures fist and rock, which essentially is a fist with two
stretched fingers, show high resemblance. This explains the
quite frequent misinterpretation of the gesture fist as rock
and vice versa, as it is shown in Tab. I. Overall the SVM
classification of the hand gestures shows a mean accuracy
of 89.45 %. This complies with conducted live experiments,
where it could be observed that roughly 17-18 out of 20 hand
gestures are recognized correctly.

Generally, the introduced setup and methodology showed
good robustness considering experiments with the same
person but on different days. Nevertheless, the EMG mea-
surement and therefore also the classification accuracy is sen-
sitive to the placement of the EMG sensors, which should be
carefully attached to the respective positions on the forearm.
In this regard, the developed bracelet effectively supported
the repeatability of the sensor placement. When another
person is using the bracelet for hand gesture recognition

we recommend to carry out a training phase to re-calibrate
the classification model, as otherwise the rate of correct
identifications might drop drastically.

TABLE I: Classification accuracy

predicted class
rest stretched fist rock tripod

tr
ue

cl
as

s rest 88.56 % 2.03 % 1.66 % 3.87 % 3.87 %
stretched 1.78 % 98.02 % - - 0.20 %

fist 1.97 % - 86.00 % 11.44 % 0.59 %
rock 4.11 % - 4.72 % 85.63 % 5.54 %

tripod 4.49 % 0.41 % 0.82 % 5.31 % 88.98 %

V. SUMMARY AND OUTLOOK

In this paper, a low-cost robotic arm is presented, where
the fingers of the hand segment are controllable by EMG
signals. Thereby, slightly adapted open-source templates are
used to 3D print the structural parts. The actuation is realized
with servo motors and cables and allows for moving the
fingers individually. EMG sensors measuring the muscle
activity on the forearm, as well as the supervised learn-
ing method SVM are employed to recognize defined hand
gestures, which are executed by the robotic system. With a
specially designed bracelet, made of 3D printed modules of
elastic material, currently two EMG sensors can easily be
placed at the appropriate positions.

Note that the training and the validation of the SVM
classification model was done based on the data of one single
person. As one of the next steps, EMG data from additional
persons will be incorporated, which allows for assessing
the classification accuracy and overall system performance
in a more general way. With the current setup and empir-
ically tuned parameters a decent classification accuracy of
the hand gestures of 89.45 % on average can be achieved.
Nevertheless, the system would benefit from additional EMG
sensors. Some of the defined hand gestures have significant
similarities with respect to the measured muscle activities
and are prone to confusion. Thus, further information of
muscle activities on additional forearm regions will presum-
ably improve the overall classification accuracy. With the
modular conception of the EMG bracelet such an upgrade
can be realized without big effort. In order to further raise
the classification accuracy, it might be necessary to put some
extra effort into the parameter optimization and a deeper
analysis of the effect of different kernel functions. Also, the
incorporation of additional features and the selection of a
final set of features based on their significance might in-
crease the overall accuracy. Different degrees of overlapping
concerning the time windows for feature calculation and the
according effect on the classification result will as well be
part of future investigations. The Goal thereby is to minimize
the lag between the motion intention of the user and the
reaction of the robotic system, which should not exceed
approximately 125 ms [16].
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An Evaluation of Mask Estimation Methods for Transparent Objects*

Veronika Rettner1, Jean-Baptiste Weibel1 and Markus Vincze1

Abstract— The ageing population in many countries and
a shortage of skilled health care workers are becoming a
central issue in many western societies. Service robots can
be a part of the solution by providing assistance for the
elderly and extending their autonomy. This task requires a
good understanding of their environment. The perception and
manipulation of transparent objects is, however, extremely
challenging despite the pervasiveness of such objects in the
daily life of people needing medical assistance. Understanding
the strengths, limitations and necessary improvements of state-
of-the-art methods is therefore essential to get closer to this
objective. In this work, a new real-world dataset of 640 images
of various transparent objects of different shape, material
and complexity is introduced to evaluate selected algorithms
for transparent object detection. This includes traditional
depth- and IR-based approaches as well as pre-trained CNN
pipelines, namely TOM-Net, ClearGrasp, TransLab, Trans2Seg.
TransLab shows the overall best results with an IoU as high
as 55.85%, followed by Cleargrasp and Trans2Seg, highlighting
the overall better performance of CNN based approaches. With
metrics well below 4%, TOM-Net on the other hand shows the
lowest scores on our dataset. Thin plastic objects and complex
shapes including fine details such as tubes are identified as
challenges for transparent object detection. Finally, object poses
are also annotated in the dataset created enabling further works
in the area.

I. INTRODUCTION

With the current progress in robotics and in perception
specifically, a service robot assisting the elderly or supporting
the staff in hospitals is becoming more realistic than ever.
Such assistance, however, requires the ability to handle
transparent glass or plastic containers, widely used in the
medical field as they enable users to see the content and
facilitate sterilization. Transparent objects are hard to work
with due to their non-Lambertian reflection properties. RGB
representations are dependent on the background of the
container and widely used RGB-D sensors like the Intel
RealSense or the Microsoft Kinect v1 fail to predict the depth
of such objects, resulting in zero or invalid depth values.
Such sensors project a known pattern on the scene in the near
infrared spectrum, but do not account for its view-dependant
reflections and refractions. Figure 1 shows an example RGB-
D image of transparent objects captured with a RealSense
D435 camera. While there are sensors that are more suitable
to handle transparency, such as light-field cameras, regular
RGB-D cameras remain attractive due to their ubiquity and

*The research leading to these results has received funding from EC
Horizon 2020 for Research and Innovation under grant agreement No.
101017089, TraceBot, and the Austrian Science Foundation (FWF) under
grant agreement No. I3968-N30 HEAP

1All authors are with the Vision for Robotics Laboratory,
Automation and Control Institute, TU Wien, Austria. weibel,
vincze@acin.tuwien.ac.at

(a) (b)

(c) (d)

Fig. 1: Different input data, (a) RGB image, (b) IR image
and (c) depth image, of transparent objects captured with a
RealSense D435 camera and the corresponding groundtruth
mask (d). The depth image shows that the depth pixels
corresponding to transparent objects are mostly invalid.

lower cost. Until now only few methods exploit the available
depth data to obtain more reasonable shape information.
Most approaches proposed in the literature predict silhouettes
of transparent objects solely from RGB data. To provide a
more precise picture, the performance of several state-of-the-
art methods for transparent mask prediction is compared. For
this purpose, a new dataset containing various transparent
household goods made from different materials and with
different geometric complexity is collected. RGB, depth and
infrared images are captured with camera poses covering the
entire half-sphere around the objects. The different methods
evaluated show big differences in performance, with RGB-
based CNN approaches giving the best overall results. Details
like transparent tubes or handles are challenging for all
methods, as well as thin-walled plastic objects with simpler
geometries.

In this paper, Section II reviews the relevant literature,
Section III describes the process used to efficiently collect
the dataset presented, and Section IV describes the evalua-
tion procedure and the results obtained. Finally, Section V
concludes and discusses further works.

II. RELATED WORKS

In this section, we first detail the existing approaches
using the projected pattern or the predicted depth from dot
pattern-based RGB-D sensors to estimate transparent objects’
masks, and then review the existing approaches using RGB
to estimate transparent objects’ masks.
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Object detection is challenging for RGB-D sensors in the
case of transparent, highly reflective materials or generally
any non-Lambertian materials. These materials affect the
appearance of the projected pattern in the scene in view
specific manners, affecting both block matching and stereo
matching depth prediction methods. Block matching methods
relying on the knowledge of the dot pattern fail more
consistently as the pattern is non-linearly transformed. This
invalid depth information was used in combination with the
GrabCut segmentation algorithm to extract silhouettes [7],
[4]. Alt et al. [1] used depth maps from several views and
looked for depth inconsistencies caused by transparent ob-
jects. Boundary label predictions from appearance and depth
features were integrated into a Markov Random Field (MRF)
model for glass object segmentation in [19]. The projection
of IR light on the scene and its distortion by transparent
objects is also very informative. Hagg et al. [5] exploited
the distortion of the IR pattern of an active RGB-D camera
to recognise reflective and transparent objects. Ruppel et al.
[14] directly used the raw infrared images and generate a
transparency candidate map from the scattered projection
pattern. The object detection was performed by a standard
blob detection algorithm. Works based on reflection and
distortion of light can be pushed even further with specialized
sensors. The unique properties of light-field images [11],
[24], [25] and polarization images [8] were used to allow
the segmentation of transparent objects. RGB images also
contain information about transparent objects. McHenry et
al. [12] used cues for transparency like specular highlights
or distortion of the background texture to train an SVM
classifier for transparent edge and region detection. Such
classical approaches have since largely been outperformed
by deep learning models and object detection architecture
like SSDs are used to predict bounding boxes of transparent
objects from RGB images in [9]. Stets et al. [17] used a large-
scale synthetic dataset to train a CNN with a VGG16-Net
backbone, showing good generalisation to real-world scenes.
This was further improved by TransLab, a segmentation
network trained on large-scale real-world data which was
introduced by Xie et al. [21]. Furthermore, a Transformer-
based segmentation pipeline [22] was later trained on the
same dataset and outperformed purely CNN-based methods.
Very recently, a cascade network architecture was proposed
by [6], introducing modules with residual learning and point-
based graph convolution to enhance boundary prediction.
More information can also be inferred about transparent
objects, such as how they affect the path of light. In TOM-
Net [2] a transparent object mask, an attenuation mask, and a
refractive flow is predicted using an adapted mirror-link CNN
[16]. While other image matting methods for transparent
objects depend on specific backgrounds or patterns [26],
[20], TOM-Net was trained on an entirely synthetic dataset
of transparent objects rendered in front of different scenes
and patterns. Finally, ClearGrasp [15] uses both RGB and the
noisy depth as input for transparent object depth prediction.
The transparent object mask and the scene normals are
predicted from the RGB image and the noisy depth is

Fig. 2: Selected scenes from our dataset showing the wide
range of objects of different complexity and materials.

Fig. 3: Setup consisting of a robot manipulator and an RGB-
D camera.

completed by optimization according to the predicted surface
normals.

III. DATASET COLLECTION METHOD FOR
TRANSPARENT OBJECTS

For evaluation of different approaches, a new dataset with
RGB-D images of two different types of transparent objects
is introduced: It includes common transparent household
items as well as containers used for various medical applica-
tions. Objects of different complexity are selected, ranging
from simple symmetric objects and flat objects to objects
with more and finer details as well as vessels filled with
contents. An overview over some scenes of our dataset is
given in Figure 2.

In addition to RGB and depth images, the dataset also con-
tains infrared images and camera poses. Overall, it consists of
640 images in 10 scenes. Since 64 views are used to capture
each scene, the dataset also is suitable for evaluation of multi-
view reconstruction methods. Indeed, the sampled views
cover the entire half-sphere above the scenes as illustrated
in Figure 4.

An overview of published datasets featuring transparent
objects is given in Table I. ClearGrasp is listed twice as
both a synthetic and a real-world dataset are reported. Our
dataset includes all information about objects in the scene,
including their pose, is only made of real scenes, and has a
better view coverage than most datasets.

A. Acquisition

The setup used for capturing the dataset consists of a 6
DoF robotic manipulator with an RGB-D camera attached to
its end effector (see Figure 3). A RealSense D435 camera
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Dataset Type # Images # Objects Clutter Mask Depth Pose
Stets et al. [17] synthetic 80,000 600 x x
ClearGrasp [15] synthetic 50,000 6 x x x x
ClearGrasp [15] real-world 286 10 x x x x
KeyPose [10] real-world 48,000 15 x x x
Trans10K [21] real-world 10,428 10k+ x x
TODD [23] real-world 15,000 6 x x x
Our dataset real-world 640 15 x x x x

TABLE I: Overview of datasets published online at the time of this work, which feature transparent objects.

Fig. 4: Sketch of the camera poses used to capture the data
of one scene.

is selected since it allows both the collection of RGB-D
images and infrared images. For calibration of the eye-in-
hand setup fiducial markers are used. For each scene, one
or more objects are placed on a table and the camera is
moved along a predefined trajectory, capturing 64 frames and
storing the camera poses obtained using the well-calibrated
arm kinematics. A sketch of camera poses corresponding to
images taken during one scene is depicted in Figure 4. The
trajectory runs circularly around the scene and the angle of
the camera relative to the table plane is changed every 16
frames resulting in 4 different angles. The distance between
the camera and the objects remains in the range of 60-100cm
throughout the capture of the entire dataset. The light source
is fixed above the setup, therefore the camera angle also
changes in regard to the light source.

B. Annotation

The transparent objects of our dataset are annotated using
the annotation toolkit introduced by [18]. Here, 3D models
of the transparent objects are projected to the RGB images
considering intrinsic and extrinsic parameters. The object
pose is obtained via Blender [3] by aligning the outlines of
the projected models with the RGB images (see Figure 5).

The derived object poses are then used to render ground
truth masks for the RGB images using the respective camera
poses. The 3D models of the transparent objects were either
created using CAD software or obtained by spray-painting
the objects and then applying object reconstruction methods
for opaque objects.

(a) (b)

Fig. 5: Outlines of the 3D models (a) are projected onto RGB
images (b), allowing the alignment with the object contours.

IV. EXPERIMENTS

A. Experimental Setup:

We compared different approaches for mask estimation
of transparent objects, including one based on invalid depth
data in combination with GrabCut, another one based on
raw infrared images and several CNN-based pipelines using
purely RGB information.

Invalid or zero-depth values can be used to extract sil-
houettes of transparent objects. However, not all transparent
pixels cause zero depth values, resulting in an incomplete
silhouette either with holes or incomplete parts. Therefore,
morphological closing with a circular kernel and contour
detection are applied on the inverted image to extract ob-
ject candidates. Furthermore, the available RGB information
is incorporated to improve the mask using the GrabCut
segmentation algorithm [13]. As initialization for GrabCut,
the zero depth masks are processed and labelled to create
rough trimaps: The mask is dilated and the true pixels are
labelled as possible foreground, while the rest is labelled
as background. Then a copy of the mask is eroded and the
true pixels are labelled as definite foreground and added to
the trimap. Finally, the segmentation algorithm is applied on
each pair of RGB image and depth-based trimap.

In addition, the IR pattern of the RealSense D435 is hardly
visible on the surface of transparent objects, resulting in
failure of the intern depth prediction of the camera. In this
work, the algorithm proposed by Ruppel et al. [14] is used
to exploit the lack of IR speckles on transparent surfaces
to obtain a transparency candidate map. The algorithm is
adapted to work with the pattern of the RealSense D435
camera, which predicts depth by Active IR Stereo Vision, in
comparison to the Structure Light camera used in the original
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work. A high-pass filter is applied to the normalised IR image
and subsequently blurred with a median filter. After repeated
dilation with a circular kernel, a threshold is applied and the
resulting mask is filtered with a blob detection algorithm by
size.

For evaluation of CNN-based methods, four different deep
learning pipelines are tested on the proposed dataset for mask
prediction of transparent objects: TOM-Net [2], ClearGrasp
[15], TransLab [21], and Trans2Seg [22]. Here, we use the
pre-trained models, which are already available online. From
TransLab and Trans2Seg only the binary masks are consid-
ered for evaluation, excluding the prediction of the object
class. In addition, the ”tiny” configuration of transformer is
used for Trans2Seg training and inference.

B. Results:

Table II shows the recall, precision, F1 score and IoU
achieved on our dataset for selected approaches. Masks from
invalid depth are also included as a baseline. TransLab shows
the highest precision, F1 score and IoU, and even the recall is
rather comparable to ClearGrasp. ClearGrasp has the highest
recall of around 76%, but scores significantly lower than
TransLab for all other metrics. The F1 score and IoU of
Trans2Seg are similar to the results of ClearGrasp, but the
recall is much lower. The precision exceeds ClearGrasp by
around 15% in absolute value. A better performance of
Trans2Seg was expected, since it is the follow-up work of
TransLab. However, for inference on our dataset, the ”tiny”
configuration of the transformer was used, which can explain
the results. The GrabCut-based approach using invalid depth
data clearly shows an improvement in comparison to the
baseline masks from raw invalid depth. It achieves a recall
of above 58%, but has otherwise lower scores than the CNN
pipelines discussed above. The IR-based approach performs
worse on average than invalid depth-guided GrabCut, even
yielding a recall lower than the baseline masks. The reasons
may lie in the high angular and material dependency of
this method as well as the relatively sparse pattern used by
the RealSense D435 (e.g. when compared to the Kinect).
Although it is not optimised for exact segmentation, the
results still indicate the potential of IR-based approaches.
In contrast, TOM-Net performs much worse than the invalid
depth masks and every other algorithm investigated in this
study. TOM-Net achieves average scores of just a few percent
for each metric on the dataset. A reason might be that it is
trained just on synthetic data, whereas the other networks
are trained on real-world images. Please note that pre-trained
models are used in this evaluation, i.e differences in the re-
sults might be attributed to both the different training datasets
as well as the algorithms themselves. In addition, an angular
dependency of the metrics is found for all approaches, shown
in Figure 6 for F1 score, IoU, recall and precision between
the angles of 14° and 55°. For TransLab and Trans2Seg,
overall high values with low angular dependency are found,
with a decrease in the metrics only at higher angles (between
44° and 55°). Similar results are obtained for ClearGrasp,
but here also a slight decrease for low angles is visible,

Method Recall [%] Precision [%] F1 [%] IoU [%]
Invalid Depth* 43.29 27.62 30.77 19.92
Depth+GC [13] 58.84 39.25 43.06 30.92
IR-based [14] 37.03 41.56 33.13 25.05
TOM-Net [2] 3.57 3.45 2.96 1.84
ClearGrasp [15] 75.86 49.99 56.24 42.72
TransLab [21] 73.50 71.67 67.54 55.85
Trans2Seg [22] 54.02 65.62 52.86 41.86

TABLE II: Overall evaluation results of selected transparent
object segmentation techniques on our dataset. The highest
score for each metric is highlighted in bold.

leading to a maximum for F1 score, IoU and precision at
intermediate angles. Only the recall increases slightly with
the angle. The depth based methods, i.e. invalid depth and
the combination with GrabCut, also show a more or less
pronounced maximum at intermediate angles for all metrics
except for recall, were a severe decrease is found for higher
angles. The IR-based approach shows a drastic increase from
very low values for all metrics at low angles up to the high
values also achieved by TransLab and Trans2Seg. In contrast,
TOM-Net overall yields very low metrics and no meaningful
dependency on the angle is found.

The results also differ vastly for the individual objects and
materials. Some examples of frames from different scenes are
shown in Figure 7, featuring thick-walled glass objects in the
first row, thin-walled plastic bottles in the second row, a pipe
and a dustpan in third row and a medical object with plastic
containers and flexible tubes in the last row. In Table III the
averaged results of all frames for four scenes are shown in
more detail. The best results are obtained for thick-walled
glass objects (see Table III(a)), whereas thin-walled plastic
objects are more challenging (Table III(b)). Also, flat lying
objects with a lot of contact with the ground (Table III(c))
prove to be difficult for some approaches. As the most
complex object, the medical kit is also the most difficult for
mask prediction due to fine details and the cluttered scene
(Table III(d)).

Based on these results, future work should take more
complex cases like transparent objects containing liquids,
very thin plastic objects, semi-transparent objects and fine
structures into account, while also delivering reliable results
for opaque objects. Also, the results suggest that the output
of the CNNs could be improved by using more and diverse
training data.

V. CONCLUSIONS

A comparison between different state-of-the-art ap-
proaches for mask prediction of transparent objects was
given and a new real-world dataset of transparent objects
featuring RGB-D images, infrared images and camera poses
and manually annotated groundtruth masks was introduced.
The evaluation on the dataset showed great variation in the
performance for different mask prediction methods. The best
overall performance was achieved by TransLab in regards of
precision, F1 score and IoU, yielding values up to 71.67%,
67.54% and 55.85%, respectively. The average highest re-
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Fig. 6: Effect of different camera poses on the metrics of the selected segmentation methods. Please note that an angle of
0° corresponds to image plane and table in perpendicular position.

(a) (b) (c) (d) (e) (f) (g)

Fig. 7: Evaluation on four frames of different scenes from our dataset: (a) invalid depth mask, (b) depth + GrabCut [13],
(c) IR-based [14], (d) TOM-Net [2], (e) ClearGrasp [15], (f) TransLab [21] and (g) Trans2Seg [22]. The colours indicate
true positive (green), true negative (black), false positive (red) and false negative (grey) pixels.

Method Recall [%] Precision [%] F1 [%] IoU [%]
Invalid Depth 61.64 45.79 51.22 36.22
Depth+GC [13] 79.59 60.62 67.5 53.14
IR-based [14] 46.41 51.08 46.79 39.75
TOM-Net [2] 9.64 12.54 9.74 6.74
ClearGrasp [15] 93.04 66.09 76.09 62.61
TransLab [21] 92.78 93.92 93.13 87.39
Trans2Seg [22] 93.32 90.98 91.41 85.21

(a) Scene containing glass objects with thick walls.

Method Recall [%] Precision [%] F1 [%] IoU [%]
Invalid Depth 39.84 24.30 28.09 16.71
Depth+GC [13] 51.89 32.36 36.85 23.70
IR-based [14] 16.15 48.42 22.05 14.05
TOM-Net [2] 4.66 4.53 3.32 1.83
ClearGrasp [15] 72.59 57.73 61.46 45.76
TransLab [21] 55.81 88.77 66.25 51.44
Trans2Seg [22] 26.01 69.11 33.86 22.53

(b) Scene containing plastic objects with thin walls.

Method Recall [%] Precision [%] F1 [%] IoU [%]
Invalid Depth 16.99 22.70 16.32 9.45
Depth+GC [13] 24.26 36.06 25.23 16.46
IR-based [14] 20.16 55.39 27.71 17.93
TOM-Net [2] 7.40 7.63 6.17 3.50
ClearGrasp [15] 36.75 44.78 37.78 25.59
TransLab [21] 69.23 90.89 76.56 64.40
Trans2Seg [22] 39.37 71.67 46.36 35.09

(c) Scene containing a pipe and a dustpan.

Method Recall [%] Precision [%] F1 [%] IoU [%]
Invalid Depth 47.46 8.39 13.78 7.52
Depth+GC [13] 65.13 12.79 20.62 11.70
IR-based [14] 36.55 6.95 11.25 6.92
TOM-Net [2] 14.14 4.69 5.74 3.18
ClearGrasp [15] 87.91 20.02 31.39 19.52
TransLab [21] 71.47 17.59 27.45 16.70
Trans2Seg [22] 54.08 15.45 22.58 13.87

(d) Scene containing a medical object.

TABLE III: Evaluation results of transparent object segmentation for different scenes.
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call was observed for ClearGrasp with 75.86%. However,
the recall achieved by TransLab is quite comparable with
73.50%. This clearly suggests that TransLab is the most
effective approach in this comparison. However, only pre-
trained models were used and TransLab was trained on the
most extensive and varied dataset in this study. On the whole,
simple and thick-walled objects were the easiest for mask
prediction, while plastic objects with thin walls were more
challenging. All approaches struggled with complex objects
like the medical kit due to the cluttered appearance and the
finer details.
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Abstract— This paper proposes an approach for the adapta-
tion of robot trajectories taken from a set of demonstrations.
The problem is formulated as a constrained optimization
problem where the set of demonstrations are used as target
values to build a Quadratic Program (QP). The constraints
constitute the adaptation’s conditions of the new trajectory,
e.g. new initial or final points or keep the trajectory within a
specific range. The performance of our approach is verified in
the adaptation of a set of demonstrations taken from a Panda
robot for new conditions.

I. INTRODUCTION

Imitation learning approaches aim to generalize tasks to
novel situations. Most approaches are designed under a
learning framework, where a given criteria is minimized.
A variety of approaches exist where a set of task demon-
strations are used to train a given model to provide gen-
eralization for new different conditions. Some representa-
tive approaches within this field are i.g. Task-Parameterized
Gaussian Mixture Model (TP-GMM) [2] that considers as
task parameters, the homogeneous transformations between
arbitrary reference frames. By observing human demonstra-
tions from each of these frames the robot is able to learn
the spatial relationship between start, goal, and via points
in the trajectory. Conditional Neural Movement Primitives
(CNMPs) Seker et al. [3] generate motion trajectories by
sampling observations from the training data and predicting a
conditional distribution over target points, e.g. robot position,
forces, and any task parameters. However, CNMPs have
limited extrapolation capabilities. A possibility to improve
the extrapolation performance is to combine imitation and
reinforcement learning [1]. In order to maximize the gener-
alization to new conditions, these models require a training
process aimed to maximize the adaptation capabilities by
minimizing a given loss function. However, there is no way
to guarantee the conditions will be fully reached for the
adaptation. Besides, the nature of some manipulation tasks
requires reaching a certain level of precision for the new
conditions to be adapted to. In this paper, we tackled the
adaptation problem by a constrained optimization approach
that uses a set of demonstrations as target points to build
a linear regression model using a set of Basis Functions
(BF). The conditions to meet by the adaptation are defined as
constraints of the QP. In this way, it is possible to satisfy the
new conditions that requires the adaptation. Our approach

1 Department of Computer Science, University of Innsbruck, Techniker-
strasse 21a, Innsbruck, Austria.

2 Digital Science Center (DiSC), University of Innsbruck, Austria.
3 Department of Industrial Engineering, University of Trento, Italy.

allows defining equality and inequality constraints at both
position and velocity levels. Our approach is validated in the
adaptation of a set of demonstrations taken from a Panda
robot, where the adaptations involve different equality and
inequality constraints at the same time.

II. METHOD

Given a set of N observations D = [{t1,y1} , · · · ,{tN ,yN}]
where t ∈ R defines the independent variable and y ∈ Rd

the target values of dimension d. The goal is to find a set of
parameters w ∈RM that minimize the sum of squared errors:

ED(w) =
1
2

N

∑
n=1

(y(tn,w)−yn)
2 (1)

The model can be defined as a linear combination of
fixed, nonlinear BF ϕ(t), i.e., y(t,w) = w0+∑

M−1
j=1 w jφ j(t) =

wTϕ(t), where M−1 is the number of BF.
The regression problem can be rewritten as a QP that

allows to impose constraints, in the form

minimize
w∗

1
2 wTPw+qTw

s.t.


yl ≤ Gw ≤ yu

Aw = yA
ẏl ≤ Ġw ≤ ẏu

(2)

where w∗ is the optimal vector that minimize the Sum of
squared errors (SSE) given in Eq. 1; P = 2MTM, and q =
−2MTc defines the standard form expressions, M = ΦTΦ
and c =ΦTy; where y ∈ RdN is the stacked vector of target
values and Φ ∈ RN×M is know as the design matrix

Φ=


1 φ1(t1) ... φM−1(t1)
1 φ1(t2) ... φM−1(t2)
...

...
...

...
1 φ1(tN) ... φM−1(tN)

 . (3)

Aw = yA defines the equality constraints at the position
level constructed from a predefined set of P data points
DA = {tA,yA}, where yA ∈ RP×d defines the desired values
of the regression evaluated at tA ∈RP. The matrix A∈RP×M

is calculated as A =Φ(tA). On the other hand, yl ≤ Gw ≤ yu
represent the inequality constraints at the position level and
is constructed from a set of Q data points DG = {tG,yl ,yu},
where yl ,yu ∈RQ×d are the lower and upper boundaries data
points respectively and the matrix G ∈ RQ×M is calculated
as G = Φ(tG). The inequality constraints are used to keep
the regression values evaluated at tG ∈ RQ within the range
[yl ,yu]. Finally, ẏl ≤ Ġw ≤ ẏu represents the inequality
constraints at velocity level that are defined from a set of
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V datapoints ḊG = {tv, ẏl , ẏu}, where ẏl ,ẏu ∈ RV×d are the
lower and upper velocity boundaries datapoints respectively
and the matrix Ġ is calculated as Ġ = Φ̇(tv), where Φ̇ ∈
RV×M defines the partial derivatives of the BF Φ̇ = ∂ϕ(x)

∂x .
The velocity inequality constraints are used to keep the
velocity of the regression evaluated at tv within the range
[ẏl , ẏu]. This is specially useful to generate smooth trajectory
motions in the reproduction of the adapted task. By solving
the QP in Eq. 2, it is possible to find the optimal vector w∗

that minimizes the sum of squares errors (1) and satisfies at
the same time the equality and inequality constraints (2).

III. RESULTS

This section presents the results obtained from apply-
ing our method to robot trajectory adaptation. For this
experiment, we have used a dataset of 9 different 2D
trajectories with 700 data points each, forming a dataset
D = {t,y} where t ∈ R2700, with values within the range
[0,1]; whereas the target values are y ∈ R2700×2. The
used Basis Functions is conformed by a set of 18 func-
tions φ(t) = [1, t,sin(α0t),cos(α0t), · · · ,sin(α7t),cos(α7t)]
with αi ∈ {0.1,1,5,10,20,30,40,50}. The set of BF and
their parameters were selected empirically motivated from
the Fourier BF.

The first experiment is shown in the Fig. 1 Case I.
The adaptation includes new initial and final points of the
trajectory which are defined as two equality constraints for
t = 0 and t = 1, indicated for purple markers. We have
also defined a set of inequality constraints in Y axis as
{t,yu = 0.055}, (blue light area), used to keep the Y axis
trajectory values lower than yu. The plot presents the results
for three different tuples of initial and final points. In these
results, the adapted trajectory fully satisfy the new initial and
final conditions as well as the imposed inequality constraint
in the Y axis, and most importantly, keeping the shape of
the trajectory, which means, the new obtained trajectory has
a similar shape that the demonstrations.

In Fig. 1 Case II a second adaptation case is shown using
the same data set. Here, we present a comparison between
two adapted trajectories, the orange one is adapted only in
position and the blue one is adapted in position and velocity.
The conditions of adapted position for both trajectories are
the same, indicated by the purple markers. For the blue
adapted trajectory, the velocity constraint is defined within
the range [−0.55,0.55]. The velocity for both trajectories
is shown in Fig. 1c). The orange trajectory moves freely
due to the lack of constraint, whereas the blue trajectory
remains within the imposed velocity range defined in the
inequality constraint. In Fig. 1b) the respective position
trajectories are shown. Both trajectories satisfied the initial
and final adaptation conditions and both keep the shape of
the trajectory overall. However, the blue trajectory will be
the one that produces smoother motions in the reproductions
due to the velocity constraints.
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Fig. 1. Case I: Adaptation for new initial and final positions with a
constraint in the Y axis. Case II: Adaptation for a new initial and final
position with velocity constraints.

IV. CONCLUSIONS
The proposed approach addresses the adaptation problem

for new conditions at both position and velocity level for a set
of demonstrations. The approach is defined as a regression
problem and handled as Constrained Quadratic Optimization,
where the criteria to be minimized is defined by a sum-
of-square errors of data points of the demonstrations, and
the constraints represent the new adaptation conditions. The
approach is validated in a set of trajectories taken from a
Panda Robot. The adaptation involves new initial and final
points as well as velocity constraints. The results show our
proposed approach can fully satisfy the new imposed adap-
tation conditions while keeping the shape of the trajectory
overall. The approach has important relevance 1) to scenarios
with continuous changes that demand continuous adaptations
of the trajectory, 2) to adaptations that require the shape
of the trajectory to be preserved, and 3) to trajectories that
demands high level of accuracy for the new adapted condi-
tions. Our approach considers the following future work: I)
Introduction of slack variables in the optimal solution vector,
which are essential to relax the constraints and guarantee
feasible solutions of the QP. II) Extend the adaptation to
3D trajectories and reproduce them in real scenarios. III)
Comparison with similar methods e.g. CNMP, TP-GMM.
IV) Explore some methods for better selection of the BF.
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Grasping the Inconspicuous

Hrishikesh Gupta∗, Stefan Thalhammer∗, Markus Leitner, Markus Vincze

Abstract— Transparent objects are common in day-to-day
life and hence find many applications that require robot
grasping. Many solutions toward object grasping exist for
non-transparent objects. However, due to the unique visual
properties of transparent objects, standard 3D sensors produce
noisy or distorted measurements. Modern approaches tackle
this problem by either refining the noisy depth measurements or
using some intermediate representation of the depth. Towards
this, we study deep learning 6D pose estimation from RGB im-
ages only for transparent object grasping. To train and test the
suitability of RGB-based object pose estimation, we construct
a dataset of RGB-only images with 6D pose annotations. The
experiments demonstrate the effectiveness of RGB image space
for grasping transparent objects.

I. INTRODUCTION

Object detection and pose estimation are two of the most
fundamental problems in the field of robot vision, crucial
for robotic object grasping and manipulation. Although robot
object manipulation by means of pose estimation itself is a
quite challenging problem, it still offers a good and wide
range of solutions for manipulating opaque objects. Towards
this considerable research has been devoted to robotic ma-
nipulation of objects using 3D data (e.g. RGB-D images,
point clouds) [21] [30]. However, many of these algorithms
cannot be immediately applied to transparent objects [19].
This is because, existing commercial depth sensors, such as
projected light or time-of-flight sensors, assume that objects
have Lambertian surfaces that can support diffuse reflection
from the sensor. Depth sensing fails when these conditions
do not hold, e.g., for transparent or shiny metallic objects.
Transparent objects are a common part of everyday life, from
reading glasses to plastic bottles – yet these unique visual
and material properties make them difficult for machines
to perceive and manipulate, especially with the mentioned
sensors.

Our main premise for the experimental setup in this
manuscript is that RGB images provide enough information
for object pose estimation for transparent objects. Towards
this, we proposed an experimental setup using a canister
as a transparent object. Which is a sterile medical object
often used in the medical field for temporary storing and
processing of fluids. Hence, has a strong use-case for robot
object grasping.

For evaluation of our assumption, we propose an ex-
perimental setup: 1) First, collect an RGB dataset for our
transparent object. 2) Annotate it using a state-of-art 6D pose

*Equal contribution, All authors are with the Automa-
tion and Control Institute (ACIN), TU Wien, 1040 Vi-
enna, Austria {gupta, thalhammer, leitner,
vincze}@acin.tuwien.ac.at

Fig. 1. Overview Our method leverages RGB images for transparent object
grasping. We first perform pose estimation, grasp annotation, and planning,
and as a final step execution of the grasp.

estimation annotation tool [14]. 3) Use the state-of-art pose
estimation method [23] for pose estimation for our trans-
parent object. 4) Grasping of the pose-estimated transparent
object, to evaluate our assumption and the effectiveness of
the RGB-only image space. An overview of the grasping
process is shown in Figure 1. We further qualitatively and
quantitatively evaluate our experiments which prove the
premise of our experimental setup.

The following sections are organized as, section 3 de-
scribes our experimental setup. Where the pose estimation
pipeline is discussed, along with the collection and annota-
tion of the training data. In section 3 we also describe the
grasping pipeline we use to evaluate our assumption for the
usage of RGB only images. In Section 4 we present the
experimental results of the transparent object grasping and
discuss the results. Finally section 5 we talk in brief about
our findings and possible future works.

II. RELATED WORK

Recent work tackling transparent object grasping and
manipulation lies at the intersection of object detection,
segmentation, geometric reasoning, depth reconstruction, and
boundary detection. Applying these challenging problems to
transparent objects received increased attention lately.

Classical methods mostly rely on peculiarities of such
objects, such as specular reflections and local characteristics
of edges due to refraction [15]. [4] used an additive
model of latent representations to learn the appearance of
transparent objects and remove the influence of background.
These methods were made to perform localization of the
objects and showed promising results in small experiments.
Methods for transparent object segmentation started with the
focus on formulating an energy function based on Light-Field
linearity (LF-Linearity) [27] and occlusion detection from the

61



4D light-field image were optimized to generate the segmen-
tation images. Recently, [25] introduce the Translab model
for transparent object segmentation. They also introduced the
first large-scale real-world transparent object segmentation
dataset, termed Trans10K. It has 10K+ images. One of the
most recent methods [7] combine polarization with deep
learning and propose a polarized CNN for transparent object
segmentation. Compared with previous methods, this still
requires additional input data(Polarizing light-field) apart
from the RGB only.

Methods such as TOM-Net [3] addresses the problem of
transparent object matting. And formulating the problem as
a refractive flow estimation problem. They propose a multi-
scale encoder-decoder network to generate a coarse input,
and then a residual network refining it to a detailed matte.

When it comes to transparent object pose estimation,
initial methods either leverage failure modes of depth sensors
like Microsoft Kinect1 and estimate object pose with a known
3D shape model [24] [12], or also structured light sensors
[17]. Because of the requirement for prior object models
or specific sensors, those approaches do not allow a simple
scenario where the only sensor is a stereo camera, or a
commercial camera taking a couple of pictures of a scene
“in the wild”.

Many of the methods for transparent objects pose estima-
tion rely on depth information. Hence many recent methods
try to complete the missing depth information for transparent
objects. The most recent and relevant methods closest to our
work provide depth completion from an RGB image with
inaccurate depth information [19] [31].

Transparent objects have been previously studied in var-
ious computer vision applications, including object pose
estimation [9] [13] [12]. Works on estimating transpar-
ent object pose and geometry might assume knowing the
object 3D model [12] [17]. In [13] [12], the pose of
a rigid transparent object is estimated by 2D edge feature
analysis. In [5], SIFT features are used to recognize the
transparent object. However, low-level traditional features are
not as discriminative as high-level deep features. The most
recent method for Pose Estimation of the transparent objects
introduced a keypoint-based feature [10] for pose estimation,
trained on stereo images. But this requires manually choosing
keypoints that should best describe the object pose with the
addition of stereo images instead of RGB only.

All these methods heavily rely on additional input infor-
mation besides RGB, for transparent object pose estimation.
Hence requiring more complicated annotation processes such
as in [10] and models. Hence we put forward our method
requiring RGB only information for transparent object pose
estimation and grasping. We show through our experiments,
both qualitatively and quantitatively, that RGB images pro-
vide enough information for transparent object manipulation.

III. EXPERIMENTAL SETUP

To demonstrate the potential of RGB for transparent
object grasping, an experimental setup for pose estimation

1https://en.wikipedia.org/wiki/Kinect

and manipulation of a transparent canister is created. The
canister, shown in Figure 3 is a medical sterile object often
used in the medical industry. In recent times due to growth in
the automation of the medical sector, grasping such medical
transparent objects canister is often one of the encountered
hurdles in robotics.

Fig. 2. Point cloud of the Canister Missing depth information of the
transparent canister due to its non-lambertian nature.

Towards our experimental setup, firstly we collected a
dataset of the transparent object and annotate it. A state-of-
art pose estimation method [23] is trained on the collected
dataset. The trained estimator is deployed in a robotic setup,
to estimate the canister’s pose on a tabletop. Based on this
estimate the object is grasped.

A. Pose Estimation
Most robot grasping methods require object orientation

and localization information in the scene. Hence, pose es-
timation is often a predecessor step for robot object grasp-
ing. Most transparent object pose estimation methods use
some form of depth information. Since depth information
for transparent objects produces degenerate solutions (see
Figure 2) [19] [31], most of these methods add an extra
step of either depth refinement [19] [31], extracting depth
information of the background for refinement [26], or use
some other form of the intermediate representation of the
depth like disparity maps [10] for pose estimation.

Since the basic assumption of this work is that RGB
images provide suitable information for transparent object
grasping, we use a recent RGB-based object pose estima-
tor [23]. The method only requires RGB images and an
object model and does direct pose regression and detection
in an end-to-end fashion.

[23] differs from most traditional methods dor pose es-
timation as it does not requires a preliminary detection
stage and instead couple together the process of finding
object classes and corresponding geometric correspondences,
similar to [6]. Thus the method is also agnostic to the number
of instances of the object in the scene.

The method takes an RGB image and a 3D model as
input. The initial model is a multi-scale feature pyramid
network, which takes input RGB image and generates as
object hypothesis, object class, geometric correspondences
and 6D pose
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Fig. 3. Dataset Example samples from our training dataset showing the
full variation of the provided backgrounds.

Fig. 4. Dataset annotation examples Example annotated images from
the dataset. On the left column we see the original RGB images and on the
right the corresponding annotations.

1) Training Data: For our data capturing process, we
use the Realsense D4352 and the ZED from stereolabs3.
The camera is attached to the end-effector of the KUKA
arm robot4 and moved around the object in a sequence,
where for each sequence around the object 104 images are
taken uniformly sampled from various heights, angles, and
distances around the object in a particular pose. Since the
sequences are defined manually, the pose of the camera
relative to the origin of the robot is known for each captured
image.

For estimating the pose of the object i.e, relative to the
camera attached to the robot end-effector we leverage multi-
view geometry. Information of which is provided by multiple
images taken in a sequence around the object, this is used
by our pose annotation tool [14].

In total, we record 15 sequences each containing 104
images, of which 6 sequences were captured with only one
transparent object instance and 9 with two instances of the
object. This results in 1352 training images in total. Since

2https://www.intelrealsense.com/
depth-camera-d435/

3https://www.stereolabs.com/assets/datasheets/
zed2-camera-datasheet.pdf

4https://www.kuka.com/de-at/produkte-leistungen/
robotersysteme/industrieroboter/lbr-iiwa

we are dealing with transparent objects, it is even more
vital for us to make our method robust to illuminations and
backgrounds even more so as compared with non-transparent
objects. Hence, we also use varying amounts of environ-
ment lighting and background patterns while data capturing.
Particularly we use various dotted patterns, checkerboard
patterns, metallic surfaces, etc for making our method robust
to the background variation. For robustness to illumination,
we make use of varying environment lighting and natural
lights. For each sequence being captured, we vary object
pose, instances, background, and illumination. Examples of
our dataset can be seen in the Figure 3.

For 6D pose annotation of the object i.e, the transformation
from the camera to the object in the given scene we use 3D-
SAT [14]. Which is a state-of-art method for object pose
annotation of RGB/RGBD sequences. One of the strongest
relevance for our work is that the depth data is not necessary
unlike other methods [14] and thus enabling the annotation
of objects that are unsuitable for depth-based methods.

The annotation tool [14] requires a 3D model of the object
being pose annotated along with the recorded sequence of
images and camera intrinsics. After recording a sequence the
available data is imported to the Blender annotation GUI.
This enables the alignment of 3D object models with the
imported RGB images to retrieve the 6D pose of objects.
Pose annotation is done by aligning the 3D model to the
object in each image of the sequence. Figure 4 shows a few
examples of our 6D pose annotations, where the 3D model is
aligned with the object. Multiple grasp poses were annotated
by hand for our transparent object as shown in Figure 5.

2) Training: The weights of the backbone are pre-trained
on ImageNet [18] and fine-tuned for 100 epochs using
the Adam [8] optimizer with a learning rate of 1−5 and
a batch size of 8. To benefit more from the pre-trained
feature extractor we do not update the parameters of batch
normalization and the convolution layers of the first two
stages of the backbone during training.

Since the training dataset is quite limited in terms of pose
variations we apply translation and zoom augmentation with
up to 5% each. In order to not overfit to the training data,
standard image augmentations such as brightness, contrast,
blur and color changes are used. Similar to [16], [22], [20].

B. Grasping Pipeline

Performance of object detection and pose estimation meth-
ods often deteriorate when deployed on real-world robots
[11] [1] [2]. Thus in order to evaluate our proposed method
and experimental setup, we evaluated its performance in a
grasping experiment using a Toyota HSR robot [28], [29].

Multiple grasp poses are annotated by hand for the object
as shown in Figure 5. These annotated grasp poses are then
transformed to the robot base frame using the estimated
object pose of our method [23]. Based on the potential
grasp poses, multiple trajectories are calculated and the
first collision-free trajectory found is executed. A grasp is
successful if the object is lifted and remains stable in the
gripper.
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Fig. 5. Grasp Annotation 20 possible grasp configurations are annotated.
The randomly colored grippers are scaled to 50% for visibility.

IV. EXPERIMENTS

In this section, we present the results of our experimental
setup. As mentioned previously the premise of our exper-
imental setup is that the RGB images provide sufficient
information for transparent object grasping. To evaluate the
performance of our pose estimation based on our experi-
mental setup, we evaluate it in a real-world robotic grasping
experiment.

Our grasping setup contains a Toyota HSR robot [29] used
for grasping our transparent canister. We place our canister
on a wooden table, where the robot is looking at the canister
at approximately and 45◦ angle. We place the canister on
the table in three different ways: upright position, recumbent
position, and attached to the base plate. We also use two
different backgrounds, in-particular we use the checkerboard
and the original wooden background of our table. As the first
is already part of our training dataset and the other is to see
how well our method generalizes to the unseen backgrounds.

A. Quantitative Results

In this section, we describe the results of our grasping
experiments. We perform in total 5 grasps with randomized
placement on the table, for the each of the four scenarios
upright and recumbent with seen and unseen tabletop. Eval-
uation is based on three distinct cases the grasping attempt
can result in:

• Full Grasp: The object is grasped and remains stable in
the gripper

• Reached Grasp: A suitable grasp position is reached,
but the grasp is unsuccessful due to the gripper moving
the object previous to grasping.

• Failed Grasp: Neither the object is grasped nor a
suitable grasping position is reached.

We assign a score of 1, 0.5 and 0 for Full Grasp, Reached
Grasp and Failed Grasp, respectively. Reported scores in
Table I are normalized by the number of grasp attempts.

As we see in Table I, the grasping experiments are
slightly more successful in the case of the seen background

TABLE I
GRASPING EXPERIMENTS CANISTER GRASPING FROM A TABLETOP

WITH KNOWN AND UNKNOWN SURFACE.

Tabletop Seen Unseen
upright recumbent upright recumbent

Full Grasp 0.6 0.2 0.4 0.2
Reached Grasp 0.1 0.1 0.1 0.0

overall 0.7 0.3 0.5 0.2

as compared to the unseen background. Yet, the trained
model generalizes to unseen object appearances. Showing
RGB provides an informative modality for transparent object
handling. The reason for the failed grasp attempts for upright
case is mainly caused by the grasping method being agnostic
to object geometry. The grasping attempts have significantly
deteriorated for the case of the canister being in the re-
cumbent position, for both the seen and unseen. Although
the scores remained similar for both. The reason for the
significant drop in grasping performance for recumbent cases
is grasp-point sampling usually picking the grasp points that
are protruding the table plane, hence leading to a collision
of the gripper.

Fig. 6. Pose Estimation and Grasp Point Sampling The left column of
images indicates estimated poses with a green bounding box. Right shows
all grasps, grasps protruding the table (red), grasps not protruding the table
plane (blue and green), and chosen grasp (green).

B. Qualitative Results

In this section, we introduce and describe the qualitative
results of our grasping experiments. We first discuss the
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visual results of the estimated poses and the choice of
grasp points. Then we discuss the results of the grasping
experiments, the cases where it succeeds, and the failure
cases and give the reasoning behind them.

1) Pose Estimation and Grasp Sampling: The left column
of Figure 6 shows the estimated 6D poses for our transparent
object. We observe a small offset in the rotation of the
estimated pose. The rotation is difficult to estimate since only
the top part of the canister provides cues to disambiguate the
rotational symmetry along the longitudinal axis of the object.

The right column of Figure 6 shows the possible grasp
points around the pose estimated canister. The red points
in the figure show the grasp points that are protruding the
table plane, while the blue and green are the valid graspable
points not protruding the table’s surface. The top row shows
that for the upright position of the canister it is easy to plan
executable grasp trajectories. While the middle row of Figure
6 shows the graspable points for the canister in the recumbent
position.

In the case of the canister being in a recumbent position
(Figure 6 middle row), we have seen the performance drop
in grasping successes, Table I. This is mainly because of
the main axis of the canister lying along the table surface,
resulting in the grasp point being chosen close to the table
surface (red grasp points). This leads to the collision of the
gripper with the surface, leading to failed grasps. Poses are
slightly worse for the scenario featuring tabletops unseen
during training time, bottom row of Figure 6.

2) Grasping the Canister: The top two rows of Figure 6
show some of the examples of successful grasps. We also
introduced a distractor, i.e the base plate of the canister in
our grasping experiments as seen in Figure 7, which is not
part of our dataset for training the pose estimator. The trained
model generalizes well, with successful grasps to cases with
added distractor (canister base-plate) and unseen tabletops.

3) Failure Cases: The last row of Figure 7 shows one of
the failure cases for the canister in the upright position. As
mentioned above, grasping sometimes fails since grasp plan-
ning does not account for the object geometry. Significant
improvements can already be achieved by improving grasp
point sampling and grasp trajectory planning. Additionally,
providing a richer and more diverse dataset, in terms of table
top texture and pose variations will improve pose estimation
and thus the grasping success.

V. SUMMARY AND OUTLOOK

In this work, we conduct a study to evaluate the effec-
tiveness of the RGB-only image space for transparent object
pose estimation for robot object grasping. The experiments
and the results prove our assumption about the usability of
RGB We conduct several successful grasps on a transparent
object, even in an completely unseen setting, saying scene
and background. Future work will investigate and provide
improvements by training the proposed setup on a much
larger scale of data including more instances and variations
in the scene. As well as improvements for grasp sampling,
grasp filtering and grasp planning.

Fig. 7. Grasping Sequence with a Distractor The Canister placed in its
base plate, as such unseen during training, is picked from the table.
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Gaussian Process Regression for Inverse Kinematics

Lucas Muster1, Mohamed Aburaia2 and Wilfried Wöber3

Abstract— For the calculation of the inverse kinematics in
robotics, approaches such as the analytic or numerical method
are used, which provide unambiguous and robust results, but
have a disadvantage such as high calculation and modelling
effort. Due to recent successes in the field of computer
hardware, new techniques are emerging. These technologies
overcome several limitations of the aforementioned methods
for the calculation of inverse kinematics for robotics. In this
context, this study introduces Gaussian process regression for
estimating the inverse kinematics for various robots. The results
show that a regression accuracy of over 99% for each axis has
been achieved for five given robot kinematics.

I. INTRODUCTION

A robotic system and its pose of the corresponding tool
center point (TCP) is represented through the angular posi-
tion of the individual axes [3]. For the counterpart of that,
namely the calculation of the inverse kinematics, the position
and orientation of the TCP is given, represented by x. From
this pose, the axes q of the robotic system are then calculated
as shown in equation 1, where f is a nonlinear function due
to nonlinear relationships between the existing joints [8].

q = f−1(x), where q =
[
θ1 θ2 . . . θn

]T (1)

The computation of robot kinematics represented in equation
1 is challenging and requires the kinematic structure, the
robots configuration and limitations [1]. Furthermore, due
to the number of axes, a linear mapping of the kinematic
structure is not possible [9].
To overcome the aforementioned problems different methods
are proposed, which can be divided into traditional methods,
such as algebraic, geometric and numerical (iterative), as well
as novel methods such as data-driven and hybrid methods
[3], [9]. Recently, data-driven approaches, are emerging in
the field of robotics, which use data and flexible models.
These models and their parameters are optimized using pose
examples [3].
One of the most well-known probabilistic models in the
field of machine learning is the Gaussian process regression
(GPR) [5], [14]. GPR is a non-parametric regression model,
therefore it is not bound to a specific function and uses the
Bayesian approach to derives a probability distribution over

1Lucas Muster is with the Department of Industrial Engineering, Uni-
versity of Applied Sciences Technikum Wien, 1200 Vienna, Austria
muster@technikum-wien.at

2Mohamed Aburaia is with the Department of Industrial Engineering,
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3Wilfried Wöber is with the Department of Industrial Engineering,
University of Applied Sciences Technikum Wien, 1200 Vienna, Institute for
Integrative Nature Conservation Research, University of Natural Resources
and Life Sciences, Vienna Austria woeber@technikum-wien.at

all possible values [5]. Relying on the theoretical benefits
of Gaussian processes this study tackles the calculation of a
GPR model, trained on real data points of the given robot to
obtain a inverse kinematic model.
This study is organized as follows: Chapter 2 describes the
state of the art for machine learning-based inverse kinematic
estimation. Chapter 3 presents the methods used before dis-
cussing the experimental results in Chapter 4. Subsequently,
the results are presented in Chapter 5.

II. STATE OF THE ART
Machine learning is a part of data-driven methods and an

alternative way to calculate and control a robot [2], [12],
[15]. Methods such as neural networks [5], random forest
[6], support vector machine [10] and k nearest neighbor
regression [4] are used to learn the corresponding model
and to subsequently predict new data points [3]. The goal
of these models is the prediction of the individual axis
angle positions, which leads to the positioning of the TCP
depending on the kinematic model. GPR is widely used
for nonlinear computations and, as described above, offers
advantages over other machine learning methods [5], [14].
An approach on how to use GPR in robotics, is shown in
[16], using a GPR to compute the inverse kinematics of
a seven degree of freedom robotic arm. Each observation
of the data consists of a total of twenty-one inputs, the
seven axis positions, the seven axis velocities, and the seven
axis accelerations. This type of regression also lends itself
to humanoid robots, as [7] shows. An extended version of
the GPR is the Gaussian Process Latent Variable Model
(GPLVM), used for kinematics with a high number of robot
axis [11].

III. METHODS

For the calculation of the GPR, a test dataset X and
the training dataset X∗ are measured on the physical robot,
which consists of different position values of the end effector.
Additionally, the corresponding angular values of the joints
are stored in the design matrix Y . For data processing,
random positions of the robots were generated. These data
matrices are the basis for training. To compute this, a prior is
defined, which is determined by a mean function m(x) and
a covariance function k(x,x′

), shown in equation 2 [14].

f (x)∼ GP(m(x),k(x,x
′
)) (2)

It is assumed that the observed data points differ from the
function value with some noise ε , based on a Gaussian
distribution (see equation 3).

y = f (x)+ ε with ε ∼ N (0,σ2
n ) (3)
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From this we can declare the joint distribution of the ob-
served data points and the function values related to the prior
as shown in the following equation 4 [5], [14].[

y
f∗

]
∼ N

([
µ

µ∗

]
,

[
K(X ,X)+σ2

n I K(X ,X∗)
K(X∗,X) K(X∗,X∗)

])
(4)

Note the noise factor σ2
n , which is incorporated into the

covariance as shown in equation 4. By conditioning the
joint Gaussian prior distribution on the observations, the
predictions of the mean function f∗ and the corresponding
covariance matrix cov(f∗) can be determined [5], [14].

IV. IMPLEMENTATION

The inverse kinematics calculation with the GPR was
implemented for five different robot kinematics, which are
shown in figure 1, using the sklearn library [13]. Due to
the different kinematic properties, it can be tested how
well the regression can be determined with the GPR. A
separate GPR was trained and evaluated for each of these
kinematic models. The optimization of the hyperparameters
is computed by maximizing the log-marginal likelihood.

V. RESULTS

The results show the GPR performance in the table I and
II. The regression resulting in a small mean squared error
(MSE) and a high R2 score for each data point. Every robot
kinematic regression has an R2 score over 99% for each axis.

VI. SUMMARY AND OUTLOOK

This work has dealt with machine learning in the field
of robotics. The results show, that the GPR can be used for
calculating the inverse kinematics for different types of robot
models. Future research could deal with the implementation
of a GPLVM, whereby a dimension reduction is performed
beforehand to possibly achieve better results [11].

Fig. 1. Representation of the robot kinematics, for the calculation of the
inverse kinematics with GPR. From left to right: Delta robot, 2D robot, scara
robot (RRP) and palletizing robot. The kinematics of the scara robot (RRR)
differs from the kinematics of the Scara robot (RRP) only by a rotatory,
instead of the last translatory axis.

TABLE I
RESULTS OF THE R2 SCORE WITH GAUSSIAN PROCESS REGRESSION.

R2R2R2

Robot Axis 1 Axis 2 Axis 3
Delta robot 99.99% 99.99% 99.99%

Scara robot (RRR) 99.99% 99.99% -
Scara robot (RRP) 99.97% 99.08% 99.99%
Palletizing robot 99.99% 99.99% 99.99%

2D robot 99.99% 99.99% -

TABLE II
RESULTS OF THE MSE WITH GAUSSIAN PROCESS REGRESSION.

MSEMSEMSE
Robot Axis 1 Axis 2 Axis 3

Delta robot 2.05e-06 2.79e-06 2.34e-06
Scara robot (RRR) 2.21e-08 2.09e-05 -
Scara robot (RRP) 3.44e-04 9.47e-03 2.15e-10
Palletizing robot 9.38e-07 5.67e-06 2.58e-06

2D robot 3.89e-07 1.01e-06 -
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Towards Deep-Learning-Based Local Features for
Visual SLAM Algorithms: A Comparison

Stefan Dimnik1,2, Matthias Schörghuber1, and Marco Wallner1

Abstract— Reliable localization and mapping is the basis for
a wide range of applications in autonomous robot operation,
self-driving cars, augmented reality, and many more areas.
Using imaging sensors, sparse feature-based visual simultaneous
localization and mapping (VSLAM) approaches are widely
used. The selection of keypoints and the invariance of their
descriptors to changes in viewpoint and lighting is crucial for
a robust long-term operation. Most modern VSLAM systems
rely on classic feature extractors and descriptors such as ORB
or SIFT. In contrast, ML-based methods such as SuperPoint,
HF-Net, or R2D2 dominate the benchmarks in the domain
of visual place recognition already. In this paper, we extend
openVSLAM to compare different keypoint detection and
description methods (ORB, HF-Net, SuperPoint) and evaluate
typical localization and run-time metrics on the OpenLoris and
EuRoC dataset. Experimental results show comparable results
in terms of localization accuracy but smaller and possibly more
stable maps for the machine-learning-based approaches that
can be directly used for visual place recognition tasks. Shifting
the feature calculation to the GPU also releases resources on
the CPU for other tasks.

I. INTRODUCTION
Resilient long-term localization in various environments

is a key enabling technology for a variety of applications.
E.g., in the domain of autonomous acting mobile robots,
actions and operations can be performed only with a decent
knowledge of its 6-DoF pose in some reference coordi-
nate frame ([1], [2], [3]). LiDAR-, or in general, depth-
sensor-based approaches can provide a reasonable long-time
performance [4] as long as the geometric properties of
the environment do not change too much, i.e., walls and
dominant objects are static. Using such sensors is often not
possible in many applications for various reasons, e.g., costs
or the mechanical setup. Enabling true long-term operation
with camera-based, visual SLAM systems is still an open
issue as the environment’s appearance changes drastically
over time (e.g., different lighting conditions, the course of the
seasons). Most recent feature-based VSLAM systems rely on
classic features like ORB or SIFT and perform well in short-
term benchmarks only. The research field of visual place
recognition (VPR) addresses these problems and has already
brought up solutions ([5], [6]) that can handle significant
variations in appearance.

*The research leading to these results has received funding by the Federal
Ministry for Climate Action, Environment, Energy, Mobility, Innovation and
Technology (BMK) in the frame of the FFG “ICT of the Future” program
as part of the “openSCHEMA” project (grant no. 887533).
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AIT Austrian Institute of Technology GmbH, Vienna, Austria
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In this work, we evaluate how the achievements in the
VPR domain can be used for resilient visual SLAM. Our
main contributions are (i) the extension of the openVSLAM
framework to work with a variety of different feature types
and (ii) an extensive evaluation of localization- and run-time-
metrics on the OpenLoris and EuRoC dataset.

II. RELATED WORK

Local feature detection and matching are fundamental
problems in computer vision with a long history. We dif-
ferentiate between classic and machine learning-based meth-
ods. Most classic approaches consist of two stages: First,
keypoints (distinct and salient image regions) are extracted.
Second, the surrounding image region of the keypoint is
summarized by a descriptor. Prominent and vastly used
classic methods are SIFT [7], ORB [8], and AKAZE [9].
They differ in the type of detector, complexity and con-
sequently, the matching quality and computational require-
ments. ORB is a prominent choice for real-time applications
like VSLAM [10]. More recently, machine learning is used to
find relevant feature regions and extract more expressive and
stable local descriptors. A recent survey about local features
is presented in [11]. An overview of the evolution of local
features to deep-features and how deep-features are trained
is given in [12]. Research on deep-features is very active,
especially in the domain of visual place recognition (VPR)
resp. visual localization [13], [14]. Well performing methods
are SuperPoint [15], R2D2 [16], and HF-Net [17].

SuperPoint pre-trains on synthetic data and uses a self-
supervised approach to extract local features in a single
forward pass. HF-Net is a hierarchical two-stage visual
localization approach. As a first step, coarse localization
is performed using image-retrieval with a global image-
level descriptor followed by local feature matching. They
use the SuperPoint architecture for local features but jointly
train local and global features. This joint-training method
can further improve loop closing capabilities of VSLAM
algorithms.

Bojanic et al. [18] compares the performance of several
classic and deep local feature methods. They found that deep
models do not outperform classical models in general but
provide better invariance for specific cases (e.g., large varia-
tion in illumination). In addition, the SuperPoint model was
shown to have faster extraction times than ORB when using
a GPU, which argues for its use in real-time applications
such as VSLAM.

VSLAM has been a prominent research topic for several
decades too. For a brief overview, we refer to the survey

69



D
ra

ft

openVSLAM

Tracking

Pose Prediction

Relocalization

Track Local Map

Keyframe Insertion

Matching

Mapping

Create Keyframe

Create Points

BA

Update Map

Save/Load Map
Mono / Stereo Keypoints

Extract ORB

Stereo Matching

Extract ORB

Generate Stereo Coordinate

Loop Closing

Compute SE3

Query Database

Loop Fusion

Optimization

Registered RGB-D Frames

Depth Map

ML-based Features

Image

Rectified Stereo Frames

ML-based features

Left Image

Right Image

Bag of Words...

Fig. 1: Overview of the used evaluation setup. Changes to the openVSLAM framework are marked in blue. The framework
was extended to allow the input of pre-computed features and descriptors for RGBD and stereo images as input. Retrained
FBoW vocabularies are used for each descriptor type. The stereo matching was adapted to support floating-point valued
descriptors too. Changes in matching and keyframe insertion strategies were needed as described.

paper of Cadena et al. [19]. Recent VSLAM systems can be
classified into feature-based [20], [10], [21], and photometric
or direct approaches [22], [23]. Feature-based approaches
use local feature methods to find correspondences between
images. Direct approaches avoid the costly extraction of
features by directly finding correspondences based on pixel
intensities. Recently, advances were made by integrating
machine learning techniques into VSLAM algorithms [24],
[25], [26]. For a more complete overview, we refer to surveys
on VSLAM in general [27], and specific for feature-based
approaches in [28].

This work focuses on using deep local features for
VSLAM applications. In [29], ORB-SLAM [30] was modi-
fied to support SuperPoint and GCNv2 [31] as local features.
They evaluated the performance on the KITTI [32] outdoor
dataset. SuperPoint failed on several sequences. GCNv2,
trained on an indoor dataset, could not generalize to the
autonomous driving outdoor setting of KITTI. Similarly,
DXSLAM uses ORB-SLAM2 with HF-Net as feature back-
bone. DXSLAM focuses in their evaluation on the visual-
localization part of the system by using the OpenLoris [33]
dataset. We use a similar VSLAM approach with SuperPoint
and HF-Net as local features in this work. In contrast to
DXSLAM, we make a more detailed evaluation of the effects
of using deep local features and evaluate with the established
VSLAM stereo benchmark dataset EuRoC [34].

III. IMPLEMENTATION

We start with DXSLAM as our machine-learning-based
VSLAM baseline as it uses HF-Net to extract local features
and builds upon ORB-SLAM2. To evaluate the impact of dif-
ferent deep-learning-based local features, we added modular
feature extractors for HF-Net and SuperPoint and extended
the interface of openVSLAM to accept pre-computed key-
points and descriptors. The choice of openVSLAM as the ba-
sis for the evaluation is motivated by the comparison in [35]

and as it is a modern, widely used, modular VSLAM frame-
work supporting monocular, stereo, and RGBD data as input.
The applied changes are depicted in Fig. 1. As openVSLAM
supports binary ORB features only, the matching had to
be modified to support the floating-point-based descriptors
of the machine-learning-based approaches (L1 distance as
measure). Similarly, the FBoW vocabulary was retrained
with SuperPoint and HF-Net features using every 20th

frame from the OpenLoris and TUM RGBD dataset [36].
The insertion criterion for new keyframes is finetuned for
ORB characteristics in the original openVSLAM. Using
SuperPoint and HF-Net, fewer but more salient keypoints
are extracted. Therefore we added an additional insertion
criterion to insert a new keyframe and adapted the thresh-
olds accordingly. openVSLAM distinguishes “reliable” and
“tracked” landmarks, the first being observed by at least 3
keyframes. With this information, we add new keyframes if
the number of tracked becomes 20% more than the number
of reliable landmarks. This empirical motivated additional
insertion criterion reduces the tracking losses significantly
(especially in areas with low textures and fast movements).

IV. EVALUATION

In this section, we present the results of our experiments
with different feature extraction models and compare them to
the baseline implementation of openVSLAM using ORB. In
a fist step, we compare our system to the existing machine-
learning enabled VSLAM implementation DXSLAM. As
there is only an evaluation of DXSLAM for the OpenLoris
dataset available, we perform the first experiments comparing
DXSLAM and our extended version of openVSLAM on this
RGBD dataset in TABLE I. To gain more insights into the
possible improvements introduced by the machine-learning-
based features on longer and more complex sequences, we
continue the evaluation on the EuRoC stereo dataset in
TABLE II. The evaluations were performed on a workstation
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(a) Office 1 (b) Office 3 (c) Office 5

Fig. 2: Sample images from the OpenLoris office dataset.

(Intel® Xeon® E5-1620v3, GeForce® GTX 1080Ti) running
Ubuntu 20.04. Therefore, the time measurements are not to
be taken as absolute values but can represent a trend or a
comparison between the methods.

A. Evaluation Metrics

For a quantitative evaluation of our results, we compare
the estimated trajectory with a ground truth trajectory using
the absolute pose error APE and relative pose error RPE
metric as proposed by Sturm et al. [36].

The estimated trajectory PPP= {PPP1, . . . ,PPPn} , PPPi ∈ SE(3) and
the ground truth trajectory QQQ= {QQQ1, . . . ,QQQn} , QQQi ∈ SE(3) are
aligned to each other by finding a transformation SSS ∈ SE(3)
between both trajectories using the Umeyama method [37].
For each correspondence between ground truth and estima-
tion the error FFF is defined as

FFF i = QQQ−1
i SSSPPPi. (1)

For the APERMSE metric value on the full trajectory,
we compute the root mean squared error (RMSE) of the
translational component of all error values

APERMSE =

√
1
n

n

∑
i=1

∥trans(FFF i)∥2. (2)

The relative pose error (RPE) estimates the local perfor-
mance, i.e., drift of the algorithm. The relative motion be-
tween frame pairs from the estimated trajectory is compared
with the relative motion from the ground truth trajectory as

EEE∆
k = (QQQ−1

i QQQi+∆)
−1(PPP−1

i PPPi+∆). (3)

For our experiments we choose the smallest ∆ ∈N s.t. the
traveled path, i.e., the sum of euclidean distances d, between
two ground-truth poses ∑

∆
j=1 d

(
QQQi,QQQi+ j

)
≥ 1m. For the RPE

metric value on the full trajectory, we compute the RMSE
of the K =

∣∣EEE∆
∣∣ translational components of all error values

RPERMSE =

√
1
K

K

∑
k=1

∥∥trans(EEE∆
k )
∥∥2
. (4)

Considering the translational parts is sufficient to evaluate
the overall performance as errors in rotation lead directly to
deviations in translation.

B. OpenLoris RGBD Office Dataset

As we have integrated deep features into openVSLAM
similar to DXSLAM, we first compare our implementation
to the results of DXSLAM. DXSLAM provides published
evaluation results for the OpenLoris dataset only. Therefore,
the evaluation on the OpenLoris dataset was performed to

(a) Machine Hall (b) Vicon Room 1 (c) Vicon Room 2

Fig. 3: Sample images from the EuRoC dataset.

TABLE I: Impact of different keyframe insertion strate-
gies on the APE for the OpenLoris dataset: DXSLAM (i),
openVSLAM (ii), our optimized and OpenLoris overfitted
version (iii), and our generalized implementation described
in section III (iv).

APERMSE /mm
Sequence DX (i) ORB (ii) HF (iii) SP (iii) HF (iv) SP (iv)

office1 79.3 76.8 62.5 57.7 85.0 81.3
office2 59.9 64.7 64.2 61.5 66.6 65.6
office3 4.3 7.0 5.7 5.1 4.7 5.4
office4 55.8 60.5 73.0 57.3 65.5 60.6
office5 162.0 135.5 154.1 104.4 159.8 108.8
office6 71.3 76.8 61.3 58.1 84.2 84.6
office7 87.8 85.8 91.6 93.2 89.2 87.5

allow a direct comparison with the existing system. Examples
from this dataset can be seen in Fig. 2.

TABLE I shows the results on the OpenLoris office dataset
for the APE only as the sequences are too short (about 1m) to
get further meaningful insights using RPE. Our experiments
showed that the condition for inserting new keyframes is
crucial for the overall performance and avoiding tracking
loss. The conditions to insert a new keyframe are optimized
for ORB in openVSLAM. HF-Net and SuperPoint have a sig-
nificant other behavior in the extraction pattern - specially in
hardly textured areas, very few keypoints are extracted. This
leads to tracking loss as the existing conditions do not cover
these cases. In a first step, we ported the conditions used in
DXSLAM for keyframe insertion for our openVSLAM setup
with machine-learning-based features. With this setup, we
achieve similar performance to DXSLAM on the OpenLoris
dataset but suboptimal performance on the EuRoC data.
This leads us to conclude, that the insertion strategy used
by DXSLAM is highly (over-)fitted to the OpenLoris data.
We have implemented our own condition set that works for
both OpenLoris and EuRoC. We show the results of the
different keyframe insertion strategies in TABLE I. Due to
the more general version, we perform worse for OpenLoris
than DXSLAM, but we can see from the results that the APE
metric is strongly affected by overfitting. Selected trajectories
and their APE distributions (plots are generated using the
evo framework [38]) are shown in Fig. 4. No significant
difference stands out in the distributions, but some advantage
of the machine-learning based approaches and especially
SuperPoint is noticeable.

C. EuRoC Stereo Dataset

We choose the well-known EuRoC VSLAM dataset for a
more sound assessment and further evaluation. The EuRoC

71



D
ra

ft
(a) Trajectory office3 (b) APE office3

(c) Trajectory office4 (d) APE office4

(e) Trajectory office3 (f) APE office5

Fig. 4: Selected OpenLoris evaluation results. Trajectory and
APE for DXSLAM (DX), openVSLAM with ORB (ORB),
openVSLAM with HF-Net (HF), and openVSLAM with
SuperPoint (SP). HF and SP with generalized keyframe
insertion strategy, i.e., referencing to (iv) in TABLE I.

dataset contains 11 sequences of a UAV operating in a
machine hall (mh) and two laboratories (vicon room) (v1,v2)
with different degrees of difficulty, tagged as easy (e),
medium (m) to hard (h), as annotated in TABLE II. Samples
of the dataset can be seen in Fig. 3. Medium and hard
sequences contain rapid motion, fast rotations, motion blur,
and severe brightness changes.

Overall, there is no statistically significant difference in
APE and RPE over all EuRoC sequences identifiable. Espe-
cially for the RPE, the distribution of the error is quite sim-
ilar, see Fig. 5 for the mh 03, mh 04 and v2 01 sequences.
This might be explained by the fact, that even EuRoC
scenes are not long enough to introduce sufficient changes in
the appearance of the environment (e.g., seasonal changes,
lighting) to play off the descriptive strengths of HF-Net and
SuperPoint over ORB. This coequal local and global tracking

(a) Trajectory mh 03 (b) RPE mh 03

(c) Trajectory mh 04 (d) RPE mh 04

(e) Trajectory v2 01 (f) RPE v2 01

Fig. 5: Selected EuRoC evaluation results for machine hall
sequence 3 (medium), 4 (hard), and vicon room 2, sequence
1 (easy). Trajectory and RPE distribution as violin plot for
ORB, HF-Net, and SuperPoint based VSLAM.

performance comes with a significant reduction in map size,
as can be seen in the number of landmarks used in TABLE II.
This leads directly to a lower tracking and mapping time
needed for the machine-learning-based solutions. The t tracking
column shows the time to track landmarks without extraction
time. The tracking using HF-Net and SuperPoint is faster or
equal to ORB, although the matching of the binary descriptor
is faster than the float 256 descriptors of the machine-
learning-based features.

V. SUMMARY AND OUTLOOK

In this paper, we evaluated the possible improvements
using machine-learning-based local features like SuperPoint
and HF-Net for visual SLAM applications. We showed
similar performance in APE and RPE but significantly
smaller maps with fewer landmarks. Using SuperPoint or
HF-Net as local features, the created VSLAM maps may be
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TABLE II: Results on the EuRoC sequences. Best and second best results are marked bold and underlined respectively.
Tracking- and mapping-times are given as the mean and variance over all frames of the sequence. No valid results for v2 03
(h) are given as the tracking is lost for all setups.

APERMSE RPERMSE #Keyframes #Landmarks t tracking ±σ tmapping ±σ

/mm /mm/m /1 /103 /ms /ms

Sequence ORB HF SP ORB HF SP ORB HF SP ORB HF SP ORB HF SP ORB HF SP

mh 01 (e) 27.3 35.3 32.7 20.8 20.7 21.0 275 276 265 12.50 10.92 10.19 75±27 86±28 78±25 720±611 539±322 505±310
mh 02 (e) 26.8 23.5 21.6 18.3 14.7 14.8 240 255 240 10.29 10.14 9.19 67±25 85±28 79±27 616±462 444±289 409±289
mh 03 (m) 37.1 32.7 28.5 33.6 32.2 32.2 236 276 267 10.06 10.48 9.09 74±26 91±30 83±29 627±399 504±294 506±322
mh 04 (h) 109.6 200.8 184.4 39.8 35.0 35.3 276 264 251 13.19 10.90 9.20 74±27 84±30 37±17 439±241 334±146 202±119
mh 05 (h) 56.5 59.3 51.0 28.9 28.1 28.3 303 282 247 13.61 11.04 9.20 72±26 86±31 77±30 476±259 400±209 339±193
v1 01 (e) 36.1 39.7 42.6 91.9 89.7 91.1 204 281 238 12.25 12.04 9.87 92±29 92±30 78±36 944±601 572±433 505±401
v1 02 (m) 18.6 42.8 22.9 43.8 44.5 46.4 182 352 320 10.47 14.33 10.24 73±31 70±33 58±36 532±333 256±167 240±198
v1 03 (h) 36.7 163.1 58.3 58.9 61.2 61.2 246 510 345 12.22 17.92 7.86 66±31 68±35 29±21 329±212 199±116 99±68
v2 01 (e) 36.6 22.1 17.2 26.4 25.5 25.7 257 302 284 14.66 10.22 8.68 85±32 79±31 66±30 531±246 320±159 274±148
v2 02 (m) 26.3 84.5 92.0 37.4 37.9 36.1 261 522 500 12.54 14.80 12.79 82±29 70±29 60±30 513±357 228±131 202±145
v2 03 (h) − − − − − − − − − − − − − − − − − −

used directly for VPR tasks. In a next step, the matching
and validation process could be improved using machine
learning. SuperGlue [39], a neural network that matches
two sets of local features by jointly finding correspondences
and rejecting non-matching points could be one option for
SuperPoint. Further computational resources are transferred
to the GPU, allowing for more complex CPU tasks.
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3D-ToF vision-based detection and dynamic work space visualization
for an ABB GoFa robot

Daniel Schillhammer1, Clemens Ambros2, Ali Aburaia2 and Mohamed Aburaia2

Abstract— This paper presents a safeguarding and visual-
ization approach for human protection to further enhance
flexible and efficient industrial processes. By combining a
customary projector with a depth camera, the robot’s work
space can be visualized and any intrusion can be detected
reliably. Kinematic parameters of a robotic manipulator are
extracted and combined into 3-dimensional danger and warning
zones. A 2D-projection of these zones is visualized dynamically
on work surface level. The measures have been integrated
within a collaborative industrial assembly process featuring a
lightweight robot to enhance visibility and hazard perception.
An intrusion detection was realized using safety-certified equip-
ment, which leads to a high potential for safety certification of
the application.

I. INTRODUCTION

Starting from 2015, an annual average growth rate in
industrial robot installations resulted in an operational stock
over 3 million units in 2020 [1]. Robots are able to reduce the
workload of employees and enable complex automation steps
with increased productivity. As new technologies emerge,
traditional robot-based automation processes and correspond-
ing safeguarding increasingly do not meet emerging market
requirements. As a subcategory to Human-Robot-Interaction
(HRI), Human-Robot-Collaboration (HRC) combines human
advantages with the efficiency and precision of a machine.
Suitable lightweight robots such as models from ABB [2],
Universal Robots [3] and KUKA [4] are already widely
available. These robots are able to be used in the ”high-
est” collaboration mode: power and force limiting (PFL)
[5]. While the maximum force and torque values depend
on the specific application, most collaborative processes
are somewhat limited in their productivity due to lower
payloads and speed. Furthermore, most applications require
additional external protective devices to further reduce the
residual risk, even if lightweight robots are used. This often
leads to another collaboration mode - speed and separation
monitoring (SSM) - which generally allows the robot to
move with higher speeds and payloads and therefore to be
more efficient. In the context of future flexible production
paradigms, new electro-sensitive protective equipment is
being developed and increasingly used to secure robotic
systems and to tackle productivity issues.

Currently, used protection methods in collaborative
robotics do not provide visualization of the robot’s work

1tofmotion GmbH, Am Europlatz 2, Building G, 1120 Vienna, Austria
daniel.schillhammer@tofmotion.com
2Faculty of Industrial Engineering, University of Applied Sciences Tech-
nikum Wien, Höchstädtplatz 6, Vienna, Austria
<firstname>.<lastname>@technikum-wien.at

space. Therefore, awareness of potential hazards caused by
the manipulator is limited for human workers. This can
lead to unfavorable or even hazardous scenarios, resulting in
unwanted collisions. Primary safety measures alone are not
sufficient to further enhance overarching production flexi-
bility within industrial production facilities and human-robot
workplaces. This paper presents a novel and safety-certifiable
approach to safeguard an industrial collaborative assembly
process by developing a concept for intrusion detection using
a 3D depth camera and a supportive visualization of the
robot’s work space.

II. RELATED WORK

Industrial robot applications must provide certain safety
functions with a corresponding Performance Level [6]. The
required Performance Level is regulated by the standard
EN ISO 13849-1:2015 and provides information about the
reliability of the safety system used [7]. According to EN
ISO 12100:2010, protective devices can be divided into
separating and non-separating [8]. One advantage of non-
separating protective devices is that they can be parameter-
ized and individually reconfigured. To guarantee a safe work
environment for humans without separating devices (e.g.
fences), all objects must be detected within the safeguarding
space. The concept is non-separating approach.

Because of the visualization aspect of this paper, optical
systems are discussed in more detail. Vogel et al. already
described an approach for a safe human-robot-collaboration
based on a projector camera system [9]. In this paper, an
image is projected on the floor by a projector and an acquired
pattern is evaluated by two cameras. In the further develop-
ment of this approach, a robot is integrated [10] [11]. In this
case, the robot provides information about the joint positions
and the trajectory. Based on these mechanisms, a dynamic
visualization of the robot’s working area can be realized and
an intrusion in the safeguarding zone can be detected by
using image comparison methods. Hietanen et al. presented
a similar approach where the system consists of a projector, a
consumer depth camera (Kinect V2) and a Universal Robot
UR10 [12]. The projector is used for visualization of the
dynamically calculated zones. The Kinect camera provides
a point cloud which allows the position of the human in
relation to the robot to be determined. If the human is
detected in a danger zone, the system triggers a stop of the
robot via a ROS interface. The algorithm for calculating the
zones is based on the joint positions of the robot. Within our
approach and in order to implement safe monitoring of dy-
namic working zones of robots, which can be useful in real-
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world industrial production scenarios, safety-certified sensor
systems are required. There are only two safety-certified
systems currently commercially available, ”spotguard” [13]
and FreeMove system [14]. Both systems are based on the
Time-of-Flight principle. The concept presented here is a
non-separative approach.

III. MATERIALS AND METHODS

The project is implemented within the scope of a human-
robot-collaboration station at the UAS Technikum Wien. The
robot GoFa (internally CRB-15000) from ABB is used as a
manipulator capable of collaborative tasks. The parameters
of the danger and warning zones are extracted and displayed
dynamically. The project is divided into two parts in order
to establish a clear separation between visualization and
intrusion into any zone. The synchronization of both parts is
realized by a PC running Ubuntu 20.04 and ROS Noetic.

A. ABB Externally Guided Motion (EGM)

The ABB robot uses a controller called Omnicore. For
the calculation of the danger and warning zones, information
about the position of the robot in the work space is required.
This information must be obtained from the robot controller
itself. Since there is no standard interface for transmitting the
joint data, an extended interface from ABB is used. With the
help of the EGM module, the joint data can be transmitted to
a PC via Ethernet every 4ms. This module is programmed in
the ABB controller and on the PC side. The data is published
cyclically on the PC by the ”Joint State Publisher” of ROS.

B. Projector

Due to environmental conditions and for better luminosity,
a laser-based projector (Optoma ZH406ST Full-HD) is used.
In this case, a high lumen value of 4,200 ANSI lumens is
necessary to ensure good visibility. Because of the low pro-
jection distance, the short distance method of the projector
is used. In order to visualize the entire working area of the
robot including the protective zones, the image size must be
taken into account for the mounting height. With the selected
projector, an image width of 3.4m is achieved and an image
height of 1.9m with a projection distance of 1.7m is set.

C. Safety camera

To detect any intrusion into a danger or warning zone,
the 3D-Time-of-Flight camera ”spotguard” from tofmotion
including the corresponding SDK is used in this setup. The
sensor has a detection capability of 50mm at a maximum
distance of 4.5m. The camera is suitable for safety functions
up to PL d Kat. 2 (EN ISO 13849-1:2015) and SIL2
HFT1 (EN 62061:2016) and thus would be able to satisfy
safety requirements for this specific application. In order
to repeatedly upload new parameters for the danger and
warning zones, the tofmotion SDK is adapted and therefore
no longer compliant with safety standards. The system is
configured by using the ROS Framework on an Ubuntu OS.

D. Communication

A standard PC running Ubuntu 20.04 LTS is used for
communication between robot controller, projector and cam-
era. To communicate with the controller and to access joint
data of the robot during motion a UDP connection via
Ethernet is established and the library abb libegm is installed.
Additionally, a ROS C++ wrapper is written to publish
robot joint data to the framework. The representation of the
convex hull curve of the zones is displayed through a HDMI
connection to the projector. The connection between PC and
camera uses UDP for image transfer and TCP for writing
or reading camera specific data. By using the supplied tfm
library, a 3D point cloud of the current real scene is displayed
in RViz. In figure 1 is shown an overview of the system.

Fig. 1. Schematic overview of entire system

E. Coordinate transformation

The system consists of the projector, robot (with all axes)
and the camera which refer to a coordinate system in the
base of the robot and each component is calibrated to it.
The projector provides a 2D image with the corresponding
shapes. This 2D image can be transferred to the world
coordinate system through a transformation matrix. The
information from the CAD model of the workplace is used
to determine the transformation matrix.

Each component of the system is calibrated to the ref-
erence coordinate system in the base of the robot. The 2D
image of the projector is transferred to the world coordinate
system through a transformation matrix. A CAD model of the
HRC station is used to determine the transformation matrix.
The reference plane is located at the base link of the robot.

The translation vector and the rotation matrix are de-
termined by a camera calibration. Classic methods using
checkerboard patterns are only possible to a limited extent,
because of the low image resolution. The camera is using
low power ToF technology and thus has lower measurement
accuracy. Therefore, a calibration method using reflective
points with high distance accuracy has been chosen. In
this approach, three retro-reflective spherical markers are
mounted on the end effector of the robot and recorded. By
detecting the three retro-reflective markers within the point
cloud and measuring the Cartesian positions P1, P2 and P3
in the camera coordinate system, a transformation matrix
between marker and camera coordinate system for a selected
pose of the robot is obtained.
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T M
C =

(
R t⃗
0 1

)
=

(
x⃗M y⃗M z⃗M ⃗tC,M
0 0 0 1

)
(1)

By positioning and defining the calibration markers and
the marker coordinate system KM , the columns of the trans-
formation matrix can be calculated [15]. All vectors shown
are normalised.

x⃗M =
p⃗3 − p⃗1

|p⃗3 − p⃗1|
(2)

y⃗M =
p⃗2 − p⃗1

|p⃗2 − p⃗1|
(3)

The vector of the z-axis is calculated by the cross product
of the vectors x⃗M and y⃗M . The z-axis is defined as positive
upwards.

z⃗M = x⃗M × y⃗M (4)

The translation vector is based on the vector p⃗1 and
determines the transformation matrix from the camera to the
marker.

t⃗C,M = p⃗1 (5)

The next step is to look for the transformation from the
marker to the world coordinate system. This can be solved
by a known transformation matrix of the marker to the
TCP and the forward kinematics of the robot. To solve the
transformation matrix between robot and marker, the current
joint states values are read from the robot controller and
solved by using of the forward kinematics. This results in
the desired transformation from the world coordinate system
to the marker.

Θ⃗ = (Θ1,Θ2,Θ3,Θ4,Θ5,Θ6)
T (6)

T M
W = T 6

W (Θ⃗) ·T M
6 (7)

The required transformation for a given robot pose from
the camera to the world coordinate system can be determined
by the following equation.

TC
W = TC

M ·T M
W = TC

M ·TW−1
M (8)

F. Convex hull visualization

The approach to create the convex hull differs for the pro-
jector and the camera, as the projector provides a 2D image
and the ToF camera provides a depth image and/or point
cloud. Information of the robot’s axis positions is needed to
configure and visualize the safety zones. This information
is transmitted cyclically every 4ms by the robot controller
via the EGM server. The data is made available to the
ROS framework by using a ROS C++ wrapper as a rostopic
joint states with the help of the joint state publisher. The
information of the current joint position of each joint (1-
6) is needed to calculate the convex hull. Two convex hulls
are calculated and displayed, a danger zone and a warning

Fig. 2. Schematic representation of the relation of the coordinate systems

zone. A zone represents a convex hull of the current robot
pose. The algorithm for creating the convex hulls includes
the following steps:

1 Get the current joint position from joint 1-6
2 Calculate a circle in each joint with a given radius using

point sampling (eq. 9)
3 Transform all circles to a reference plane (base link)
4 Run convex hull algorithm of Graham et al. (1983) [16]

which calculates the danger zone as well as the warning
zone from circles

points in circum = cos(
2π

4
) · r+ sin(

2π

4
) · r (9)

The calculated hull curves are coloured according to their
zone type (danger zone: red, warning zone: yellow) and
projected into the world coordinate system (base link). The
image of the convex hull of the current robot position is
cyclically updated and transmitted to the projector. This
projects both zones on the plane of the HRC work space.
A black background image is used for better contrast and
visibility.

G. Safety zones

Within the given setup, the movement of the manipulator
(hazardous machine function) can be defined by three spheres
with their centers in the joints one, three and five of the
robot. The SDK can be used to define these spheres as
danger and warning zones with differing radii, and has been
modified to upload the zones continuously. The detection
of any violation of the zones triggers an OSSD signal to
stop the robot in category 1 (danger zone) or 2 (warning
zone) according to EN 60204-1:2019. The manipulator can
therefore be safeguarded based on the three spheres. As
the robot is located within the zones and thus would lead
to a triggering of the safety function, additional spherical
blanking zones according to EN IEC 62046:2018 are defined.

Figure 3 shows an exemplary robot pose with all zones
simulated in RViz which are uploaded to the camera.
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Fig. 3. Blanking, danger and warning zones in joints one, three and five of
the ABB GoFa robot. The combination of all zones results in a protective
shell around the robot.

IV. CONCLUSION

A dynamic projection of the hull curve of a work space
of the robot ABB GoFa has been realized. The calculation
of the envelope curve is based on the current angle values
of the robot control via the EGM interface of the robot
controller. The projection visualizes the envelope curve on a
2D plane in the reference coordinate system of the robot’s
base. The projection of the hull curve is not used for any
safety function, but only to support the visual perception of
hazards for humans.

The violation of a warning or danger zone by an object is
realized using a safety-certified 3D ToF camera. An extrinsic
camera calibration using retro-reflexive markers has been
conducted. The camera software was modified accordingly
in order to continuously upload zone configurations. In this
implementation, humans can efficiently share the work space
with robots. This means that if the robot is in a safe pose
or moving along a path that does not interfere with the
human’s task, the worker can proceed with the assembly
application. If the protective separation distance (PSD) is
violated, a safe signal is triggered by the camera leading to
a safe stop of the manipulator (Figure 4). The safety-certified
algorithm for detecting a violation has not been changed, thus
no revalidation of the detection probability is necessary. The
safe integration of the OSSDs of the spotguard was not part
of this work, as a safety PLC and a Profisafe interface are
required here. At the time of this work, no safety interface
was available for the robot.

A. Outlook

By using the projector to visualize additional elements
such as virtual buttons within the work space, new process
input methods can be realized. To detect an activation of
virtual buttons, an addition zone can be defined within the
camera software and linked with a specific robot reaction
through the controller. Additionally, live process data can
be projected onto the work surface to further augment the
assembly process.

To establish a safe communication between the signals
of the camera and the robot, a safety PLC has to be

Fig. 4. Human arm falls below PSD and violates danger zone which leads
to a safe stop of the robot

implemented. A Profisafe communication could be used to
read safe camera signals and transmit them to the Omnicore
controller. To realize a safety certification, a safety standard-
compliant reading of the robot joint data is necessary. In this
work, a non-secure protocol was used as the manufacturer
does not offer a secure protocol for providing the joint data.
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Continuous Target-free Extrinsic Calibration of a Multi-Sensor System
from a Sequence of Static Viewpoints

Philipp Glira1, Christoph Weidinger1, Johann Weichselbaum1

Abstract— Mobile robotic applications need precise informa-
tion about the geometric position of the individual sensors
on the platform. This information is given by the extrinsic
calibration parameters which define how the sensor is rotated
and translated with respect to a fixed reference coordinate
system. Erroneous calibration parameters have a negative
impact on typical robotic estimation tasks, e.g. SLAM. In this
work we propose a new method for a continuous estimation
of the calibration parameters during operation of the robot.
The parameter estimation is based on the matching of point
clouds which are acquired by the sensors from multiple static
viewpoints. Consequently, our method does not need any special
calibration targets and is applicable to any sensor whose mea-
surements can be converted to point clouds. We demonstrate the
suitability of our method by calibrating a multi-sensor system
composed by 2 lidar sensors, 3 cameras, and an imaging radar
sensor.

I. INTRODUCTION

Robots are typically equipped with several sensors to con-
tinuously observe their surroundings. For this purpose, vari-
ous sensor modalities are used due to the specific strengths
and weaknesses of each modality. The most commonly used
sensors for environment perception are cameras, lidar sen-
sors, radar sensors, ultrasound sensors, and infrared sensor.
The data of these sensors is combined by means of sensor
fusion to get a more complete, accurate, and reliable descrip-
tion of the environment. However, in order to properly fuse
the different sensor data streams, they need to be correctly
aligned. A misalignment exists if systematic discrepancies
between the data of different sensors are observed. One
way to minimize such discrepancies is a proper extrinsic
calibration1 of the sensors (Fig. 1).

before calibration after calibration

Fig. 1. Effect of an extrinsic sensor calibration on the relative orientation
of two lidar point clouds.
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Systems, 1210 Vienna, Austria philipp.glira@ait.ac.at,
christoph.weidinger@ait.ac.at,
johann.weichselbaum@ait.ac.at

1sometimes also denoted as mounting calibration

The extrinsic calibration defines the rotational and trans-
lational offset w.r.t. to a fixed reference coordinate system. It
has 6 degrees of freedom (DoF) and is typically defined by
3 Euler angles2 (αx, αy, αz) and 3 translation components
(tx, ty, tz) [15].

We propose in this work a new online target-free calibra-
tion method. The main advantages in comparison to previous
works are that:

• the calibration is widely sensor agnostic, as it is applica-
ble to any sensor whose measurements can be converted
to point clouds

• the calibration parameter estimates are continuously
improved during the operation of the robot until a user-
defined threshold is reached

• multiple sensors can be calibrated at the same time.
The rest of the paper is organized as follows. Related

work is reviewed in the subsequent section II. The calibration
design, procedure, and estimation are described in sections
III-A to III-C. The mathematical description of the opti-
mization task is given in section III-D. A few details about
the implementation are reported in section III-E. Finally,
experimental calibration results from an 8 minute drive are
summarized in section IV.

II. RELATED WORK

A variety of extrinsic calibration methods have been
published over the last few decades – an overview was
recently published by [13]. Major differences exist w.r.t. the
following properties:

• target-based vs. target-free: Most calibration methods
use special calibration targets (or environments). In most
cases, textured objects with a relatively simple geometry
are used, e.g. checkerboard patterns, spheres, or cubes.
The design of these calibration targets is optimized
w.r.t. the perception properties of the sensors. A pla-
nar target for the simultaneous calibration of cameras,
lidar sensors, and radar sensors was developed by [2].
In contrast, target-free methods use the unstructured
environment of the robot to estimate the calibration
parameters. The suitability of these environments for
parameter estimation must be ensured. A method for
the calibration of radar sensors w.r.t. lidar sensors was
published by [9].

• online vs. offline: Calibration can be performed during
(online) or before/after (offline) the operation of a robot.
In mobile robotics, target-based methods are mostly

2or by an equivalent quaternion
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performed offline in the course of a dedicated calibration
procedure. Depending on the temporal stability of the
calibration, the estimated parameters can differ from the
ones during operation of the robot. Online methods,
however, estimate (and possibly continuously refine) the
calibration parameters. This is especially useful in case
of a continuous miscalibration of the sensors, e.g. due
to thermal influences or mechanical stress. An online
calibration method can also be convenient if the relative
position of the sensors is often changed, e.g. due to a
frequent re-arrangement of the sensors (as it is the case
at the AIT). An online calibration based on the matching
of planes and edges which continuously also tracks the
parameter uncertainties was published by [11].

In general, the choice of the optimal calibration method
strongly depends on the specifics of a multi-sensor system.
Thus, it is emphasized, that no definitive statement about the
best properties of a calibration can be made.

III. METHOD

A. Calibration design

The method proposed herein aims to estimate the extrinsic
calibration of an extereoceptive sensor. The main properties
of the proposed calibration are:

• The calibration is applicable to any kind of sensor which
provides 2D or 3D point clouds of the environment,
either directly or indirectly. Lidar sensors, for instance,
directly provide point clouds as opposed to stereo cam-
eras or imaging radars which only indirectly provide
point clouds through stereo matching and radar target
extraction, respectively.

• The extrinsic calibration of a sensor is estimated w.r.t.
the coordinate system of another sensor (reference sen-
sor). The point clouds observed by these two sensors
must overlap in object space.

• The calibration is continuously running during operation
of the robot (on-site calibration3), i.e. no dedicated cali-
bration procedure or post-processing of data is required.
Consequently, we also do not use any special calibration
patterns or objects. Instead, the immediate surroundings
of the robot, observed as point clouds, are used for
calibration.

• The extrinsic calibration is estimated from point clouds
which are acquired while the robot is static, i.e. not
moving. This has two main advantages:

1) The path of the robot is not part of the optimization
problem. Thus, a possibly erroneous path has
no negative influence on the calibration process.
Otherwise, the estimated calibration parameters
might compensate for these errors due to the well-
known correlation of the calibration parameters to
the robot’s path [6].

2) Time stamps also do not have to be considered
in the optimization problem. Thus, erroneous time

3sometimes also denoted as on-the-job calibration or self calibration

stamps, e.g. due to a slightly incorrect time syn-
chronization of the sensors, have no negative in-
fluence on the calibration.

• Depending on the observed scene, a single static po-
sition might not be sufficient to estimate the extrinsic
calibration with acceptable precision. Thus, the cali-
bration is refined iteratively when the robot reaches
a new static position. Thereby, the previous parameter
estimates, together with its precision estimates, are used
as a priori observations (see next point). The whole
calibration process stops once the precision of the cal-
ibration parameters are below a user-defined threshold,
or in other words, once the calibration is sufficiently
accurate.

• If a priori observations (measurements) of the 6 calibra-
tion parameters (or a subset thereof) exist, they are con-
sidered in the estimation process. Such observations can
stem e.g. from 3D models of the multi-sensor system,
from manual measurements (e.g. by using a measur-
ing tape), or from a previously performed calibration.
These observations are weighted in the least squares
optimization according to their observation precision
(uncertainty).

• It is possible to omit the estimation of individual calibra-
tion parameters. This is useful if some of the parameters
are known in advance with very high precision and the
calibration procedure is not expected to improve these
estimates. In practice, this often applies to the transla-
tion vector which can be measured with a precision in
the sub-millimeter range by other means, e.g. by using
a total station. In contrast, it is typically rather difficult
to directly measure the rotational components of the ex-
trinsic calibration. In this context it should be noted, that
incorrect angles can lead to very large displacements in
object space, as the effect of angular errors is directly
proportional to the range of the observed objects.

As prerequisites for the our method we assume that:

• approximate values for the 6 calibration parameters are
known in advance. This prerequisite stems from the
ICP (iterative closest point) algorithm [1] which is used
to estimate the 6 DoF transformation between the two
overlapping sensor point clouds. In practice, the rotation
angles need to be known typically with a precision of a
few degrees and the translation vector with a precision
of a few centimeters.

• the sensors capture rather dense 3D point clouds of

static

moving
time

robot/platform
becomes static

trigger accumulation
of point clouds

start of new
calibration

delay delay

Fig. 2. Temporal sequence of the calibration.
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the environment. However, if a sensor provides a 2D
point cloud only, i.e. a single profile of the environment,
the calibration is still applicable, but depending on the
observed scene it might be difficult to estimate all 6
parameters of its extrinsic calibration. Consequently,
only a subset of the 6 parameters should be estimated
in such cases.

Finally it should be noted, that the calibration method is
not applicable to sensors which do not observe the object
space, e.g. navigation sensors like GNSS or IMUs, c.f. Fig. 5.

B. Calibration procedure

The temporal sequence of the calibration is depicted in
Fig. 2. We distinguish between a static and a moving state
of the robot, e.g. derived by the current angular and linear
velocity of the robot (twist). Each time the robot becomes
static, the accumulation of point clouds is triggered after a
certain time delay (e.g. 2 seconds). The delay should ensure
that the robot comes completely at rest before the data ac-
quisition starts. As soon as the accumulation of point clouds
is completed, a new calibration is started. This sequence
is repeated until the estimated calibration parameters are
sufficiently accurate.

C. Calibration estimation

The extrinsic calibration of a sensor is estimated indirectly
through point cloud matching4. More specifically, the point
cloud of the sensor to calibrate is matched with the overlap-
ping point cloud of another sensor, denoted as the reference
sensor throughout this paper. Consequently, the estimated
calibration parameters describe the transformation between
the two sensor coordinate systems.

The whole processing workflow of a single calibration
is depicted in Fig. 4. The two accumulated sensor point
clouds are used as data input, c.f. Fig. 2. First, the normal
vector and a corresponding planarity value are estimated for
each point. The planarity values range from 0 to 1, where
1 corresponds to a perfect plane [16]. Then, some basic
point cloud filtering is carried out. This typically includes a
minimum range filter, a maximum range filter, an intensity-
based filter, a voxel-based thin out, and a minimum planarity
filter. The latter is used to keep only planar areas (e.g. roofs,
streets, walls) of the point cloud, whereas the non-planar

4sometimes also denoted as point cloud registration

0.0

1.0

0.5

Fig. 3. Lidar point cloud colored by planarity. Points with low planarity
are filtered out before matching the point clouds.

areas (e.g. vegetation, edges, corners) are filtered out (Fig. 3).
Additional filters strongly depend on the specifics of a sensor.
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Fig. 4. Processing workflow of a single calibration (PC = point cloud, TF
= transformation).

We use an ICP-like algorithm for point cloud matching
with extended features. It optimizes the alignment of the two
sensor point clouds by iteratively minimizing the distances
(discrepancies) within the overlap area of these point clouds.
This is accomplished by transforming in each iteration the
point cloud of the sensor to calibrate, whereas the point
cloud of the reference sensor remains fixed. As pointed out in
section III-A, an approximate initial estimate of the relative
alignment of the point clouds is needed. The algorithm can
be broken down into five main steps [5], c.f. Fig. 4:

1) selection: A subset of points is selected in the point
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cloud of the reference sensor. These points are selected
within the overlap area of the two point clouds. We ap-
ply the uniform sampling selection strategy [5] which
leads to a homogeneous distribution of the selected
points in object space.

2) matching: The corresponding points of the selected
subset are searched in the point cloud of the sensor to
calibrate. As corresponding point the nearest neighbor
is used. The nearest neighbor search is efficiently
solved using a k-d tree.

3) rejection: False correspondences (outliers) are de-
tected and rejected by checking the compatibility of
corresponding points. Specifically, we reject correspon-
dences on the basis of their distance and on the basis
of the angle between their normals.

4) optimization: The transformation parameters are esti-
mated for the sensor point cloud by minimizing the
distances between corresponding points. A detailed
description of this step follows in the next section.

5) transformation: The sensor point cloud is transformed
using the estimated parameters.

Finally, a suitable convergence criterion is tested. If it is not
met, the process restarts from the matching step.

Once the ICP algorithm converged, the estimated precision
(uncertainty) of the transformation parameters is compared
with a user-defined threshold. Consequently, the transforma-
tion between the sensors is updated only if the observed
scene was well-suited for the parameter estimation.

D. Optimization

The 6 unknown parameters of the extrinsic calibration,
specifically the rotation angles αx, αy, αz and the translation
components tx, ty, tz, are estimated in a non-linear weighted
least squares adjustment with conditions only (a.k.a. Gauß-
Markov adjustment model); the solution formulas can be
found e.g. in [12] (chapter 6) or [3] (chapter 4.4). The
objective of the adjustment is to minimize the weighted sum
of squared residuals:

Ω = argmin
αx,αy,αz,tx,ty,tz

{
n

∑
i=1

pir2
i

}
(1)

where ri is the residual of the i-th observation, pi the corre-
sponding weight, and n the total number of observations.

We minimize two types of residuals:
1) Point-to-plane distances between corresponding

points. This observation type is the main element of
most contemporary ICP implementations.
The residual is defined for the k-th correspondence as

rk = ((Rpk + t)−qk)
T nk (2)

where pk and qk are the corresponding points of the
sensor to calibrate (movable) and the reference sensor
(fixed), respectively, R is the rotation matrix composed
by the Euler angles αx, αy, αz, t is the translation
vector with its components tx, ty, tz, and nk is the

normal vector of qk. We prefer the signed point-to-
plane error metric over alternative error metrics (e.g.
point-to-point) due to its high convergence speed [14],
its straight-forward mathematical formulation, and the
fact that corresponding points only need to belong to
the same plane5 [5].
The weight of these residuals is defined according to
the theory of least squares [12] (chapter 3.3) as

pk = 1/σ
2
d (3)

where we propose to estimate σd from all a priori
point-to-plane distances as follows:

σd = 1.4826 ·mad (4)

Thereby, mad denotes the median of absolute dif-
ferences (w.r.t. the median) [8] of the point-to-plane
distances. It is commonly used as a robust estimator
for the standard deviation of a set of random variables
which is generally assumed to be normally distributed,
but still contaminated by a small number of outliers.

2) Differences to initial values of transformation pa-
rameters. This observation type is crucial for our
method as it allows (from the second calibration site
onwards) to appropriately transfer the estimates from
a previoulsy performed calibration. Additionally, these
observations can be used (at the first calibration site)
to consider any other a priori estimates of the param-
eters, e.g. estimates from a 3D model or from manual
measurements (c.f. section III-A).
The residuals are defined for each transformation pa-
rameter as follows:

vαx = αx −αx

vαy = αy −αy

vαz = αz −αz (5)
vtx = tx − tx
vty = ty − ty
vtz = tz − tz

where αx, αy, αz, tx, ty, tz are the observed initial
values and αx, αy, αz, tx, ty, tz are the estimated
unknown parameters.
These residuals are weighted by considering their
uncertainty estimates, e.g. for αx:

pαx = 1/σ
2
αx (6)

where σαx is the precision of the observed value. If the
initial values stem from a previous calibration, their
squared precision (i.e. their variance) is given by the
diagonal of the a posteriori covariance matrix of the
unknown parameters, i.e. diag(Cx̂x̂).

5In contrast, when using the point-to-point error metric, corresponding
points need to be exactly identical. However, such correspondences are
typically very unlikely, as point clouds randomly sample the object space.
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E. Implementation

The calibration is implemented as package with a single
node for ROS2 (robot operating system). It is written mainly
in python. The Point Data Abstraction Library (PDAL6) is
used for pre-processing of the accumulated point clouds. The
ICP-like point cloud matching algorithm is mainly based
upon the following libraries: numpy, pandas, scipy, and
lmfit7. We named this algorithm “simpleICP” and published
it as open source on Github and PyPi under the MIT license
[4]. Development tests have been made mainly with the
simulation environment Webots8. When calibrating multiple
sensors at the same time, an independent node is used for
each sensor pair, e.g. sensor1-to-sensor2, sensor1-to-sensor3,
sensor1-to-sensor4, etc.. Currently, the full processing of
the pipeline as depicted in Fig. 4 takes approximately 3–5
seconds.

IV. EXPERIMENTAL RESULTS

The proposed calibration method was applied to estimate
the extrinsic calibration of the sensors depicted in Fig. 5.
The sensor rig was mounted on a car and is composed by an
Ouster OS1-64 (lidar1), a Blickfeld Cube 1 (lidar2), 3 ptgrey
cameras with 1/3” CMOS sensor and a resolution of 1.3 Mpx
(camera1/2/3), and the Indurad iSDR-p (imaging radar).

GNSS1 GNSS2IMU

imag. radar

lidar2

camera3 camera2 camera1

lidar1

Fig. 5. The proposed method was applied to estimate the extrinsic
calibration of 3 cameras, 2 lidars, and an imaging radar sensor. (The
calibration of the GNSS and IMU navigation sensors, however, is not within
the scope of this method.)

As pointed out in III-A, each sensor must provide a point
cloud in order to apply our calibration method. Both lidar
sensors directly provide point clouds. The stereo matching
point cloud is derived from the camera images using the
algorithm described in [10]. The imaging radar provides so-
called range-amplitude maps; a point cloud is generated by
extracting radar targets from these maps [7]. In Fig. 6 the
point clouds provided by these sensors are visualized for a
single calibration site.

The sensors have been calibrated during an 8 minute
drive near the AIT headquarter (Fig. 7). In this time period,
the car stopped 12 times. Accordingly, the calibration was
triggered at 12 different calibration sites. In order to distin-
guish between the static and moving state of the car, GNSS

6pdal.io
7numpy.org, pandas.pydata.org, scipy.org, lmfit.github.io
8cyberbotics.com

N(µ=0.000, σ=0.041)

N(µ=0.001, σ=0.027)

N(µ=0.003, σ=0.096)

#439

#2950

#457

lidar1-to-lidar2

lidar1 (reference sensor)

lidar1-to-cameras

lidar1-to-radar

camera1

Fig. 6. Data belonging to calibration site 7, c.f. Fig. 7. First row: point
cloud of the reference sensor lidar1 and a corresponding image of the site.
Rows 2–4: point clouds of the sensors to calibrate (left) and histograms
of the residual point-to-plane distances (right). (The point clouds of lidar2
and of the cameras are colored by height, whereas the radar point cloud is
colored by measured intensity.)

measurements have been processed in a relatively simple
Kalman filter. Fig. 7 shows the position of the calibration
sites, as well as the corresponding point clouds as collected
by the sensors lidar1 and lidar2.

It is recommended to use the sensor with the highest
measurement accuracy and a large field of view (FOV)
as reference sensor. Ideally, the point cloud of this sensor
shares a large overlap area with the point clouds of the
other sensors. Consequently, we have chosen the sensor
lidar1 as reference for our multi-sensor system. It has the
highest measurement accuracy and the largest FOV due to its
360◦ rotating antenna. The extrinsic calibration of the other
sensors was estimated in parallel by 3 independent calibra-
tion procedures: lidar1-to-lidar2, lidar1-to-cameras, lidar1-
to-radar. Fig. 6 shows the point clouds and the histograms of
the residual point-to-plane distances for a single calibration
site. As can be seen, the mean of the residuals is very close to
zero in all 3 cases. The standard deviation, however, differs
for each sensor combination as it mainly depends on the
measurement accuracy of the sensors and on the selection of
correspondences, specifically the minimum planarity value
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Fig. 7. The multi-sensor system depicted in Fig. 5 was calibrated during an 8 minute drive at 12 different calibration sites.

used for point cloud filtering.
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Fig. 8. Temporal development of some calibration quality indicators for
the sensor combination lidar1-to-lidar2.

Fig.8 shows, specifically for the sensor combination
lidar1-to-lidar2, the temporal development of some calibra-
tion quality indicators. The first graph shows the number
of correspondences used in the optimization. This number
mainly depends on the amount of planar areas in the scene,
c.f. Fig. 7. The second graph shows the distribution of

the residual point-to-plane distances. The standard deviation,
again, strongly depends on the characteristics of the observed
scene. On the contrary, the mean value shows a systematic
behavior: it is very close to zero in the first few iterations but
gets slightly larger in magnitude later. This can be explained
through the iterative refinement character of our calibration
method: relatively seen, the influence of the point-to-plane
residuals (residual type 1, c.f. section III-D) on the parameter
estimation is highest at the first calibration site. Subsequently,
however, the relative influence (i.e. their weights) of the
second type of residuals, the direct observation of transfor-
mation parameters from previous calibrations, continuously
grows. Finally, the third and fourth graphs show the estimated
precision of the transformation parameters as given by the a
posteriori covariance matrix of the unknown parameters Cx̂x̂.
Here, one can observe that their precision is improving over
time which can be regarded as one of the main benefits of
our method.

V. SUMMARY AND OUTLOOK

We proposed in this work a new method for the extrinsic
calibration which:

• does not use any special calibration targets (target-free)
• is widely sensor agnostic
• can be applied simultaneously to multiple sensors
• continuously improves the calibration parameter esti-

mates over time
Our future work will concentrate on:
• the automatic removal of dynamic objects (like cars,

persons, etc.) from the collected point clouds
• the calibration of sensors which provide 2D point clouds

only, i.e. a profile of the environment
• better understand the long-time behavior of the esti-

mated precision of the calibration parameters, e.g. for
an operation time of several hours

In addition, we plan to publish the code as open source
package for ROS2.
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Continual Learning Benchmarks for Antipodal Grasping

Sayantan Auddy1 Jakob Hollenstein1 Matteo Saveriano1,3 Antonio Rodrı́guez-Sánchez1 Justus Piater1,2

Abstract— A continual learning robot that can repeatedly
learn from new data without forgetting past knowledge is surely
preferable to a robot that cannot learn incrementally. As most
continual learning methods focus on image classification tasks,
it is not clear if or how they scale to more complicated vision
problems such as robotic grasp prediction. To fill this gap, we
propose a set of benchmarks that can be used to evaluate con-
tinual learning methods on the problem of antipodal grasping.
We adapt a state-of-the-art grasp prediction model for continual
learning and evaluate multiple baselines using our benchmarks.
Our preliminary findings indicate that replay-based methods
may be suitable for the grasp prediction task.

I. INTRODUCTION

Antipodal robot grasping is arguably a challenge that has
already been met, considering the performance of state-of-
the-art methods [8], [11], [14]. All such methods either rely
on large scale grasp datasets [3], or use domain randomiza-
tion [16] to diversify the training data [3], [10]. However, it
may not be possible to completely anticipate every possible
situation in advance. A better strategy is to augment the grasp
learning methods with continual learning (CL) [13] to make
them capable of learning from a sequence of multiple small,
disjoint, and non-IID datasets that are encountered over time.

Barring a few works which address continual learning for
robotics [2], [5], most of the current CL research [7], [9],
[15], [18] focuses on image classification problems using
relatively simple network architectures. It is not apparent
how well these methods scale to robotics applications, which
typically involve the use of more complex network compo-
nents and architectures. If properly applied to robot learning,
CL can help achieve open-ended robot learning, and this
would be especially useful for a ubiquitous robotics problem
such as vision-based grasp prediction. With this motivation,
we present preliminary work on a set of continual learning
benchmarks that can be used to evaluate the effectiveness of
continual learning methods on the problem of grasp learning.
We adapt a state-of-the-art grasp learning method [8] for
continual learning and evaluate multiple baselines on our
benchmarks. Our initial results indicate that replay-based CL
strategies outperform regularization-based CL.

II. CONTINUAL LEARNING FRAMEWORK

A. Benchmarks

The Cornell dataset [14] is a widely used dataset for grasp
learning [1]. It consists of 885 RGB images of 280 different
household objects, where each image is annotated with

1 Department of Computer Science, University of Innsbruck, Techniker-
strasse 21a, Innsbruck, Austria. {name.surname}@uibk.ac.at

2 Digital Science Center (DiSC), University of Innsbruck, Austria.
3 Department of Industrial Engineering, University of Trento, Italy.

multiple top-down grasp rectangles. We create the following
4 benchmarks by partitioning the images of this dataset
into multiple tasks (sub-datasets), where each benchmark is
learned independently by learning its tasks sequentially:
Shape: We manually partition the 885 images of the Cornell
dataset into 5 tasks, where each task contains images of
objects with one of these shapes: rectangular (e.g. boxes,
TV remotes), rim (objects with a graspable rim, e.g. bowls,
frisbees), long (elongated objects, e.g. stick), round (objects
with a circular symmetry, e.g. apple, potato), and handle
(objects with a handle, e.g. spatula, toothbrush).
Width 5: For each image we compute the average of the 5
largest grasp widths. Then, 5 tasks are defined by partitioning
the images according to their average grasp width such that
each task has roughly the same number of images.
Width 10: We follow the same process as Width 5, but here
we partition the 885 images into 10 tasks.
Object: We compute the number of images for each distinct
object and then choose 10 objects with the most number of
images. Each of these 10 objects corresponds to a task.

Shape has highly disbalanced tasks, whereas the Width
benchmarks have balanced tasks. Object has very few images
per task. For each task, we create training and validation sets
in the ratio 75:25 and use image augmentation (random rota-
tions, translations, crops) to learn from such small datasets.

B. Baselines

As our base architecture, we choose the fully convolutional
network proposed in [8]. This network has 1.8×106 parame-
ters and produces heatmaps for the grasp center, orientation
and width. Using this, we implement the following baselines:
Finetuning (FT): For each benchmark, a network is initial-
ized at the beginning and is then successively finetuned on
each task. This forms the lower performance baseline, as
here we would expect that only the last task is remembered.
Replay 20% (RE20): This setting is similar to FT, but for
each task 20% of the training data is randomly cached and
then combined with the training data of the next task. For
example, while training for task 2, we use all the data of
task 2 and 20% of the data each from tasks 1 and 0.
Replay 100% (RE100): This is the same as RE20, except
that here all the data from past tasks is cached and replayed.
Synaptic Intelligence (SI): This setup is similar to FT,
but the grasp prediction network’s parameters are protected
from catastrophic forgetting [13] using a regularization term
according to the formulation of Synaptic Intelligence [18].
Joint Training (JT): This forms the upper performance
baseline. For learning each task, we use a freshly initialized
network and the data for all tasks up to that point. Note that
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all the data of previous tasks is also used for RE100 but it
does not reinitialize the network for each task.

III. RESULTS

We train and evaluate the baselines on each benchmark
independently, where the tasks of a benchmark are learned
in sequence. Each training run is repeated with 3 independent
seeds. To compute the accuracy of the predicted grasp, we
compare the intersection over union (IoU) of the prediction
with the grasp annotations, and if any of these comparisons
have an IoU of more than 25%, the prediction is considered
to be accurate [8]. After training on each task, each baseline
is evaluated on the validation sets of the current and past
tasks. For example, after training on task 3, the network
is evaluated on tasks 0, 1 and 2. The average of these
validation accuracies is depicted in Fig. 1. The upper baseline
JT maintains an average accuracy close to 90% after all tasks
for all benchmarks. On the other hand, the performance of the
lower baseline FT drops as more tasks are learned, clearly
exhibiting catastrophic forgetting [13]. The regularization-
based CL method (SI [18]) is not able to avoid forgetting past
tasks and performs similar to FT. The replay-based baselines
perform better than FT and SI but worse than JT.

In Fig. 2, we show how the validation accuracy for each
of the 10 tasks of the Width 10 benchmark changes as newer
tasks are learned. The drop in accuracy for the oldest tasks
can be seen for all the baselines except JT. This drop is severe
for FT and SI, for which the accuracy for task 0 (which
corresponds to objects needing the smallest and most precise
grasps) drops to around 20% after all tasks are learned. It
can also be seen that for FT and SI, whenever a new task is
learned, its accuracy starts around 90%, but starts dropping
sharply as newer tasks are learned.

Using the validation accuracies we also compute continual
learning metrics [4] in Tab. I (for Width 10). In terms of
accuracy (ACC) over all tasks, and remembering (REM)
past tasks, JT is the best, followed by the two replay-based
baselines. Since joint training and replay involve the storage
of data from past tasks, they achieve low scores on the
storage size efficiency metric (SSS). Interestingly, FT has
the highest forward transfer (FWT) score, indicating that it
is the best at using past knowledge to learn newer tasks.

IV. SUMMARY AND OUTLOOK

The preliminary results presented in this short paper
indicate that (i) parameter regularization may not be as
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Fig. 1. Cumulative validation accuracies for current and past tasks. Each
data point shows the mean accuracy of all tasks till that point on the x−axis.

effective as replay-based CL for continual grasp learning,
and (ii) it is possible to learn grasps using small datasets.
To further expand these findings, we will evaluate more
continual learning methods [6], [7], [15], [17] in the future.
We also plan to perform similar evaluations for other robot
vision applications such as affordance detection [12]. Our
goal for this future work will be to identify areas where
current continual learning methods can be improved to make
them more suitable for robotics tasks.

TABLE I
CL METRICS FOR WIDTH 10 (1-BEST, 0-WORST).

Benchmark Baseline ACC REM FWT SSS

Width 10

FT 0.663 0.733 0.732 1.000
RE20 0.752 0.827 0.711 0.912
RE100 0.769 0.839 0.681 0.550
SI 0.655 0.717 0.698 1.000
JT 0.858 0.943 0.702 0.550
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Fig. 2. Per-task validation accuracies for Width 10, showing how the accuracy of each task changes as newer tasks are learned.
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Towards Self-Awareness in Multi-Robot Systems

Mohammad Rahmani1 and Bernhard Rinner2

I. INTRODUCTION

Self-awareness (SA) is a broad concept borrowed from
cognitive science and psychology that describes the property
of a system, which has knowledge of “itself,” based on its
own senses and internal models. This knowledge may take
different forms, is based on perceptions of both internal
and external phenomena, and is essential for being able to
anticipate and adapt to unknown situations [2]. Deploying
this concept on robots poses some fundamental challenges
and requires some key capabilities of autonomous robots:
(1) learn inference models from sensor inputs, (2) infer
its state and the environment’s state based on the models,
and (3) detect abnormalities between observed and inferred
behaviors. An abnormality detection may indicate a new
phenomena observed by the robot and trigger the creation of
a new model. Over time the robot acquires a set of models
representing different phenomena.

This work proposes a framework towards self-awareness
in multi-robot systems and presents preliminary results from
a simulation study. In particular, we adopt hierarchical dy-
namic Bayesian networks (DBN) for modelling the observed
internal (via proprioceptive sensors) and external (via extero-
ceptive sensors) phenomena [5]. Hierarchical DBNs allow to
perform inferences and contextualize proprioceptive and ex-
teroceptive sensory data at different abstraction levels. These
inferences serve then as input for abnormality detection. We
further extend modelling to multi-robot systems by coupling
hierarchical DBNs.

II. FRAMEWORK

Even though current studies [4], [3] suggest detecting
abnormality from an inference model trained by evenly
ordered exteroceptive and proprioceptive sensory data, we
suggest deriving independent inference models for each of
these types of sensors and pair only exteroceptive models
with a following proprioceptive model. As such, the robots
can (1) choose the most appropriate proprioceptive infer-
ence model according to the best predicting exteroceptive
model, (2) deduce preferred next states from proprioceptive
most probable states derived from its inference model to
be used for control decisions, and (3) ignore exteroceptive
observations for which no control decision should be made
internally.

1Mohammad Rahmani is with the Digital Age Research Center (DE-
CIDE doctoral school) at the University of Klagenfurt, Austria. moham-
mad.rahmani@aau.at

2Bernhard Rinner is with the Institute of Networked and Embedded
Systems at the University of Klagenfurt, Austria. bernhard.rinner@aau.at

Fig. 1. The proposed SA framework learns offline proprioceptive and
exteroceptive models which are used for online abnormality detection.

Figure 1 depicts our proposed SA framework for a multi-
robot system. Proprioceptive and exteroceptive sensor data
is preprocessed and either forwarded to offline learning
or online abnormality detection. In the offline phase, two
models based on coupled hierarchical DBNs are learned from
the observed behavior of the robots. In the online phase,
inferences from the learned models are compared with the
current observations. An abnormality indicates a deviation
between learned and observed behavior and may trigger the
learning of new models.

A. Coupled hierarchical DBNs

Causal-temporal behaviors can be modeled by DBNs,
which also support a hierarchical representation using vari-
ous well-known approaches. For example, Kalman filters can
be used for the continuous level, whereas particle filters can
be used for the discrete level. We thus adopt DBNs for our
modelling approach (cp. Figure 2). We cluster the observed
sensor data Z into a sequence of quasi-stationary segments
where the continuous state X represents the behavior within
a segment and each segment corresponds to an abstracted
state S. Coupled DBNs introduce an additional coupling layer
D between multiple DBNs and causal relationships among
the abstract state variables to model the interaction between
multiple robots.

B. State transition and Abnormality Detection

For collective behavior, we couple the contributing indi-
vidual behaviors based on their abstract states and refer to the
possible combinations as coupled state D. State transitions
indicate changes of quasi-stationary behaviors and are mod-
elled by a matrix of state transition probabilities computed
by the occurrence of successive coupled states according to
closest observations.

Abnormality detection is founded on measuring the dis-
tance between the most probable coupled state prediction and
the current observations of multiple robots. In particular, we
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Fig. 2. Hierarchical coupled DBN. Horizontal lines present temporal
relationship between random variables at two consequent time steps t
and t − 1. Vertical lines present the causal relationship between them. Z
represents the observation, X the continuous state, S the abstract level state,
and D the coupled state. π represents the transition probabilities at different
levels and λ the occurrence likelihood of states according to lower level
parameters.

use the Kullback–Leibler divergence between the center of
the forming abstract states of D and the robots’ observation
as abnormality value. If this value exceeds a threshold the
current abstract state is inconsistent with the observed be-
havior triggering the creation and training of a new coupled
DBN model.

III. PRELIMINARY RESULTS

We conducted a simulation study with the multi unmanned
aerial vehicle (UAV) simulator CTU-MRS [1] which is built
upon the Robot Operating System (ROS). We use four
scenarios where two UAVs fly along rectangular trajectories
and capture GPS position as proprioceptive data and LIDAR
measurements as exteroceptive data for our study. These
multi-UAV scenarios are implemented in a leader-follower
architecture using model-predictive control for the Pixhawk 4
autopilots. One scenario serves as reference scenario1 for
learning the initial models (cp. Figure 3 left), whereas the
others serve as test scenarios that include some blockage
along the planned trajectories resulting in some evasive
manoeuvres of the UAVs2.

We trained the coupled DBNs with the captured GPS and
LIDAR data from 10 simulation runs. The sensor data was
clustered into 75 abstract states (cp. Figure 3 right). Figure 4
(top) shows the abnormality values for the reference and
one test scenario. The abnormality values (Kullback–Leibler
divergence) for the reference scenario remains below 103

units while for the test scenario, they reach approximately to
5.0×105 units in the regions where the blockage happens.

Figure 4 (bottom) shows the abnormality values for the
LIDAR. For feature extraction of the LIDAR data, we used
an artificial neural auto-encoder with 5 layers each for the
encoder and the decoder and reduced the LIDAR scans
to 2 dimensions. The abnormality value increases before
the UAVs enter the blockage area. This early detection is

1youtube.com/watch?v=GHD4VmcIHFo
2youtube.com/watch?v=1YGSk7YKcpI

Fig. 3. Two UAV reference scenario (left) and clustering of the GPS data
to form coupled states (right).

expected since the LIDAR can scan the environment of some
distance.

Fig. 4. Abnormality values of the reference (blue) and test (red) scenario
using the proprioceptive model and GPS data (top) and the exteroceptive
model and the LIDAR data (bottom). The evasive UAV behavior in the test
scenario results in a significant increase of the abnormality value.

IV. CONCLUSION

We introduced a framework towards self-awareness in
multi-robot systems capable of learning offline propriocep-
tive and exteroceptive models which can be used for online
abnormality detection. As future work we plan to expand
our simulation study to more complex scenarios including
different sensors, to investigate alternative distance metrics
for abnormality detection, and to efficiently rank the validity
of multiple models.
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Sensor fusion of IMU and GPS for geofencing on an industrial control
system for safe mowing in road areas

Stefan Dumberger1, Raimund Edlinger1, Philipp Bauer1, Michael Zauner1, Andreas Nüchter2

Abstract— The paper presents the implementation of geofenc-
ing on a mobile industrial controller for the automation of
a mobile carrier vehicle for agricultural use. This system is
used to prevent collision with well-known obstacles as well as
avoid the accidental run-away of the vehicle under autonomous
operation. It describes the mathematical principle used, as well
as the additional features needed for a practical implementation
on an industrial controller. As it is necessary to ensure the
operation under real-world conditions, the paper also handles
the data acquisition, pre-filtering and sensor fusion for system.
Finally the correct behavior of the system is evaluated with
multiple test-cases as well as experimental field tests.

I. INTRODUCTION

This publication is part of a larger research project, where
the goal is autonomous mulching of highway embankments
using the agricultural tool carrier platform Reform Metron
P48RC, depicted in Fig. 1. The focus of this paper in
particular is the usage of geofencing by defining a limited
area of operation and by extend preventing the robot to work
in sections not intended to be mulched, collide with well
known obstacles (e.g.: trees, pipes, trees, ditches, ...) or in
the worst case drive onto the motorway.

The term geofencing, referring to the definition taken from
Koch [2, p 11], describes a service for monitoring of a virtual
boundary related to a physical area and raising a signal once
a relevant object ether enters or leaves this area. While most
geofencing systems use a geographical border defined via
WGS84 coordinates, the concept itself can be used in any
coordinate system where both the perimeter as well as the
current position itself can be expressed relative to a common
point of reference (e.g. a local map of a building).

The main complexity in our case is the reliability on
this system to prevent potentially dangerous situations while
being aware that the area of operation will contain a variety
of objects, like trees or bridges, which will temporary in-
terfere or completely block the reception of GNSS signals.
Therefore an additional sensor fusion to bridge temporary
outages was implemented.

II. RELATED WORK

Geofencing has a wide array of application on different
scales in modern technologies. Fundamentally it can be
divided into two main categories: The monitoring of entering

1Authors are with University of Applied Sciences Upper Austria, 4600
Wels, Austria forename.sirname@fh-wels.at

2Andreas Nüchter is with Faculty Informatics VII - Robotics and Telem-
atics, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
andreas.nuechter@uni-wuerzburg.de

Fig. 1: Carrier platform with attachment and automation kit

a specific area and the check that a object or mobile platform
is not leaving a specific area.

The first use case is mainly used in logistics, where a
region is formed around the destination of a delivery. Once
the truck enters this region, a signal is sent to the logistics
center, which can better plan the immanent arrival [7].
Another application is the collection of tolls. Once a vehicle
gets into the vicinity of a tollbooth (approx. 200m), the
system automatically requests the corresponding data from
the provider. This results in the transaction already being
handled once the vehicle reaches the tollbooth and the gate
can open without any delay. This approach provides a high
density of up to 300 vehicles per hour while providing
individual billing conditions for different companies [3].

For the second category a variety of use cases can be found
in various fields. For example [1] describes a method to use
geofencing in agriculture for the monitoring of animal herds.
In an logistical context the check for exiting a specific area
can be used to examine if a vehicle is on its correct route or
help in the case of theft of a vehicle [5].

When combining both the entering and leaving of a spe-
cific area, new applications arise for example when handling
dangerous areas, emergencies or natural disasters. in these
scenarios the systems described in [8] and [6] help in
distributing information quickly, gathering information about
the situation as well as self-organization for affected persons.

However in most of these examples the systems expect
the equipment to have access to a GNSS signal all the
time. When this assumption cannot be guaranteed the system
can only provide convenience features, which may not work
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all the time. Whenever a geofencing application must work
under all circumstances, the system cannot rely on GNSS
alone and in most cases additional infrastructure sensors to
guard the perimeter are required (See [3] and [1]).

III. ALGORITHMIC APPROACH

The core principle of geofencing is to check whether or
not a POI (point of interest) is within a predefined region.
In our case the region is given via a list of boundary points
creating a closed polygon.

However the simple check for the point to be inside the
polygon is not enough in a practical use-case considering
measurement uncertainty and the dynamics of the robotic
systems. The border polygon needs to be scaled inwards to
generate a buffer zone. In addition the current distance to the
border can be interesting for adapting the maximum speed
of the vehicle.

A. point-in-polygon algorithm

To decide whether or not a POI is inside the polygon, the
Jordan curve theorem for polygons [4] is used. It generates
a ray beginning at the POI and counts the intersections
against all polygon edges

−−−−→
PnPn+1. Whenever the total count

of intersections is odd, the POI is inside the polygon. To
check for intersection the following equation can be used,
using C = Pn, D = Pn+1, A = POI and the arbitrary point

B =

(
POIx

POIy +1000

)
.

(
α

β

)
=

1
(By −Ay)(Dx −Cx)− (Bx −Ax)(Dy −Cy)

·
(
−(Dy −Cy) (Dx −Cx)
−(By −Ay) (Bx −Ax)

)(
Cx −Ax
Cy −Ay

) (1)

An intersection can be found whenever α,β ∈ [0,1].

B. polygon scaling

The generation of the scaled down polygon needs to be
handled with care, as this procedure can generate overlaps,
as can be seen in Fig. 2a. If not removed, these overlaps will
break the point-in-polygon algorithm for the newly created
polygon. Therefore the following steps need to be taken:

1) transforming points inwards: In the first step four
temporary points need to be generated for each polygon
corner B using the previous corner A and next corner C.
When ordering the corners in a counterclockwise manner,
these points can be calculated using

(
Px
Py

)
=

(
Xx
Xy

)
+d ·

( −→e ⊥
XY y

−−→e ⊥
XY x

)
with

{
X = A,Y = B for P1

X = B,Y =C for P3(
Px
Py

)
=

(
Yx
Yy

)
+d ·

( −→e ⊥
XY y

−−→e ⊥
XY x

)
with

{
X = A,Y = B for P2

X = B,Y =C for P4

(2)

Afterwards a new corner B′ can be calculated using the
intersection between the two straight lines g1 and g2, defined

(a) scaled polygon overlap (b) distance problem

Fig. 2: visualization of mathematical problems encountered
in the algorithm

as

g1(x) =
P2y −P1y

P2x −P1x · x+
P2x·P1y−P1x·P2y

P2x−P1x

g2(x) =
P4y −P3y

P4x −P3x · x+
P4x·P3y−P3x·P4y

P4x−P3x

(3)

and Cramer’s rule to calculate the x- and y- component.
2) removing overlaps: As stated beforehand, this reduc-

tion of the polygon can lead to overlaps. To remove these
phenomenons a section of four neighbouring corners A′. B′,
C′ and D′ is evaluated for each corner. Whenever the two
vectors

−−→
A′B′ and

−−→
C′D′ intersect, using equation (1), the two

inner points B′ and C′ are removed and replaced by the
intersection point S.

C. shortest distance to polygon

When determining the distance between the POI and
the polygon, two scenarios can occur: The nearest polygon
feature is ether a edge or a corner. Our approach assumes
the nearest feature to be an edge in the first place and checks
if this assumption was correct afterwards.

1) distance to edge: To calculate the minimal distance
between the POI and an polygon edge, the edge is interpreted
as a straight line defined by the two neighbouring corners.
Then the normal distance between this line and the POI
is calculated. However, as can be seen on the example of
P2 in Fig. 2b, this calculated distance can lay outside the
confined section between the two polygon corners. To filter
these outliers a rotated bounding box is used.

2) rotated bounding box: We define a rotated bounding
box as a square around two points A and B. The length is
equal to the distance between the two points, the orientation
is the same as the vector

−→
AB and the width is defined two

times the arbitrary distance d. With these constraints the four
corners of the box can be calculated as follows:(

p0x
p0y

)
=

(
Ax
Ay

)
+d ·

( −→e ⊥
AB y

−−→e ⊥
AB x

)
(4)

(
p1x
p1y

)
=

(
Ax
Ay

)
+d ·

(
−−→e ⊥

AB y−→e ⊥
AB x

)
(5)

92



D
ra

ft

(
p2x
p2y

)
=

(
Bx
By

)
+d ·

( −→e ⊥
AB y

−−→e ⊥
AB x

)
(6)

(
p3x
p3y

)
=

(
Bx
By

)
+d ·

(
−−→e ⊥

AB y−→e ⊥
AB x

)
(7)

Using the normal distance calculated in the last step as d,
this value is valid minimal distance as long as the POI is
inside the polygon defined by P1. P2, P3 and P4.

3) distance to corner: If no suitable candidate is found
using this method on all corners of the polygon, the nearest
feature to the POI is by definition a corner. This distance can
now be calculated using the pythagorean theorem between
the POI and every polygon corner. The lowest result is
automatically the globally smallest distance.

IV. IMPLEMENTATION

The POI algorithm was implemented on an industrial con-
troller communicating with an external GNSS module. For
the analysis of accuracy and repeatability, the measurement
system has been prototyped for the first outdoor tests.

A. Hardware Architecture

The hardware implementation for this project is shown
in Fig. 4 and split into two dedicated hardware modules to
maximize flexibility.

1) Sensor board: Raw sensor data acquisition is done
on its own PCB to allow the independent data access over
network from multiple computation units. In addition to the
sensors, the board contains multiple voltage regulators and
an ATMEL ATxmega32A4 microcontroller, which reads out
all sensor values in an fixed frequency and provides the
measurements over the network.

The inertial measurement unit (IMU) on the board is a
TDK InvenSense MPU9250. It can measure linear acceler-
ations up to ±16g, angular velovity up to ±2.000 degrees
per second, and a magnetic field strength up to ±4900µT .

Finally the board uses a u-blox NEO-M8N module for
global positioning. This module is technically able to use
the free services provided by GPS, GLONASS, Galileo and
BEIDOU. However in the scope of this project only GPS and
GLONASS were enabled to test whether the system could
also work on low-cost hardware.

2) Industrial controller: All further data processing and
computation is done on a X90CP174.24-001. This industrial
controller is based on an 650 MHz ARM processor with 256
MB SDRAM and was chosen due to its IP 67 rating and
optional support for a dedicated and certified safety CPU
module.

All code is written in ANSI C and uses the B&R Automa-
tion real-time operating system to communicate between the
individual software modules and also interact with other
software running on the controller at the same time (e.g.
robot controller, data logging, ...).

1https://www.br- automation.com/de/produkte/steuerungssysteme/x90-
mobile- steuerungssystem/x90-mobile-steuerung/x90cp17424-00/

3) Communication: To transmit data between the sensor
board and the X90 controller can be achieved via two
different modes: The first method uses a TCP connection
between both partners. This allows the detection of a new
connection, synchronization and automatic retransmission of
lost or corrupted packets. On the other the second method
uses UDP broadcasts. While this mode cannot correct any
transmission errors, it is possible to provide the data to mul-
tiple participants simultaneously and not affect the overall
network load.

B. Software Architecture
While the algorithm described in section III describes

the core approach of geofencing, it cannot be used directly
and additional preprocessing of the data needs to happen
beforehand. The overall software architecture is split into
multiple modules and their interaction depicted in Fig. 3.

C. IMU parser
The IMU parser module converts the incoming data stream

from the sensor board into individual data packets. In Ad-
dition this module is responsible to filter corrupted packets
and obvious measurement errors. Handling these errors and
outliers in the very front of the processing pipeline helps to
produce a overall smoother position estimation.

D. AVD module
The AVD (Acceleration - Velocity - Distance) module

calculates speed and distance travelled based on the IMU
data. As this process depends heavily on integration of
measurements, of all modules it is the most susceptible to
sporadic sensor errors. A special consideration has to be
taken during the initialization of this module. As the whole
software uses geo-referenced coordinates, the default value
of (0,0) would let the system start somewhere in the Atlantic
Ocean and would result in a gradual adjustment over approx.
half an hour until the position is usable. To prevent this
behavior, the AVD module is reset whenever a positional
error of more then 500m is detected and re-initialized with
the current measured GPS position.

E. Kalman filter
This module combines the measurement from the GPS

sensor with the output from the AVD module to determine
the current position of the robot and by extension to generate
a POI for the geofencing point-in-polygon algorithm. The
combination of both independent data sources enables the
filtering of the random walk inherently present in every
GNSS system, the compensation of temporary drift near
building or large objects and the bridging of short events
without GNSS information like driving under a bridge.

F. CoordTransform
The CoordTransform module translates all GPS positions

from Cartesian coordinates into the UTM reference frame.
This transformation is necessary as working in the nonlienear
cartesian space would violate some mathematical assump-
tions of independence and by extension would break or at
least impair the results of both AVD and kalman filter.
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V. EXPERIMENTAL RESULTS

In this section, both lab and real-world test results are dis-
cussed. The detailed evaluation of all hardware and software
components would exceed the scope of this paper, therefore
we focus mainly on the newly developed point-in-polygon
module.

A. Evaluation of algorithm and implementation

For the evaluation of the algorithm a black box test-
ing approach was chosen. The X90 Controller is fed with
synthetic data from a Matlab script and the results are
checked automatically against the Matlab implementation of
the algorithm and manually by visualizing the results as a
plot, where the polygon is drawn in black, the POI in red, an
the scaled polygon in green. In addition the nearest polygon
feature in each plot is highlighted in purple.

For debugging purposes the values chosen for both
polygon points and the POI do not use reasonable UTM
coordinates, but an arbitrary reference frame around the
point (250,250). However relative distances between points

Fig. 4: Hardware and network configuration

Fig. 5: Test against a polygon with four edges.

correspond to the scale expected in real-world scenarios.
Examples of relevant test cases are listed below.

1) Simple polygon: The first test case checks the basic
operation of the algorithm. In this case the number of
polygon edges was limited to four. Fig. 5 shows the correct
behaviour: The POI was evaluated both inside the original
as well as the scaled polygon and the correct nearest feature
was recognized, marked by the blue rotated bounding box.

2) Polygon scaling: In the next test case the main focus
was, whether the implementation could handle a variable
number of polygon edges and if the calculation of the scaled
down polygon worked as expected. Therefore polygons with
both convex and concave corners were generated. The result
in Fig. 6 shows the correct scaling and expected behaviour.
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Fig. 6: Example of a scaling test case.

Fig. 7: Overlap test case

3) Overlaps and distance to corner: The final use case
depicted in Fig. 7 depicts the evaluation of two functions.
On the one hand the plot shows the nearest detected poly-
gon feature to be a corner which is correct. On the other
hand the distance for the scaled polygon was increased to
force overlaps to occur. The algorithm filtered everything
as expected, indicated by the sections marked in red being
removed.

B. Field tests

To test the system under real-world conditions, all compo-
nents were mounted on the mobile cattier platform depicted
in Fig. 1 as part of the automation kit. A local and freely
accessible meadow was chosen as a test location due to
the combination of open field and some trees which may
interfere with the GNSS signal. The perimeter polygon was
created using coordinated taken from Google Maps and
consists of the eight points listed in Table I.

TABLE I: Coordinates of the test area

Point Coordinates in degrees Coordinates in UTM (U33)
North East North East

P0 48.22060 14.10073 5341210.375 433205.289
P1 48.22060 14.10053 5341210.549 433190.534
P2 48.22097 14.10053 5341251.674 443190.915
P3 48.22097 14.09995 5341252.178 443147.836
P4 48.22158 14.099450 5341320.414 433111.493
P5 48.22177 14.09972 5341327.472 433173.232
P6 48.22165 14.10028 5341312.353 433230.254
P7 48.22152 14.10105 5341312.353 433230.254

Fig. 8: Representation of the test area

The vehicle was placed on the start position T0 (see Fig. 8)
and the autonomous operation was activated. However this
resulted in an emergency stop due to the current position
being outside the perimeter. The error could be traced back to
the GNSS module measuring a position off by about 30 meter
in reference to the actual location and therefore physically
outside the perimeter. Forcing the correct GPS data by
hand using a debugger, showed the geofencing to work as
expected. However for a reliable and long term solution,
the change to a DGPS system as positional reference will
probably be necessary.

VI. SUMMARY AND OUTLOOK

In summary this work shows a software system for reliable
geofencing running on an industrial grade controller provided
the sensor measurements being correct. While not pursued
at the moment, due to current lack of practical tests, the
approach also shows potential for being moved to the safety
CPU of the X90 controller to provide a functionally safe and
certifiable module in the future.
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Development of a Graph-Based Translation From BPMN to Executable
Sequences for Industrial Robotic Systems

Christine Zeh1, Katrin Clauss1, Maximilian Papa1,2 and Sebastian Schlund1,2

Abstract— The demands regarding high mix, low volume
manufacturing and faster product life cycles make flexible
production indispensable. Collaborative robots are widely re-
garded as an enabler for this flexible production. Further, they
also achieve the goal of human-centered production envisioned
by Industry 5.0. However, its installation requires significant
efforts by skilled specialists and robotics experts for robot
programming. In order to improve accessibility for shop-floor
workers, the focus in previous works lies on the combination
of graphical/function-based and declarative programming that
supports fast reconfiguration. The business process model
notation (BPMN) was used for the user input of hardware-
independent robot skills. Further, the so-called SAMY-Core
was developed to generate control commands for the respec-
tive hardware. Based on these two components, this work
focuses on the concluding translation of BPMNs to machine
executable processes as the final component within the SAMY
framework to finalize its entire pipeline from the user input
to the hardware-specific code execution. For the translation,
the SAMY-BPMN is processed to a graph, which contains all
skills and can return the correct following actions by means
of states of the robot system. As a result, it is shown that this
translation and thus the entire pipeline is feasible, allowing
non-expert users to change the system both quickly and easily.

I. INTRODUCTION

Increasing global competition, shorter product life cycles
and individual customer requirements demand a high degree
of flexibility in production [1]. Conventional production
systems are proving to be too inflexible in this case, and
thus, the digitalization of the components and intelligent
automation (Industry 4.0) is seen as an enabler. While in
the beginning complete automation was sought to achieve
this flexibility, it quickly became clear that replacing the
human is not considered viable [2]. Thus, human-centered
production is established as one of the three pillars of the
so-called Industry 5.0 by the European Commission [3].

Collaborative robots (cobots) are widely regarded as one
of the enabler for these flexible production requirements
[4], [5]. Unfortunately, the reconfiguration of a human-cobot
workspace still bears various challenges. Robot experts are
usually still needed for programming, and safety would also
have to be determined again by safety experts after each

*This project was funded by the Federal Ministry for Climate Protection,
Environment and Energy, Innovation and Technology (BMK), and carried
out within the framework of the programme ”Production of Future” under
the grant agreement number ”877362” within the project ”SAMY – Semi-
Automated Modification in Control Programmes of Industrial Collaborative
Robotic Systems”.

1 Fraunhofer Austria Research GmbH, Theresianumgasse 7, 1040 Vienna,
Austria

2 TU Wien, Institute for Management Science, Theresianumgasse 27,
1040 Vienna, Austria

adaptation [6]. However, today’s shortage of skilled workers
represents a significant challenge in this area [7].

The research project ”SAMY” aims to address this simpli-
fication of accessibility by automating the modification pro-
cess in control programs of industrial collaborative robotic
systems. Preliminary work in this project found that the
combination of graphical/function-based (e.g., moving and
connecting blocks containing tasks like ”pick&place” in a
two-dimensional working space) and declarative descriptions
(where the work systems’ process chain is described with the
mentioned blocks and not directly programmed in machine
code) form the most effective and robust method for recon-
figuring the work system from a user-centric perspective [8].
From these graphical descriptions, the specific robot code
must be generated subsequently. As a result of this insight,
the SAMY-Editor and the SAMY-Framework (SAMY-Core)
[9] were created. In terms of user-centric programming and
controlling robotic systems, the SAMY-Editor operates as
the frontend using BPMN as the graphical user interface.
Whereas the SAMY-Core acts as the backend to the robot for
generating the machine code and the final control commands
(see figure 1). However, both approaches, using BPMN
as well as states and actions for processing, cannot be
merged trivially. A middleware between the BPMN and the
core is therefore needed. In addition, the translation must
somehow process the BPMN, to provide the right work
system sequence for generating the corresponding robotic
control commands.

Translation SAMY-Core
Robot

Actions

States
SAMY 
BPMN

SAMY-BPMN 
EditorUser

Periphery

Fig. 1. Simplified framework for declarative programming and its trans-
lation to control commands for interaction with periphery

For this reason, this paper describes the process of getting
from a simple graphical user notation to the machine-
readable representation of it. This middleware is needed
to ensure the whole SAMY pipeline (shown in figure 1)
from the user input to the actual signal- and movement-
conversation on the robotic system. For that, the processing
of the graphically described states is needed to ensure a
sequence of actions for controlling a robotic system. The
development necessary for this, to make BPMNs executable,
shows a new approach independent of SAMY.
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II. STATE OF THE ART

Simplifying programming and configuration of industrial
robots is a field of ongoing research, in particular by adding
an abstraction layer [10]. The main idea of this abstraction is,
that many tasks can be represented by a very small number
of predefined skills (e.g., ”move to <position>” and ”pick
up <work piece>”). Thus, these skills represent a hardware
independent solution of programming a robot, where the
available skills are defined by the robot’s hardware and its
sensors. Based on that, the challenge is combining standard-
ized abstractions and getting from simple user notation to
the machine-readable representation of it.

A. Abstraction Layers and Skills-based programming

Hoyos et al. [11] introduce a definition and management
of skills, which can be accessed through some user interface.
The ability to start one skill at a time, allows for a simple
parsing of the abstraction to the machine readable code. The
usage of Google Blockly 1 to simplify the programming by
adding an abstraction layer is reflected upon in [12] and [13].
In this instance, the parsing of the robot application created
through the abstraction layer is bypassed by directly mapping
robot specific source code to the Blockly blocks. Thomas et
al. [14] uses the Unified Modeling Language suitable for
programming (UML/P) to combine the robot code with a
graphical modelling language.

B. BPMN as abstraction layer

The use of BPMN as an abstraction layer to the imple-
mentation of skill-based industrial programming is a novel
approach. Therefore, no existing research can be used as
basis for the conversion and processing of the skills plan.
In addition, the cited papers of the last section use their
development on a specified hardware. Consequently, the
translation to machine readable code is more straightforward.

Dijkman and Van Gorp [15] define rules to rewrite BPMN
2.0 to graphs in the tool GrGen. Raedts et al. [16] developed
a translation between BPMN and Petri nets to verify and
validate models. Further, a conversion between resilient
BPMN and directed graphs was developed by Nordemann et
al. [17], to use graph-based search algorithms on the BPMN.

A different approach is to directly simulate BPMNs.
Pereira and Freitas [18] describe various tools to simulate
BPMN. Pufahl et al. [19] introduce further an extensible
BPMN discrete event simulator. In addition, the development
of a BPMN extension to enable better discrete event
simulation is described by Onggo et al. [20].

The conversion of BPMN to machine readable data
structure is part of extended research. However, the
transcriptions in the cited papers often use sub-types of
BPMNs or specialized tools, which are not applicable in the
case of robotic programming. Furthermore, the research in
the cited papers is focused on economic problems.

III. METHODOLOGY

The targeted translation, from graphical descriptions to
machine readable plans applies to the area of human-centered
reconfiguration and modification, which is hardly tested in
the field of robotic programming. Therefore, an iterative soft-
ware process model with the focus on prototyping and reuse
of software, like Boehm’s [21] spiral model as methodology
to design, build and maintain the concerning interface is
applied. According to Alshamrani [22], the spiral model is
suitable for developing highly customizable software due
to iterative loops, the high amount of risk analysis, and
the ability to react to rapid changes. Exemplary iterative
loops for the development of the translation software are
summarized in table I and table II.

TABLE I
DEVELOPMENT OF TRANSLATION SOFTWARE: ITERATION 1 (CF. [21])

Objectives Translation concept for graphical descrip-
tion to machine readable plan

Constraints BPMN, XML, Python, directed data struc-
ture

Alternatives Petri net/graph, C++/Python
Risks False description of data structure, states,

or transition condition/high implementa-
tion effort

Risk resolution Literature research
Risk resolution results Development-, translation concept

Plan for next phase Implementation of translation concept

Table I shows the translation concept for the graphical
description to a machine-readable plan and includes the
following standards: The BPMN (Business Process Model
and Notation)2 is a graphical notation for processes and
represents the user interface for programming the robotic
system. The BPMN acts as an input for the transformation to
machine-readable plans. The BPMN standard is overlaid with
its own SAMY-BPMN [23]. The transformation requires a
directed data structure, for which a standard graph structure3

is used as a connection component between the BPMN as
user input and the SAMY-Core [9].

TABLE II
DEVELOPMENT OF TRANSLATION SOFTWARE: ITERATION 2 (CF. [21])

Objectives Lossless representation of BPMN to graph
(graph builder)

Constraints BPMN, XML, graph, Python
Alternatives Standard library BPMN to graph/develop

particular translation script + NetworkX
Risks High implementation effort, loss of infor-

mation
Risk resolution Internal discussion, literature research

Risk resolution results Translation class from BPMN to graph
with processing of states & actions

Plan for next phase BPMN processing (graph planner)

1https://developers.google.com/blockly
2https://www.iso.org/standard/62652.html
3https://www.maths.ed.ac.uk/ v1ranick/papers/wilsongraph.pdf
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Table II breaks down the first implementation of the
translation concept involves the development of a graph
builder, which includes the following standards: Storing the
BPMN to XML (Extensible Markup Langage)4, formatting
it to DOM specification (Document Object Model)5 via the
library XML.DOM6 and then processing the document via
Python script to generate the graph is proceeded instead of
using a standard library for building a graph, due to the non
conventional overlay of the BPMN. For the management of
the created graph the library NetworkX7 is used. The result
is a translation class from the BPMN to a graph with the
processing of states and actions.

IV. DEVELOPMENT

The translation and processing of BPMNs are parts of the
connection component between the user interface and the
backend core of SAMY.

Figure 2 shows the architecture of the referred connection
component defined as controller, and the already imple-
mented SAMY interfaces (SAMY-BPMN Editor, SAMY-
Core). The implementation aspect of this work focuses on the
controller, specifically on the development and integration
of the so-called graph planner, as well as the mapper.
A further implementation step is the incorporation of the
already implemented interface to the SAMY-Core. As figure
2 shows, the graph planner and the mapping components
are direct parts of the controller, which is invoked through
the specified interface. The interface and arrows illustrate
definitions for the transition of the already developed SAMY
parts to the controller. These definitions, namely the use of
the SAMY-BPMN on the one hand and the use of states
and actions on the other hand, are the constraints for this
development. The task can therefore be described as follows:
A BPMN is loaded and for each discrete event step, the

4https://www.w3.org/standards/xml/core
5https://www.w3.org/TR/WD-DOM/introduction.html
6https://docs.python.org/3/library/xml.dom.html
7https://pypi.org/project/networkx/

Controller

In
te

rf
ac

e

MapperGraph
Planner

SAMY 
BPMN

SAMY-BPMN 
Editor

SAMY-Core
User

Robot

Actions

States

Fig. 2. Architecture of the controller and the surrounding SAMY interfaces

program is aware of the current action to be executed and
whether the present state meets the transition conditions for
moving on to the next action. In the development phase only
the graph planner is of interest, since the aim of the mapping,
described in greater detail in the next section, is the simple
parsing of the SAMY specific state and action definitions.

A. Approach for developing the middleware

The approach for the implementation of the two main
parts, namely the BPMN transition and the BPMN process-
ing, is dependent on two questions:

• BPMN Translation: How can the BPMN be stored
without loss of information?

• BPMN Processing: How can the translation be simu-
lated?

SAMY-BPMN only uses flow objects and connecting
objects, which are used to describe a flow of connected
activities. Since a flow can contain junctions and loops, a
graph-based data structure is necessary to gain a lossless
representation. The decision was made for a directed graph,
which is processed further. Gateways and variable manip-
ulation tables (VMT) are removed as nodes, to obtain a
representation containing only the action-based nodes. The
removed information is integrated as internal functionality of
the nodes and edges. The nodes fulfil the task of managing
the internal variables and returning its action. The edges are
opened after checking the received state and the internal
variable container. An exemplary depiction of the conversion
can be seen in figure 3.

A

B

C

Variable  
Manipulation Table 

x += 1

x < 5

x >= 5

T2

T3

A

T4
B

T5

C

Node A

action = "A"

getAction():
    x += 1
    return action

Edge T2

state = "Ready"

ready():
    return x < 5 and checkState(state)

T2

T3

T1
T4

T5

T1Start End

Fig. 3. An exemplary depiction of the conversion between BPMN and directed Graphs with its internal class functionality. The internal functionality of
the graph objects is described in pseudo code.
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The logic of the process is stored in the objects of the
graph, which leads to easy processing of the graph. The
initial current node is the start process. Then, at each event,
every originating edge of the current node is provided with
the current state list. After processing the current state list,
the referring edge returns whether the requirements are met
for moving on to the next node. Only if the corresponding
edge is open, can the next node be reached. If the current
node moves forward to the next node, the action request is
invoked for this node, which also updates the variable con-
tainer. As a result, a corresponding skill (e.g., pick&place)
is executed on the robotic system.

B. BPMN Translation

A BPMN model is stored as an XML file, which can be
processed using a DOM. This is used to store each SAMY-
BPMN block type as node and each transition as edge. The
result is a function-less graph with the correct connections
of the BPMN. The nodes and edges both contain an object
which will handle the additional functionality added by
gateways and VMTs. Furthermore, it stores the action type
of the nodes and the transition state of the edges. As a next
step, each gateway and the VMT has to be reworked to
move the functionality into the process nodes. After each
transformation, the redundant gateway nodes are removed
from the graph. This is realized on the basis of the following
rules:

• The VMT is stored in a class and the variables are
updated when the predecessor is visited within the
processing step.

• The conditions for the exclusive gateway are stored in
a list of tuples which get checked to open the edges.

• The combination of edges closing the parallel gateway is
stored for each involved edge, to ensure each transition
is opened, only if all parallel edges are open.

• The loopback gateway does not need extra functional-
ity, therefore solely the predecessor and successor are
linked.

C. BPMN Processing

The BPMN contains three blocks which are of special
importance for the processing. The start block defines the
initialization point of the processing, the end block defines
when the processing is finished and the variable container
includes all variables needed for the processing with their
initial values.

With the start node set as the current node, the process
checks on each state event, if the edges are open. If this
is the case, the current node moves forward, updates the
variable container and returns the action name. Due to
parallel gateways, multiple current nodes are possible, which
have to be managed collectively. To close a parallel gateway,
the list of the parallel edges involved is compared to all
linked open edges of current nodes. If they are a subset, the
associated current nodes can move forward and merge.

D. Integration in SAMY

The core is limited regarding the user friendliness of
describing the actions and states. Therefore, a separate
definition for the creation of the BPMNs can be chosen,
to facilitate the description of the actions and states. This
definition must then be linked to the core actions by a
mapping file. The mapping is stored as a YAML file, which
assigns a SAMY value to each controller specific value. The
mapper can access this file and then map the BPMN actions
to the SAMY actions ”on the fly”.

Since there are no transition states within the BPMN,
own states must be specified based on the resources of the
previous node. For example, a resource could be the robot
itself or integrated sensors and actuators. Each resource is
defined with its state ”Resource:Ready”, to clarify whether
a resource is idle. The state description ”Ready” is arbitrary
and could be anything as long as it is used within the
mappings. These mappings are content of the YAML file,
which stores the correct translation to the SAMY states.

During a triggered state event the mapper is executed twice
(see figure 4). Firstly, it is executed at the beginning to parse

MapperSAMY: State List

Planner

Planner: State List

Mapper BPMN: ActionSAMY: Action

Fig. 4. Mapping pipeline from the SAMY state list to resulting SAMY
action.

the SAMY state list to the defined states of the graph planner
(planner state list). The graph planner can then work with the
mapped states and the actions defined through the BPMN.
Secondly, the mapper is executed at the end to converts the
resulting BPMN actions to the SAMY actions.

V. RESULTS AND DISCUSSION

In order to evaluate the developed translation and mapping
from graphical descriptions to machine readable plans, an
experimental simulation-based use case was generated for
testing the developed controller and the holistic SAMY
pipeline. Executing the graphically described process within
an exemplary use-case shows the translation from declarative
programming and reconfiguration to skill-based processing
of work tasks, for generating robotic applications.

The BPMN of the realized use-case is shown in figure 5.
The robotic task is to sort five objects into two boxes, with
the use of a camera to detect the objects. Overall, ten objects
should be moved, after this, the program stops.

The individual blocks in the BPMN are the robotic tasks
(e.g., Robot:move pick pose) to be implemented. Those tasks
are described as skills within the SAMY context. Loops and
branches defined in the BPMN describe the logic of the entire
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Robot:Move pick pos

Camera:Detect object

Robot:Gripper approach

Robot:Gripper attach

object_count < 5 object_count >= 5

Robot:Move box rightRobot:Move box left

Move:PlaceVMT 
object_count += 1

object_count < 10

object_count >= 10

Variable Container
object_count = {0 ... 10}

VMT 
object_count = 0

Fig. 5. SAMY-BPMN of exemplary use-case for picking and sorting objects

robotic process. For a logical flow, additional variables are
needed, which are defined in the variable container with their
initial values. In this use-case such an additional variable is
utilized to manage the number of objects already sorted (e.g.,
object count < 5). The increasing of the variable is executed
by the VMT.

A direct comparison of the BPMN (Figure 5) and the
graph (Figure 6) shows that on the one hand the skills
still exist as nodes, but on the other hand loop gateways
are no longer depicted in the graph. The visualization of
exclusive gateways is also omitted and instead represented
as logical conditions within the edges. Parallel gateways
only appear as conditions for the parallel edges that are
converging to the same node. An exemplary progression
in the graph from the ”Start” node to the ”Robot:Move
pick pos” node is depicted in Figure 7, which corre-
sponds to a controller call triggered by a state change.
The first block ”[Robot RobotUR5 CRCLStatus=1, Informa-
tionSource Camera Status=0]” describes the physical robotic
system, based on a SAMY state list. In this case, unlike
the camera, the robot is idle and is waiting for the next

instruction. The mapper translates the status of the hardware
to a format readable by the planner. The planner checks
the received state against the existing graph and returns the
action of the next node ”Robot:Move pick pos” if the states
match. Lastly the returned action is mapped back as SAMY
action ”Move-UR5-Pick” to be processed by the SAMY-
Core.

The result of the experimental simulation-based use case
is the correct traversing of the graph from start to finish.
All states and transition constraints are processed and a
SAMY skill is invoked at each node transition, leading to
a sequence of skills that controls the hardware and executes
the corresponding robotic process. Thus, the feasibility of the
simplified reconfiguration of a work system using the SAMY
pipeline is demonstrated, where the work system can now
be easily modified by drag & drop of the individual BPMN
blocks of the process chain (seen in figure 5).

VI. CONCLUSION AND FUTURE WORK

Market demands like high mix, low volume manufacturing
and faster product life cycles will require a more flexible
production system (e.g., human-cobot work system).

Start Robot:Move  
pick_pos

parallel

Camera:Detect  
object

parallel

Robot:Gripper
approach

object_count < 5

object_count >= 5

Robot:Gripper  
attach

Robot:Move  
box_left

Robot:Move
box_right

object_count < 10

object_count 
>= 10

Robot:Move
place 

object_count +=
1

End

Fig. 6. SAMY-BPMN translation into directed graph of exemplary use-case for picking and sorting objects. For easier readability, the class functionality
is written to the corresponding edge or node.
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Mapper

Planner

[Robot:Ready = 1,
Camera:Ready = 0]

Mapper Robot:Move pick_posMove-UR5-Pick

[Robot_RobotUR5_CRCLStatus = 1,
InformationSource_Camera_Status = 0]

Fig. 7. The skills in the BPMN are mapped to SAMY skills in the mapper.

However, the reconfiguration of such systems is still
too complicated and robotics experts are needed.
Therefore, SAMY focuses on the simple programming
and reconfiguration of these work systems. A (non-) expert
creates a simple graphical/function-based SAMY-BPMN
as declarative programming and the SAMY-Core creates
machine-readable code from it. As a contribution to SAMY,
this paper shows the development of the missing connection
component between the SAMY-BPMN and the SAMY-Core.
The developed graph planner generates a graph containing
all skills from the SAMY-BPMN and its sequence. Further,
the controller maps the correct skills from the BPMN to
the SAMY specific skills, knowing the used hardware.
Finally, the interface to the SAMY-Core is done by giving
it the actions in the right sequence according to the given
states of the robot system. The entire SAMY pipeline was
evaluated by an experimental simulation-based use case,
which showed that a translation from hardware-independent
SAMY-BPMN to specific robot skills was done, meaning
that a non-expert could easily reconfigure the work system
using the graphical SAMY-BPMN.

Since the use case is solely simulation-based, for further in
depth evaluation the experimental use case is implemented
in an industrial cobot-application, testing the translation as
part of the holistic SAMY pipeline and the benefiting ease
of reconfiguration in real-world conditions. In addition,
the translation of SAMY-BPMN could be generalized
to standard BPMN to use the presented approach in a
variety of different applications. Thus, BPMNs that are not
cobot-specific could be translated into executable graphs
using this method by adapting the SAMY-specific classes.
In addition, the presented translator can be made more
intelligent (e.g., states as exclusive gateways or swimlanes),
so that also more complex logics can be built.
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Deep Reinforcement Learning for
Continuous Robot Trajectory Control*

Simon Schwaiger1, Mohamed Aburaia1, Lucas Muster1, Moritz Abdank1 and Wilfried Wöber2

Abstract— Trajectory control is fundamental to any robot
application. Probabilistic path planning aims to solve trajectory
control without focusing on a specific robot type. Similarly,
reinforcement learning has been applied to robot control tasks
with the goal of having problems of different nature be solved by
the same agent. However, tested reinforcement learning models
directly generate actuator control signals from sensor input.
Due to the end-to-end nature of proposed implementations,
trajectory and closed loop control are performed by the
same model. We want to increase modularity in reinforcement
learning-based robot control pipelines by solving trajectory
and closed loop control separately from each other. Therefore,
we formulate a continuous robot trajectory control problem
as a reinforcement learning environment and evaluate agent
performance for multiple environment configurations. Using
this problem formulation, an agent is able to learn robot kine-
matics in simulation and determine joint trajectories. We deploy
multi-goal reinforcement learning in order to allow agents to
plan movement from an arbitrary start pose to an arbitrary
goal pose without requiring a dedicated training procedure.
The problem formulation is evaluated by training recent for
continuous control and documenting agent performance. The
results show, that continuous trajectory control can be achieved
by the presented methods, allowing an agent to learn the
kinematics of a six degree of freedom robot.

I. INTRODUCTION

Trajectory planning is required for any robot in order to
be able to perform tasks. However, the variety of possible
robot deployments creates the need for flexible, modular and
fast trajectory planning algorithms [13]. While reinforcement
learning (RL), a sub-domain of artificial intelligence [9], has
successfully been used to automate these tasks [1] [11] [10],
implementations are mostly done in an end-to-end manner,
resulting in systems that directly control actuator torque
based on sensor input. The resulting RL model performs
trajectory as well as closed loop control, creating solutions
whose internal functionality is not observable. In order to
increase modularity of RL-based solutions in robotics, we
aim to solve trajectory control and closed loop actuator
control independently from each other.

For this paper, a novel formulation of robot trajectory
control is presented and evaluated using state of the art

*This work was supported by the city of Vienna (MA23 – Economic
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RL agent configurations. The problem is exposed as a RL
environment with continuous observation and action-spaces,
deploying multi-goal RL [5], in order to enable an agent to
be trained to plan robot movement from an arbitrary start to
an arbitrary goal point.

II. STATE OF THE ART

The main goal of RL is for an agent to learn from
interaction with its environment [9]. The agent receives an
observation depicting the current state of the environment,
called state and determines an action to perform in the state.
This action is taken and the environment returns a new state,
resulting from the previous state and action. Alongside the
new state, a numerical reward is provided, that indicates
agent performance in achieving a task. A positive reward
indicates success, while a negative reward indicates failure
[12].

[11] implemented trajectory control of a three degree of
freedom (DOF) robot using a deep Q-network (DQN) [15]
based agent, deploying hindsight experience replay (HER)
[1] and reward shaping [6]. To avoid a distinct training
sequence for each movement goal, multi-goal RL [5] was
implemented by including information about the current goal
as part of the state. However, due to using DQN, the resulting
system from [11] is only capable of discrete control.

This study contributes to the state of art by formulating
the action-space in a continuous manner and expanding the
system with compatibility for six DOF robots.

III. MATERIALS AND METHODS

In order to achieve continuous control, deep deterministic
policy gradients (DDPG) [4] as well as asynchronous advan-
tage actor-critic (A3C) [16] based agents were deployed due
to their compatibility with continuous action spaces. DDPG
and A3C are both actor-critic agents that approximate the
action-value function using an artificial neural network [9],
while still allowing for a continuous and high-dimensional
action-space due to having a separate actor network mapping
states to actions. While DDPG performs updates based on
the sampled policy gradient from encountered transitions,
A3C performs gradient updates in the forward view after
episode termination or a set number of steps. Since a linear
increase in robot DOF results in an exponential increase
of observation-space size, HER is applied to compatible
agents in order to ensure that the agent will encounter
positive reward. HER generates alternative goals for episodes
producing no reward, that are used to perform extra training
episodes apart from the regular ones [1].
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The trajectory control problem is implemented as a custom
environment for OpenAI Gym [2], using the robot operating
system (ROS) [7] for simulation of robot kinematics. The
DDPG, A3C, DQN and HER implementations from [8]
provide the underlying algorithms of tested agents, with tests
being conducted using a six DOF UR5 robot arm [14]. We
formulate the state S as a list containing the six current joint
states ~J, a normalised vector pointing from robot tool centre
point (TCP) to the goal P̂TCP−Goal as well as distance to
the goal in metres |~PTCP−Goal |, in a similar manner to [11].
Additionally, we also include a normalised vector containing
euler angles (α,β ,γ)TCP−Goal)

T , denoting the change in
rotation between TCP pose and goal pose as well as the
total angle ε = α +β + γ between the two poses in radians.
Actions A are provided in form of a list containing joint
position change for each joint in radians and reward R is
given based on the robot reaching a goal or colliding. State,
action and reward formulations are depicted (1) to (3).

S = (~J, P̂TCP−Goal , |~PTCP−Goal |,(α,β ,γ)TCP−Goal ,ε)
T (1)

A = ∆~J (2)

R =


1 if |~PTCP−Goal |<= 0.001 and ε <= 0.01
−1 if collision
0 else

(3)

IV. EXPERIMENTAL RESULTS

The system was tested on a simulated six DOF industrial
robot, comparing performance between DDPG, A3C and
DQN-based agents, while having HER applied to DQN and
DDPG. The DQN agent operates in a with 0.1 radians
discretised action-space. All tests have been conducted five
times with randomised seeds as suggested in [3], plotting
the mean return per episode with a 95% confidence interval.
Each agent was trained for 200000 steps, with episodes being
terminated when a goal was reached, a collision occurred
or when 70 steps were taken (see Fig. 1). Additionally,
ten testing episodes have been conducted after each training
sequence, resulting in a mean reward of −0.08 for DDPG,
0 for A3C and −0.52 for DQN.

Fig. 1. Agents have been trained for 200000 time steps in the presented en-
vironment. The action-space was discretised in order to enable compatibility
with the DQN agent.

V. SUMMARY AND OUTLOOK

In this paper, the formulation of continuous robot trajec-
tory control as a RL problem was evaluated using recent RL
agents. The results show, that while tested agents are capable
of performing continuous robot trajectory control, success of
the presented solution is highly dependent on agent’s internal
randomised initial parameters, due to agents encountering
divergence during training. Further work must be done to
increase stability of the presented formulation in order to
enable deployment in a production environment.
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Collision Avoidance using Capacitive Proximity Sensors on Series
Elastic Robots for Human-Robot Collaboration

Serkan Ergun1, Vinayak Hande2, Johannes Sturm2 and Hubert Zangl1

Abstract— In order to allow human beings to co-operate with
robots, strict measures are required to avoid the risk of injuries.
Capacitive Proximity Sensors embedded in robotic skins offer
a cost-effective solution for the close-range perception of the
robots’ surroundings, filling the open gap between tactile
sensing and mid-range perception in collaborative work cells.
Recently, series elastic robots have seen increased interest for
such applications, as elastic components can act as a passive
mechanical energy storage in case of contact, reducing the
potential impact on the human co-worker. In this work we
investigate the applicability of Capacitive Proximity Sensors
in a collision-avoidance scenario using a series elastic robotic
arm. The robo’s motion is assessed together with the capacitive
output of the Capacitive Proximity Sensor. Our sensor is driven
by a novel closed-loop class D amplifier fully on-chip driver
circuit with small space requirements, allowing it to be directly
integrated into robotic skins.

I. INTRODUCTION

Human-Robot Collaboration (HRC) aims to eliminate
physical barriers between robots and human workers to
allow collaboration between humans and robots for better
productivity [1]. Precautions need to be undertaken in order
to avoid undesired contacts, which may lead to injuries of the
human co-worker. The currently valid ISO/TS 15066:2016
[2] provides guidelines for the design of such collaborative
workspaces. The specification supplements the standards for
industrial robots ISO 10218-1:2011 [3] and ISO 10218-
2:2011[4] with respect to HRC. ISO/TS 15066 introduces
four operation modes for HRC, whereas only two operation
modes, namely Speed and Separation Monitoring (SSM) and
Power and force limiting (PFL) allow the human being to
work in a fence-less environment alongside an active robot.
SSM requires the robot to maintain a safe distance to the
human being while operating, allowing it to stop ahead of
potential contact. Power and force limiting (PFL), on the
other hand, allows actual physical interaction if the forces
exerted by the robot on the human being do not violate
critical values. Values for permissible contact pressures and
forces are given in e.g., Annex A of ISO/TS 15066 [2].
Most commonly, collaborative robots (cobots) rely on design
elements, such as reducing sharp edges and corners to
increase the contact surface. Another prominent solution is
the usage of integrated force and torque sensing. Recently, an
air-filled pillow-like soft robotic skin with integrated pressure

1The authors are with the University of Klagenfurt (AAU) - Insti-
tute for Smart Systems Technologies, Klagenfurt am Wörthersee, Austria,
{serkan.ergun,hubert.zangl}@aau.at

2The authors are with the Carinthian University for Applied Sci-
ences (CUAS) - Integrated Systems and Circuits Design, Villach, Austria,
{v.hande,j.sturm}@fh-kaernten.at

Fig. 1. Potential use case for Capacitive Proximity Sensors (CPSs) in
robotics: A (CPS) is embedded in a soft skin patch at the end-effector of
a series elastic robotic arm. The CPS triggers the motion stop mode of the
robot prior to a potential collision. The object is grounded to yield a signal
level close to human beings.

sensing has been developed [5] and can be commonly found
in collaborative workspaces.
Alternatively, series elastic robots are also a considerable
option as they allow to adjust their stiffness [6]. As opposed
to traditional (rigid) robots, series elastic robots can store
some portion of the collision energy due to their elastic
nature. These aforementioned methods have in common that
information (such as a change in force, torque, or electrical
current) is only provided after contact. Nevertheless, such
contacts should be avoided at all times to ensure workplace
safety and the well-being of human co-workers. Possible
solutions to overcome these tackles are external time-of-flight
based sensors, such as acoustic [7][8], visual [9], or radar
[10] based sensors, which may incorporate the opportunity
for human detection, tracking, and classification of human
co-workers in the vicinity of cobots [11]. These aforemen-
tioned sensing technologies perform well for sensing ranges
of typically up to 5m which is suitable for HRC. However,
typical minimal sensing ranges start from 10cm. This gap in
perception can be filled with the aid of Capacitive Proximity
Sensors (CPSs), allowing the robot to operate at a speed
above the limit set for pure PFL. This work showcases
applying CPS for collision avoidance scenarios using a series
elastic robotic arm. The CPS, which can be embedded in
a soft skin covering the robots’ surface, initiates a motion
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stop procedure once an object or human is within a critical
distance to the robot, as seen in Fig. 1. Such a rapid motion
stop procedure results in brief oscillations. The robots’ pose
and the sensor output are recorded for evaluation and can
be assessed for the potential use of range to capacitance
mapping. The CPS is driven by a novel closed-loop class
D amplifier fully on-chip driver circuit [12].
The following part of this paper is structured as follows:
Section II lists relevant work, and section III shows the
theoretical benefit of CPSs. The experimental setup for the
sensor kit and collision avoidance scenario are elaborated
in section IV. The results are showcased in section V and
elaborated in section VI. A summary and brief outlook are
given in section VII.

II. RELATED WORK

In the last years, impact attenuating actions to prevent
injuries in HRC has seen a boost in global research interest.
Zanchettin et al. [13] demonstrated the use of 3D cameras
and reactive motion generation to maximize task velocity
while still maintaining braking distance to obstacles. Svarny
et al. [14] has emphasized a scheme which combines SSM
for larger distances and PFL at close distances to increase
the performance of collaborative work cells, which are
otherwise limited due to safety limits. Short-range percep-
tion achieved with CPSs enhances collaboration in close
proximity between humans and robots in the PFL regime.
The programmed maximal robot speed for an application
can then be increased since the robot can slow down before
contact and thus reduce the collision impact, as shown in
[15]. Capacitive skins have been proposed as a means for
provoking safety-rated stops by [16]. The authors of[17]
developed the concept of CPS-based virtual whiskers aiming
to mimic the physical whiskers of mammals. The usage of
CPS is not limited to serial manipulators but was also used
as a complementary sensor system on a mobile manipulator
by [18].
The CPS on-chip driver circuit is commonly developed by
a linear amplifier, such as Class A or Class AB topologies,
as discussed by [19] and [20]. However, the on-chip driver
must be able to drive a huge off-chip parasitic capacitance
from the active guard to the ground i.e., approximately
300pF, with the optimal linear sinusoidal excitation signal
and energy efficiency. Therefore to resolve the issues of
optimum linearity and power efficiency, the concept of buck
converters is employed. This benefits in high efficiency, low
power consumption, and tunable frequency of a generated
signal.

III. THEORY

According to [15], the maximum permissible operating
speed of a robot at a given spot on its surface vR,max can be
calculated by

vR,max =−ẍ(tS + tR)+
√

ẍ2(tS + tR)2 + v2
rel,max +2sSẍ, (1)

where ẍ is the smallest Cartesian deceleration for a given
point on the robot within a given trajectory. It can be

determined theoretically by applying robot dynamics [21]
or empirically using a large set of experiments. The sensor
latency tS and robot latency tR make up the system latency
T = tS + tR. T covers the time period for signal acquisition,
processing and transmission, and triggering the motion stop
procedure. sS is the safe detection distance for a given object
(or body part) as defined in [15], and vrel,max is the maximum
permissible operating speed at contact as defined in (A.6) of
ISO/TS 15066 [2]. It is given by,

vrel,max = min(FT, pTA)/
√

µK, (2)

where, FT is the transient contact force, pT is the transient
contact pressure, A is the contact surface, µ is the reduced
mass of the two-body system human-robot and K is the
spring stiffness of the human body region in collision. For
this set of equations, a fully inelastic collision is assumed,
in which the full kinetic energy of the robot is transferred
as inner energy to the human body. To properly model
collisions between series elastic robotic arms and humans,
the coefficient of restitution k needs to be determined.
Nevertheless, the technical specification ISO/TS 15066 gives
a more conservative approach. For collision avoidance, which
is investigated in this research, set vrel,max = 0m/s. An
additional safety margin can be set by reducing sS by that
margin. (1) then simplifies to

vR,max =−ẍ(tS + tR)+
√

ẍ2(tS + tR)2 +2sSẍ. (3)

IV. EXPERIMENTAL SETUP

A. Measurement Setup

The CPS is driven by a novel closed-loop class D amplifier
fully on-chip driver circuit. This proposed driver circuit is
designed and fabricated in the TSMC 65nm CMOS process
technology. A photo of the experimental setup is shown in
Fig. 2.

Fig. 2. Driver circuit in a robot environment test setup. The wire bonded
test chip is mounted on PCB. Our setup is equipped with a signal generator,
power supply, USRP X310, and an oscilloscope.

The driver circuit has been connected with wire bonding.
The characterization of the driver circuit in a robot environ-
ment is performed on the fabricated prototype ASIC which is
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mounted on a PCB. It is tested in a realistic environment, in-
cluding a capacitive proximity sensor, a USRP X310 (which
is a high-performance, scalable software-defined radio (SDR)
platform), oscilloscope, and signal generator to deliver the
reference voltage to the driving circuit. Moreover, a current
meter is deployed to monitor the current consumption of the
test chip during various setups.
The output voltage of the driver circuit is measured over ca-
pacitor load, which is varied from no-load to 1nF range. The
reference voltage applied to the Test chip is 1V peak-peak
sinusoidal signal at 500kHz frequency. The output shows
a 500kHz frequency with second and third harmonics. The
effect of harmonics increases with increase in the load ca-
pacitor value. Harmonic effects on the circuit’s performance
can be suppressed through post-digital filtering. Reliability
of the circuit is also verified with varying frequency of fre f
from 10kHz to 10MHz.
Moreover, the linearity of the test chip is verified by ramping
the input. As an outcome, with varying load capacitance and
a wide range of frequencies, output voltage could well be
achieved with a linearity coefficient (Output voltage/ Refer-
ence voltage) of nearly 94%. The lowest power consumption
is 1.92mA in the setup of 1nF load capacitance and 1MHz
excitation frequency.

B. Collision Avoidance Setup

Figure 3 shows the collision avoidance test setup. The
setup is based on previous work [15] and is again configured
in reverse. In a real-life scenario, the CPS is mounted on
the robots’ surface, and test objects resembling human body
parts are placed at points of interest.
In our scenario, the test object is set at a distance well
above the detection threshold of the sensor in the beginning
of the experiment. The robots’ tool center point (TCP) is
then descending towards the CPS with a defined velocity.
A motion stop procedure is triggered once the capacitance
threshold is reached at the activation distance.
Our copper cladded test object Sphere is designed to re-
semble a human fist but can also be used for similarly
shaped body regions, such as shoulders, elbows, or knees.
The adequacy of this test object for representing a likewise
shaped human body part has been elaborated and shown in
[15].
We use a series elastic modular robotic arm kit A-2085-
06 by Hebi Robotics [22]. The motors of the Hebi robot
provide settings to adjust individual limits for joint positions,
velocities, and effort. The modules do not possess me-
chanical brakes. Therefore, a traditional emergency shut-off
procedure would cause the robot to collapse and thus violate
safety goals. Instead, a motion stop procedure is initiated
by maintaining its position with active power (motor hold
mode). This mode is activated by disconnecting the power
wires (Power over Ethernet (PoE)) of its ethernet connection.
In this mode, the robot is unresponsive to incoming motion
commands. The series elastic nature of the robot will cause
brief oscillations during rapid changes in motion. A similar
test setup has also been used in [23].

Fig. 3. Collision avoidance test setup. Both sensor and test object (A)
are configured in reverse. The test object is grounded (B) as defined by
[15]. The CPS is embedded in a soft skin patch (C). The setup can also be
equipped with a force sensor and a spring (D) to measure collision forces,
as in [23] .

V. RESULTS

In the following, we present the results of the collision
avoidance experiment showcased in Fig. 4. The Hebi robot
moves with a speed of 300mm/s towards the sensor. The
activation distance of the sensor is set as d = 50mm to
the Position of Contact (POC). The motion stop procedure
consists of three phases. The first phase is the latent phase.
The robot will not react until the capacitance signal is
acquired, processed, and transmitted to the robot. The system
latency during our configuration is approximately 65ms.
This latency was determined using an external visual-based
motion capture system. In the second phase, the motor hold
mode triggers. The robot tries to maintain its position. Due to
its kinetic energy and elastic nature, the robot will oscillate
in relation to its prior speed. Here, the highest oscillation
amplitude observed is 16mm. In the last phase, the robot will
halt in its rest position with active power until the motor hold
mode is disabled. As shown in Fig 4, the capacitance to range
mapping is not linear, as the signal increases logarithmically
with decreasing distance until reaching a potential saturation.
Saturation can be avoided in the desired sensing range by
proper frequency and gain settings. This logarithmic behavior
has also been observed in [15] and corresponds to the
theoretical behavior of such sensors.

VI. DISCUSSION

ISO/TS 15066 permits undesired physical contact for all
human body regions below the neck. Nevertheless, collisions
with these regions should still be avoided in general, as
such collisions negatively impact the personal well-being of
a human co-worker, even if the robot only exerts small forces
to the human. CPSs, on the other hand, allow the robot
to react ahead of potential contacts, allowing reasonable
operating speeds even for small detection distances below
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Fig. 4. Results - a): Output of the CPS over time is shown in black.
When the signal is below the activation threshold (orange), the motion stop
procedure is activated. b): Corresponding robot position over time is shown
in black. The Position of Contact (POC) is indicated in red. The phases of
the experiment are expressed by their background colors. Upon detection,
the robot is operating normally (green phase). During the latent phase (grey)
the robot is maintaining speed. The braking and oscillation phase is shown
in red. The robot will remain in its idle position (blue phase). The sensor
reacts at an activation distance of d = 50mm to the object (shown in blue).
The robots’ speed upon detection is 300mm/s.

10cm, while still avoiding contact. The actual performance of
CPSs rely on multiple factors such as latencies (both sensor
and robot), safe detection distance of the sensor, robot type,
payload and pose. Therefore, the performance of each CPS
needs to be evaluated for each robot task separately alongside
its planned trajectory. Furthermore, for full safety compliance
in a HRC application, the sensor needs to fulfill Performance
Level d of ISO 13849-1 [24].

VII. SUMMARY AND OUTLOOK
In this work, we showcased the applicability of CPSs for

collision avoidance scenarios using a series elastic robotic
arm kit. The CPS is driven by a novel closed-loop class D
amplifier fully on chip driver circuit. By using CPS a robot
may still be able to operate if a human or object is close to the
robot - below the minimal detection distance of mid-range
ToF based sensors. The procedure described in this work
allows fellow researchers and engineers to replicate the test
and evaluate their CPSs for collision avoidance scenarios.
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M. Rathmair, S. Mühlbacher-Karrer, U. Thomas, B. Hein, M. Hofbaur,
and H. Zangl, “A unified perception benchmark for capacitive prox-
imity sensing towards safe human-robot collaboration (hrc),” in 2021
IEEE International Conference on Robotics and Automation (ICRA),
2021, pp. 3634–3640.

[16] P. Chemweno, L. Pintelon, and W. Decre, “Orienting safety
assurance with outcomes of hazard analysis and risk assessment: A
review of the iso 15066 standard for collaborative robot systems,”
Safety Science, vol. 129, p. 104832, 2020. [Online]. Available:
sciencedirect.com/science/article/pii/S0925753520302290
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Analysis of the Trends Towards Domain-Crossing Safety
Standardization in Close Human-Robot Interaction

Michael Rathmair and Michael Hofbaur

Abstract— The paper shows the current ongoing trends
and activities in robot safety standards development. Special
attention is paid to the field of close human-robot Interaction.
This is increasingly important since in nearly all sectors of robot
applications collaborative operation without physical protective
devices between the user and the robot is targeted. Physical
robot safety is thus a challenge arising in a large variety of
robotic domains (e.g. industrial, service and assistance, mobile,
medical, intralogistics, household, etc.). Nevertheless, in general,
standardization committees are specifically implemented to
develop, revise and maintain standards for specific application
sectors. This is also the case in robot safety, and committee
members are reflecting a group of experts in the associated
application field. However, there is a gratifying trend that
domain experts start to collaborate with each other, share their
experiences, and harmonize standards for safe human-robot
collaboration applicable to various robot application domains.
This work elaborates this trend by highlighting selected stan-
dards synergies on ISO, CEN, and the national level, analyzing
future trends towards domain-crossing robot safety standards,
and drawing implications for system integrators, and end-users
of collaborative robot applications as well as researchers driving
future robot-system technologies.

I. INTRODUCTION TO STANDARDIZATION

Standardization is an essential process for the economy in
terms of value chain creation and optimization, technology
development and progressive innovation actions. Forefront
scientific and technological aspects and developments are
continuously included to standardization processes by stan-
dard revisions or the initiation of new documents. In the case
of a revision each proposal is assigned to a standards devel-
opment track which typically has a timeframe of 36 month
[38]. In the ISO (International Standardization Organization)
the standards development process has to strictly follow a
the ISO/IEC Directives, Part1 - Procedures for the technical
work Consolidated ISO Supplement [31].

One of the most significant fact is that compliance
with standards is not mandatory [38]. The definitions in
standards reflects requirements developed by groups of
domain experts called a technical committee (TC). These
persons that represent a country in the ISO committee (the
countries delegation for standardization) are nominated by
an associated national standardization mirror-committee
and persons are expected to actively contribute the national
interests and know-how to the international standardization
process [38].

Both authors are with JOANNEUM RESEARCH Forschungs-
gesellschaft mbH – Institute for Robotics and Mechatron-
ics, 9020 Klagenfurt am Wörthersee, Austria {first
name}.{surname}@joanneum.at

The general structure of ISO machinery standards is
illustrated as a pyramid in Figure 1 [36]. On the top of the
pyramid are laws and guidelines that form the fundamental
directives mandatory to follow, and are the basis for legisla-
tive processes. CE-Marking which illustrates the conformity
with the EU-Machinery directive [11] is fundamental for
bringing a product to the market or putting machinery into
operation. Strictly speaking, in the event of an accident,
the system/machine manufacturer’s work will be assessed
against current legislation and not against requirements given
in a standardization document. On the bottom layers of the
standardization pyramid the ISO divides machinery standards
into thee types:

• Type-A Standards (Basic Safety Standards): These type
of standardization documents give basic concepts, prin-
ciples for design, and general aspects that are applicable
to machinery (i.e. ISO 12100 [16])

• Type-B standards (Generic Safety Standards): These
deal define requirements for a specific safety aspect or
one type of safeguard, which can be used across a wide
range of machinery. (i.e. ISO 13855 [17])

• Type-C standards (Machine Safety Standards): These
documents handle detailed safety guidelines for a par-
ticular machine or group of machines. (i.e. ISO 10218
[18])

Fig. 1. Document structure of ISO machinery standards.

The rest of the paper focuses to the context of safety for
robot applications and even more specifically to interaction
between robot systems and humans. Since robots and ma-
chines operate collaboratively in a shared human-machine
working space requirements and evaluation of safe operation
receives an increased priority. Regardless of a specific appli-
cation domain i.e. robotics for production, service robotics
in the home, or assistance systems in medicine and rehabili-
tation, the primary goal is safe operation and handling of the
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full robot system. The experts in standardization committees
trend to combine and unify the domains just mentioned and
to formulate general and abstracted requirements for human-
robot collaboration and interaction.

II. ROBOTIC SAFETY STANDARDS, ASSOCIATED
COMMITTEES AND STANDARDIZATION TRENDS

In this section we report about ongoing standardization
activities relevant for robotics in general and in particular
for human-robot collaboration. We divide into international,
European and national (in this paper Austrian) level of
activities. Nevertheless for selected standards as illustrated
in Figure 2 we analyze the trends and give a baseline for
further discussion and analysis.

A. Standards on the international ISO Level

In the international level the ISO (international
standardization organization - https://www.iso.org/ ) is
responsible for the main standardization activities in
robotics. The corresponding committee is the ISO/TC 299
which is partitioned into 8 working groups [33]. In the
context of robot safety and in particular safe human robot
interaction in TC 299 the working groups WG 2 (Service
robot safety), WG 3 (Industrial safety ) and the new
working Group WG 8 (Validation methods for collaborative
applications) are the most active ones.

In the industrial robotics sector, which is under the re-
sponsibility of the TC 299/WG 3 at the time of writing the
paper (April 2022) an ongoing task is the revision of the ISO
10218 (Robots and robotic devices — Safety requirements
for industrial robots) [18] standards from the year 2011.
Besides of this standard in particular for collaborative robotic
applications since 2016 the technical specification ISO/TS
15066 [37] is in place. This ISO/TS will be integrated and
revised to the new ISO 10218 part 2 version by adding the
following annexes for industrial robots operated in collabo-
rative applications:

• Annex L (normative), which is focusing to separation
distance requirements that shall be fulfilled in collabo-
rative robot applications implementing the collaborative
operation mode speed and separation monitoring (SSM).

• Annex M (informative), holds quasi-static and transient
force and pressure limits for potential human-robot
contact situations in applications where a collaborative
operation of power and force limiting (PFL) is realized.

• Annex N (informative), is about procedures and corre-
sponding requirements for the validation of PFL col-
laborative applications by pressure and force measure-
ments.

ISO/TS 15066 will then be withdrawn when the new
editions of ISO 10218-1 and ISO 10218-2 are published.

In part 1 of the 10218 standard which specifies the
requirements on industrial robots per se has in its revised
version a new table which classifies manipulators into class
I and class II robots [22]. Class I robots has to satisfy a

maximum achievable speed of the TCP (tool center point),
the total mass of moving parts of the manipulator has to be
below of a defined limit and the maximum achievable force
of the manipulator has to be below a certain specified extent.
Robots satisfying these aspects have less requirements to
safety functions and are more suitable into the direction
of inherent safe operation in close human-robot interaction
applications [22].

In April 2022 at the time of writing the paper the
revised versions of ISO 10218 part 1 and part 2 are in
the FDIS (final draft international standard) approval stage
[31] and publication is planned for the end of 2022 [22], [23].

In addition to the activities that define a measurement
method for the validation of human-robot contact situations
in the ISO/FDIS 10218-2/2022 [23], a new working group
WG 8 (Validation methods for collaborative applications)
was established [33]. The goal of the group is to define
measurement processes across different domains of robotics
and to establish a common understanding for the validation
of human-robot interaction scenarios by applied force and
pressure measurements. For this objective, the committee’s
experts are developing the ISO/AWI PAS 5672 (Publicly
Available Specification) [27] standard to meet the goals of
an international domain-crossing consensus for validation.
The defined validation processes should be applicable
for a variety of robot types (stationary robots, mobile
manipulators, mobile platforms, etc.) as well as for different
application domains (manufacturing, logistics, service,
healthcare, etc.).

For non industrial-applications (in general, robots that are
applied in non-manufacturing environments) the TC 299 is
working on several new but also revising standardization
activities. Selected standards that are in particular relevant for
discussion in the next section are described in the following
itemization[33].

• ISO/AWI 13482 (Robotics — Safety requirements for
service robots) [26]: According to the ISO standards
development track the ISO/AWI 13482 (approved work-
ing item) is in the preparatory stage. The document
defines safety requirements for physical human-robot
contact situation for robots used in personal and pro-
fessional/commercial service applications. In this way
similar to the new version of the ISO 10218-2 [23] the
ISO/AWI 13482 defines requirements for close human
robot interaction but in a service robot application con-
text. In conjunction with the standard, a technical report
ISO/TR 23482-1 (Application of ISO 13482 — Part 1:
Safety-related test methods) [21] was published in 2020.
This describes test methods for safety requirements in
the field of personal care robots as described in ISO
13482. However, the technical report also emphasizes
that the test methods listed are not universally applicable
to all types of service robots. In these cases, reference
is made to other more specific standards.
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• IEC 80601-2-77/78:2019/DAMD 1 (Particular require-
ments for the basic safety and essential performance of
robotically assisted surgical equipment) and (Particular
requirements for basic safety and essential performance
of medical robots for rehabilitation, assessment, com-
pensation or alleviation) [24], [25]: The ISO/AWI 13482
excludes medical applications. Nevertheless, TC 299 is
contributing also to this section by actively working
on amendment documents for IEC 80601-2-77/78. The
goal is to transfer the expert’s know how in the field of
safety for manufacturing applications regarding techni-
cal changes to most of the medical standards within the
IEC60601-1 series.

• ISO/CD 5363 Robotics (Test methods for Exoskeleton-
type Walking RACA Robot) [29]: This committee draft
(CD) of a standard is an ongoing new development
in the committee phase [31]. Focus of the content are
exoskeleton-types that assist humans to move from one
location to another, by making reciprocating motion
having intermittent contact with the corresponding
travel surface. The standard will include test methods as
well as requirements for test equipment for conformity
assessment of these types of robot equipment.

Another technical committee working significantly on the
normative requirements for the safe cooperation of humans
and machines is ISO/TC 199 (Safety of machinery) [32]. The
work program of the expert group includes, for example,
the new revision of the standard ISO 13855 - ISO/DIS
13855 (Safety of machinery — Positioning of safeguards
with respect to the approach of the human body) [30]
which defines safety distances between moving machine
parts and the machine operator or the new development of an
abstracted standard for integration of machines into a smart
machine system ISO/CD 11161.2 Safety of machinery —
Integration of machinery into a system — Basic requirements
[28].

B. Standards on the European CEN level

Robot safety initiatives in Europe are highly driven by
activities of H2020 Projects such as COVR [6], RobMoSys
[7], ODIN [8], ROSSINI [9] etc. In particular for test-
ing methods for close human-robot interaction the project
COVR is a main contributor. COVR has the mission to
increase safety for all robots sharing space with humans
by applying skill-based testing across robot domains and to
create common standards for how to test and validate safety
for collaborative robot applications. Results of COVR are
so called safety protocols that are available on the COVR
toolkit web platform (https://www.safearoundrobots.com/).
As an executive summary of the developed project results
a technical committee incorporated the protocols to a new
European CEN/CWA standard. The development of the
CEN/CWA 17835 (CEN Workshop Agerrment) (Guidelines
for the development and use of safety testing procedures in
human-robot collaboration tool) [10] took one year and the
CWA got published in early 2022.

Since the COVR project and the developed protocols cover
several application areas of robots, the CEN/CWA 17835
also applies to a wider range of robot applications besides
industrial applications. The document serves as a guideline
with respect to different robot categories but with the com-
mon property that they realize an application including close
human-robot interaction. However, the CEN/CWA 17835 is
an informative document which mainly covers the following
objectives:

• Definition the concept of HRC skill in order to specify
a uniform framework for skill based multi-domain robot
testing procedures. In the context of the CEN/CWA
17835 such skill are exclusively addressing mechanical
hazards that are relevant for human-robot commabora-
tion (HRC) interaction properties. As already empha-
sized a HRC skill is an abstract description that is
technically neutral and defined a functional specification
of the system independent of the applied robot category
or application domain.

• Specification of System-Level validation protocols (SLV
protocols) that can be used as a step-by-step instruction
for the execution of these measurements. Goal of SLV
protocols in general is to provide a certain level of
evidence in order to prove that safety measures are
implemented properly with reference to corresponding
application domain specific standards.

• CEN/CWA 17835 gives an overview and defines robot
categories such as industrial, service, healthcare and
medical robots.

• The document holds a table of test methods that include
HRC skills, the robot application domain, the type of
the test and a corresponding reference to standards
closer specifying the requirements for test definition and
execution.

• In the appendix a template for an SLV protocol as well
as a examples for a SLV protocols (Test mobile platform
to maintain a separation distance, Test manipulator in
shared human-robot control to prevent spatial overreach-
ing for the utilizer) are given.

C. Standards on the national level

For the robotics domain the national mirror committee
reflecting the activities of the ISO TC 299 in Austria is
the Committee 28 [3] hosted by the Austrian Standarisation
Institute (ASI) also known as Austrian Standards.

The experts from the committee 28 are actively reacting
to the described trends in the industrial robotics domain
by setting up a new committee for ”Smart Manufacturing”
[4]. The group will support the international technical
committees ISO/TC 184 - Automation systems and
integration [34] and IEC/JWG 21 - Smart Manufacturing
Reference Model(s) [15]. A large number of well-known
Austrian companies and research centers have already
expressed their interest in participating. The official launch
of the smart manufacturing committee was planned for 2020
but still delayed [2]. Nevertheless, the Austrian community
for robot safety actively exchanges information at regular
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intervals through national industry and scientifically driven
events and workshops as well as at the meetings of the ASI
Committee 28.

A relatively new standard that was developed on a national
level in America and worth to mention in the context of
this paper is the ANSI/RIA R15.08 [1]. The RIA (Robotic
Industries Association) is working on standards for mobile
robot systems also covering the application domain of mobile
manipulators, which are a combination of a mobile platform
and a serial manipulator on top. The first part specifying
the safety requirements for manufactures got published in
end 2020, Part 2 that will specify the requirements to
designers and integrators, and Part 3 that will define the
safety requirements for the end user of mobile industrial
robots are still under development. The application scenario
of applied mobile manipulators is increasingly interesting for
the industrial domain and since robots navigate dynamically
through manufacturing sites the human-robot shared space
is not longer limited to workcells. Mobile manipulation as a
robot system has still significant challenges that go beyond
a segmented application of applying the ISO 10218 [18] for
the serial manipulator and applying the ISO 3691-4 [20] for
the mobile platform. Nevertheless, the ANSI/RIA R15.08
is a first initiative regulating the requirements for mobile
manipulation in terms of a close human-robot approach that
is not spatially limited to workcells in the industrial context.

III. IMPLICATIONS AND DISCUSSION

In the following subsections we discuss application
specific but also general implications of the described
ongoing standardization activities and trends for robot
implementation, testing and verification but also research
and development activities. Special attention will be paid to
an analysis of the cross-domain standardization trends and
which advantages and disadvantages arise for applications
implementing close human-robot interaction.

Type A vs. Type C Standards: In the introduction section
we described the ISO structure of standards in the field of
machinery (see Figure 1). Nevertheless, robotic systems are
technical devices that are used even in a broader context than
that of machinery. An ISO type A standard is therefore for-
mulated in an abstract way so that it can be applied to a wide
range of machines in various machinery application domains
(e.g. metalworking, woodworking, assembly machines, etc.).
Type A standards, however, do not describe synergies with
other areas of application that may lie outside of machines,
even if the defined safety requirements can be transferred in
a meaningful way. For example, the ISO 12100 [16] standard
gives requirements for risk assessment, but is by definition
limited to the machinery domain, although the principles
and a methodologies described in this standard can also be
usefully applied to robotic systems in other domains, such
as medical or personal healthcare robots.

For for industrial robot systems as a specific machine
or a robot system as subpart of a machine, the type C

standard ISO 10218 [18] is in place. On the one hand,
it is very helpful for system integrators that specific
type C standard has been developed for the development
and integration of robot systems, but on the other hand,
due to this specialization, especially when the topic of
human-robot interaction plays a role, hardly any synergies
to other domains are mentioned and referenced in the safety
requirements.

The new ISO/TC 299/WG 8: As described in SectionII,
the newly established working group 8 of ISO /TC299 is
working on an ISO/PAS document which has the goal to
standardize the way we validate robots for biomechanically
safe human-robot interaction through measurement. Similar
to the CEN/CWA 17835, the developed ISO/PAS 5672
standard should also take into account various types of
collaborative robot systems beyond the manufacturing
sector. The goal of a cross-domain standard requires in
any case a targeted collaboration and communication
of experts from the robotics application domains to be
considered (logistics, healthcare, agriculture, rehabilitation,
etc.). However the trends which are taken up by WG
8 is a sustainable initiative that enhances interaction
between communities, technical committees and address the
challenge of developing common verification and validation
solutions for safe human-machine interaction in general
and in particular for domain -crossing collaborative robot
application.

Update of biomechanical limits for human-robot
contact situations: ISO/FDIS 10218-2 [23] contains a
table with biomechanical limits for force and pressure
loads in human-robot contact situations. These limits are
the result of a scientific study and were integrated into
ISO/TS 15066 [37] in 2016. The limit values represent a
conservative barrier and often prevent the implementation
of collaborative robot operation in an industrial context
due to the requirements of reduced handling speed. In
this context, the scientific community is making important
contributions to better assess contact situations with models
and, in combination with digital risk assessment methods,
to make safety evaluations more applicable [5], [13], [35],
etc. These approaches are also significantly integrated in the
working roadmap of ISO TC 299/WG 8. Special attention
in the modeling and validation of contact situations is given
to transient impact events (i.e. unconstrained impact in
free space). The scientific work in this field provides an
important basis for integrating new findings from studies as
well as mathematical models [12], [14]. The trend towards
virtualization in the digital world (digital twin) for the
analysis of close human machine interaction scenarios is
clearly emerging across domains in the technical committees
and is seen as a valuable tool for safety assessment.

Abstract safety properties for runtime verification:
Cross-domain definitions for safety properties can not
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Fig. 2. Overview of the selected standards discussed in this paper

only influence the development of robot systems but
can also be seen as a verification tool for the operating
time. If requirements from standards are abstracted in an
appropriate form, they can be continuously verified in a
formalized form in terms of safety properties during the
operation of a robot system. The more abstractly these
properties are formulated, the easier it is to implement
software features that can be implemented as safety features
independently of the domain. In the sense of cyclic self-
verification and thus also self-awareness of the machine,
various concepts for this approach are currently being
investigated in the RunRoc research project. Due to the
complexity of the machines, verification and validation
after adaptation and modification is correspondingly time-
consuming and potentially expensive. Main expected benefit
is that automatic self-verification against a formalized
specification in parallel to operation would significantly
reduce costs, time-to-market and in particular increases
operation flexibility. From self verification features, we will
not only expect a well-founded validation of the production
process, it will also provide the basis for the application
of modern AI methods in the reactive control context,
collaborative, trustworthy and safe robot-based machinery.

Speed and Separation Monitoring: A large part of the
standardization activities presented and analyzed revolve
around the verification and validation of human-robot
contact situations. Another mode of operation that can be
seen as very important for future robot systems is speed and
separation monitoring SSM according to ISO 10218, where
the interaction between man and machine is implemented
in a non-contact manner with collision avoidance by
constantly maintaining a safety distance between man and
machine. The calculation of this safety distance is specified
in the new edition of ISO/FDIS 10218-2 in Annex L.
The speed and separation monitoring mode is strongly

linked to the challenges for sensor components. Sensors for
environmental perception must be designed with defined
reliability parameters and structure categories depending
on the hazard potential of the application (see ISO 13849
[19] and ISO 10218). Nevertheless, high-performance
environment perception is a property that must be fulfilled
in close human-robot interaction in various implementation
domains. A trend that is also emerging from research
projects is a combined mode of operation, i.e. the best
possible observance of a safety distance and, if collisions
occur, no serious physical danger to humans.

Testing bodies for robot safety: Cross-domain require-
ments also expand the business field for institutions that
are professionally (accredited) involved in the testing of
robot systems. Uniform procedures and requirements for test
equipment enable test processes that are applicable to a wide
range of stakeholders, including robot manufacturers, system
integrators and end users. In the end, the knowledge gained
from the tests benefits all domain experts and improvements
can be actively introduced into the improvement of the
specified standard procedures. In particular, the creation of
an ISO/PAS document as implemented by TC 299/WG 8
provides a good framework for agile and update-driven work.

IV. CONCLUSION AND NEXT STEPS

Standards and finally requirements for safety may sig-
nificantly benefit if experts from different robotic domains
collaborate bundle their expertise and develop standard-
ization documents applicable for human-robot interaction
(HRI) that is not bounded to specific scenarios. However,
this paper gives a survey/overview over ongoing activities,
trends and specific effects for research and system integration
and participating in standards development. The state of
the art in standardization processes where a committee of
experts maintains and develops one set of domain specific
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standards is already enhanced by ongoing activities that try
to abstract and formalize collective safety requirements for
various robotics applications including HRI.

As next steps, also in the sense of this publication, it
should be emphasized that cross-domain considerations and
developments will be essential in the definition of safety
requirements, test procedures, conformity assessments and
scientific work in the field of robot safety. All stakeholders
are therefore encouraged to be communicative in solving
challenges together and to build a multi-domain knowledge
base to make future implementations of HRI applications
safe and efficient.
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Software Toolchain for Modeling and Transforming Robotic
Workflows into Formally Verifiable Model Representations

Thomas Haspl1, Michael Rathmair1, Maximilian Papa2, Michael Hofbaur1 and Andrea M. Tonello3

Abstract— Formal verification represents an essential concept
of mathematically proving or disproving the correctness of a
system based on previously defined specifications. Applied to
robotic workflows it can be used to prove their functional
correctness, where it gains particular importance with the
introduction of robot programming types for non-experts. In
this paper, a software toolchain for modeling and transforming
robotic workflows into formally verifiable model representations
is presented. A graphical way of modeling robotic workflows in
a distinctive way with a subsequent automatic transformation
into verifiable code form the core of the presented toolchain.
A software for generating formal specifications based on a
modelled robotic workflow completes the toolchain presented
in this work. The output artifacts of the particular software
parts eventually allow a formal verification of robotic work-
flows against a desired behavior represented by the generated
specifications.

I. INTRODUCTION

Formal verification by model checking [1] is a way
to formally prove the conformity of an abstract system
model with a formal specification. The basic approach of
formal verification by model checking depends on two major
input artifacts, the formal system model and the formal
verification specifications. The formal system model is the
formal representation of the system under test. The formal
verification specifications describe the desired behavior of
the system. Verification specifications are often also called
verification properties. In this work, these two terms are used
synonymously.

The quality and validity of the verification results strongly
depend on the quality of the formal system model and the
formal specifications. One crucial step in this process is
therefore the construction of the abstract system model. Dif-
ferent model checking tools often require a good knowledge
and experience with a provided tool or syntax. Consequently,
creating a formal system model in a special format can
not only be difficult, but also error-prone. This is the main
problem our presented work focuses on.

Although, formal verification originated from the elec-
tronics and hardware development domain, the concept is
more and more used in the domain of software development
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as well. A typical testing phase in software development
consists of creating a number of test cases for critical
scenarios. The drawback of such an approach is that the
tests can only cover the scenarios they represent. With a
formal verification approach this problem is solved, as model
checking is characterized by automatically verifying the
entire state space of the modelled system.

The step towards formally verifying the structural cor-
rectness of workflow descriptions has rarely been done so
far. With our work, we want to put a focus on enabling
the formal verification of workflow descriptions including
industrial robots. With industrial robots we typically mean
serial manipulators or stationary arm robots. This kind of
robots will also appear in all examples throughout this work
and has been used in the workflows for evaluating our
toolchain. Nevertheless, our toolchain is theoretically also
able to handle robotic platforms of all kinds.

A well-engineered formal verification system for robotic
workflows can not only help to detect errors, that might
remain unnoticed for a long time, much earlier, but also to
exactly identify a system state that might cause a problem.

A. Related Work

The work in [8] describes the theoretical predecessor
to this work. A lot of thoughts have been spent there
on creating an abstract model of an robotic workflow and
on creating a good formal verification structure. For the
proposed concept in this work, the most promising aspects
in [8] have been picked up and implemented in a number of
software applications.

The work in [12] also declares an approach in formal
verification of robotic systems, but puts a focus on verifying
safety aspects. A methodology for robotic applications, that
relies on formal verification techniques to automate tradi-
tional risk analysis methods, is presented.

The presented work in [9] also presents an approach for
formally verifying safety aspects in robotic applications. The
presented system is built by extensive manual modeling of
all application aspects such as the workflow, the robot’s
environment and the verification properties.

B. Contribution

With this work we want to take a step further into formal
verification of the structural correctness of robotic workflows
and the automatic creation of the therefore needed formal
workflow models. Most existing approaches often rely on a
manual modeling step, which can be error-prone, especially
in large systems. Furthermore, the structural correctness
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of robotic workflows, which is a precondition for a safe
application, often seems to be a little bit out of focus. With
the toolchain presented in this work we want to provide
a coherent toolchain for formal verification customized to
robotic workflows.

II. METHODOLOGY
The requirements specification represents a collection of

all requirements that are expected for the design and verifi-
cation of a – in our case – robotics-based production system.
As there is an ongoing trend into human-robot-collaboration
in such production systems, the verification of the structural
behavior of such systems should be comprehensive and
reliable. The technique of symbolic model checking has the
ability to meet these requirements.

NuSMV[3] is a symbolic model checking program based
on binary decision diagrams, a data structure for representing
Boolean functions. This command line tool is used as the
main verification tool in the presented toolchain. Thus, sim-
ply speaking, the goal is to use the NuSMV model checker to
formally verify robotic workflows. Manually implementing
robotic workflows in NuSMV would be the most direct
approach, but is tedious and error-prone, especially when
the robotic applications grow in complexity. Therefore, we
decided to introduce a prior step of graphically modeling the
robotic application and to automatically transform this model
into veryfiable NuSMV code afterwards. The basic structure
of our toolchain is shown in Fig. 1.

Fig. 1. Block Diagram of our proposed Toolchain

As a basis for the graphical modeling step in our approach
we decided to use the Business Process Model and Notation
(BPMN)[4], as it offers a wide range of functionality for
describing complex workflows or applications. Although,
BPMN has been designed for business processes, it is not
exclusive to that kind of applications and is therefore also
well applicable to describe technical applications including
robotics.

For the actual transformation of the model into a veri-
fiable format, we decided to use the Atlas Transformation
Language (ATL)[6], which is a rule-based programming
language for automatic model transformation.

The generation of verification properties is done with a
simple command line tool, that is described in section V.
Although, verification properties are necessary for model
checking, the focus of this work was on model transfor-
mation. Therefore, the creation and handling of verification
properties in this work might seem a bit untended.

In the following, all the just mentioned software tools and
technologies, that form the underlying basis of our toolchain,
are explained in more detail.

A. Business Process Model and Notation (BPMN)

BPMN is an informal specification language originally
designed for modeling and documenting business processes
and business workflows, where a token represents a state
in the BPMN concept. It offers a number of symbols to
graphically represent a workflow. In Fig. 2 you can see
a simple pick and place workflow performed by a robot
represented in BPMN.

Fig. 2. Pick and Place Task represented with BPMN

The notation range of BPMN basically comprises objects
of four categories, which are described in the following. Due
to the very comprehensive functional extent of BPMN, only a
few often used examples will be mentioned for each category.

• Flow objects cover activities within the workflow. An
activity could be a task, which describes a concrete
functional step in the diagram. The use case in Fig. 2 is
displayed as a sequence of tasks. Another activities are
special events such as a start node or an end node. These
nodes indicate the beginning and the finalization of a
workflow and are also illustrated in Fig. 2. Eventually,
there are gateways in this category, that are used to
interconnect other objects in a particular semantic way.

• Connecting objects are used to create flows of informa-
tion within a BPMN diagram. This could be a directed
connection between two tasks to indicate a sequence
flow or an undirected association connection that shows
a relationship between two connected objects.

• Pools and swimlanes are constructs for organizing
and grouping activities. A collection of activities can
visually be encapsulated within a swimlane in order
to indicate a specific function or to assign them to a
resource. In Fig. 2 there is shown one swimlane named
Robot. Like in reality, a pool encompasses all swim-
lanes. The use of connecting objects between several
swimlanes enables an appropriate information exchange
between them. A pool is often used to indicate a higher-
order entity such as a company, whereas swimlanes
typically represent departments or particular processes.

• Artifacts are any kind of additional information that
increases the understandability of the workflow diagram.
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Examples for artifacts are data objects or textual annota-
tions to add information to any object within a diagram.

B. Atlas Transformation Language (ATL)

The main goal of ATL is to translate an input model
with a certain structure into an output model with another
structure. For this, a translation file defines a set of rules
that specify how particular elements from the input model
are mapped into the structure of the output model. The
involved components in an ATL transformation are arranged
on specific semantic layers, which derive from each other
from the top to the bottom. Even though, Fig. 6 already
shows the transformation structure of our proposed concept,
it also reveals the basic structure of ATL.

The basic or top layer determines the used model descrip-
tion architecture that all other components on lower levels
have to conform to. Often used technologies on this layer
are the Meta Object Facility (MOF), the Unified Modeling
Language (UML) or Ecore, which is part of the Eclipse
Modeling Framework (EMF).

The second layer contains the metamodels for the input
and output models. A metamodel defines the structural and
semantic composition of a concrete model. Compared to
software development, a metamodel can be seen as a class
description.

The third or bottom layer defines the actual model files
for the input to and the output from the transformation. All
model descriptions on this layer are concrete instantiations
of the corresponding metamodels from the second layer.

The crucial step for creating an ATL transformation is the
implementation of a set of rules in ATL. A rule in ATL basi-
cally maps one or more elements from the input model to the
output model. With the possibility of creating helper methods
and other programmatic support structures, the collection of
defined rules constitutes an ATL transformation file. As the
transformation file is a concrete ATL implementation, it is
also located on the bottom layer. The actual translation is
performed exclusively on the bottom layer, where the input
model file is fed to the ATL transformation file, which then
produces an output model file.

C. Symbolic Model Checking with NuSMV

For formal verification of formal system models there are
basically two main approaches, the fully automatic and the
interactive one. Symbolic model checking is an automatic
technique for verifying formal system descriptions. A model
checking tool builds a complete state space, a tree structure
with all possible system states and verifies each of these
states against defined specifications. As both, the system
model and the verification properties, are provided in formal
logic, the verification results can be considered as a mathe-
matical proof of conformity or non-conformity of the system
model against the verification properties.

NuSMV is an entirely text-based model checking tool and
thus, provides its own syntax for writing verifiable model
files. The verification properties can be provided in the form

of Linear Temporal Logic (LTL)[10] or Computation Tree
Logic (CTL)[5].

After creating a NuSMV model and defining the corre-
sponding verification properties, the model checking process
can be executed via a command line interface. In case one of
the defined properties is violated in one of the system states,
the model checker yields a counterexample, which basically
lists the system state that does not meet the violated property.

III. MODEL CREATION

As stated in section II, we use BPMN as a basis for model
creation. The main disadvantage of using BPMN to eventu-
ally create a formal system model is that BPMN can be used
ambiguously. More precisely, a particular part of a process
may be defined in multiple ways in BPMN. This is severely
hindering for generating a formalized system model, because
for formal verification a distinctive model representation is
crucial in order to obtain reliable verification results. For
this reason we defined a subset of BPMN which we called
SAMY-BPMN.

A. SAMY-BPMN

In combination with strict design rules SAMY-BPMN not
only supports modeling robotic workflows in an unique way,
but is also able to represent a certain amount of dynamic
behavior within the workflow model. SAMY-BPMN consists
of nine elements, which are displayed in Fig. 3.

Fig. 3. Elements of SAMY-BPMN
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• The Start element indicates the initial point of the
whole workflow. By definition, a start element must
appear exactly once within a workflow description.

• The End element is obviously the counterpart of the
start element. An end element eventually concludes all
possible paths through the workflow and is also meant
to be used exactly once.

• A Process is the generic element type for any time
consuming action within the workflow. Necessary pa-
rameters for a process are a name and a time delay that
indicates the needed processing time of that particular
task.

• A Variable Manipulation Table (VMT) is a special
element in SAMY-BPMN, thus, it does not appear in the
functional range of the conventional BPMN. As its name
reveals, a VMT has the task to manipulate variables. For
this purpose, the user is supposed to define a mapping
scheme between two variables for a VMT.

• With an Exclusive Gateway a conditional routing can
be represented in the workflow. The exclusive gateway
takes a condition variable, which is defined in the
variable container. The outgoing transitions can then be
chosen according to the value of the condition variable.
When an exclusive gateway is used for merging, no
variable needs to be specified and the connected output
becomes active if at least one input is active.

• A Parallel Gateway can be used to open up parallel
branches in the diagram. Thus, all outgoing connections
become active simultaneously in case the parallel gate-
way is used for splitting. Consequently, when used for
merging, connected outputs only become active if all
connected inputs are active.

• A Loopback Gateway can be used to implement a
feedback loop in a workflow. All processes within the
loop are executed a specified number of times or until
a termination condition is met.

• The Variable Container is the reservoir for all variables
appearing in the workflow description. Similar to the
start and the end element, the variable container must
appear exactly once within a workflow description, even
though no variables need to be used. In that case the
variable container simply remains empty. The definition
of a variable requires a unique variable name and an
exact range for the variable values.

• A Transition is the main connecting element within
SAMY-BPMN. In a workflow diagram, the transitions
define the sequence flow. In a special case a transition
can be assigned a value from one of the variables from
the variable container. In this case the transition is an
outgoing from an exclusive gateway with a specified
condition variable.

B. SAMY-BPMN Editor

By the customization of BPMN and the resulting subset
SAMY-BPMN we are theoretically able to create workflow
diagrams in a semantically distinctive way. But due to the
unique and custom character of SAMY-BPMN, an appro-

priate editor did not exist before. So, the first software
application in our verification toolchain is the SAMY-BPMN
editor.

For developing our editor we decided to use Graphiti,
an Eclipse-based framework for fast and easy development
of model-based graphical diagram editors[2]. The only re-
quirement to start with Graphiti is a domain model, which
forms the knowledge base for storing the created diagrams
semantically correct. Graphiti accepts domain models of
various formats, we decided to create our input domain
model in the Ecore format.

A visual representation of our SAMY-BPMN metamodel
in the Ecore format can be seen in Fig. 4. All the elements
defined by SAMY-BPMN are represented as classes with the
required parameters as class attributes.

Fig. 4. Metamodel of SAMY-BPMN

Any diagram editor developed with Graphiti basically
operates with two separate models, the domain model and the
pictogram model. The domain model holds all the semantic
information of a created diagram. In our editor this are
parameters like process names or delays, variable definitions,
element IDs or the references to transitions. The pictogram
model on the other hand is solely responsible to keep track
of visual information of the diagram. This could be element
sizes, geometric locations of elements within the diagram or
the shape of transitions. As the visual diagram information is
not relevant for the further translation of a created diagram
into verifiable NuSMV code, the pictogram model is obsolete
for the later translation.

An editor in Graphiti is eventually built up by imple-
menting a number of features for each diagram element.
The two major features required by the framework are
the add- and the create-feature, which are responsible for
adding a diagram element to the pictogram model and the
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domain model, respectively. The remaining features offered
by Graphiti handle issues like deleting, resizing or updating
elements in the diagram. After implementing the desired
features for the domain elements, the editor can be built and
is ready to use.

An example workflow created with the SAMY-BPMN
editor is shown in Fig. 5. It shows two parallel tasks for
providing and processing an object simultaneously. After
performing that parallel action five time (as indicated by the
counter variable C), a decision variable D is set to TRUE and
the workflow is completed. Note, that in this example it is
not specified if the particular subtasks are done by robots or
human operators. The issue of resource allocation is planned
to be handled in a future version of the SAMY-BPMN editor.

IV. MODEL TRANSFORMATION

Our model transformation module is based on the Atlas
Transformation Language (ATL). The rule-based structure of
an ATL transformation provides a high amount of flexibility
and thus, can be easily adapted to changes in the input
or output metamodels. The transformation structure of our
concept based on ATL is shown in Fig. 6.

The Ecore-format from the Eclipse Modeling Frame-
work[11] is the basic modeling structure, to which all the
components in our transformation scheme conform to. It is
easy understandable, can be used graphically or text-based
and is supported by a lot of frameworks and tools.

The next artifacts necessary were the metamodels for
SAMY-BPMN as input and NuSMV as output. As it was
already needed to create a metamodel in the Ecore-format
of SAMY-BPMN during the implementation of the SAMY-
BPMN editor, we were in the comfortable situation to use the
exact same metamodel implementation in the transformation
step. The metamodel for NuSMV we obtained from an third-
party open-source project[7], that also coped with NuSMV-
based transformation.

At the bottom layer the concrete files, that are involved in
the transformation, are located. The core file here is our ATL
transformation module SAMY-BPMN2NuSMV. It defines
the rules for mapping the elements from an SAMY-BPMN
input file to an NuSMV output file. The actual file format
for input and output files is Extensible Markup Language
(XML), which is well suitable for storing structured data in
a text file. The actual file format from a diagram created in
the SAMY-BPMN editor is also XML, so no intermediate
conversion was needed before transforming the model.

A. Code Generation

The last step necessary before having a verifiable workflow
model is to generate NuSMV code. As the output file format
after transformation is XML, it can not be forwarded to the
model checker directly. For this reason, we used the simple
code generation framework Acceleo, that basically requires
a template file, which forms the code skeleton of a NuSMV
file and iteratively adds the necessary information from
the transformed workflow model. In that way, a verifiable
NuSMV file is finally generated.

V. PROPERTY GENERATION

Well defined verification properties are of high importance
in order to receive reliable verification results at the end.
Although, the focus of this work was on model creation and
transformation, we created a simple command line tool for
generating verification properties.

Our property generator takes an SAMY-BPMN diagram
file as input and scans it for the contained elements. It then
provides a list of found candidates for states and variables.
As all processes, start and end elements in the SAMY-BPMN
diagram are also transformed into NuSMV states during
model transformation, the property generator interprets these
elements as candidates for states as well. The variables are
simply extracted from the variable container, as this is the
central collecting point of all variables in a SAMY-BPMN
diagram.

The next step is that the property generator provides a
number of cloze sentences the user is supposed to complete.
The sentences offered by the property generator represent
often occurring statements and assumptions for formal veri-
fication. One example of such a sentence is as follows:

• On all possible paths through the BPMN model there
is no scenario, in which the signal SIG has the value
VAL and the process PROC is active simultaneously.

The bold printed placeholders form the missing informa-
tion the user is supposed to provide by choosing it from the
previously provided list of states and variables.

A formal specification in CTL is then created from all
the fulfilled sentences by the property generator. By running
in a loop, the user is able to generate an arbitrary number
of properties until a termination signal is commanded. The
output of the property generator is a list of formal verification
properties, which can be used to finally verify the modelled
and transformed workflow model with the NuSMV model
checker.

VI. EVALUATION AND DISCUSSION

For the evaluation of the proposed toolchain we were
grateful to receive a number of real-world workflow descrip-
tions including industrial robots from the industrial partners
of the SAMY project consortium. The evaluation approach
was to conduct a comparison between the verification results
achieved by our toolchain and those obtained by manual
creation of the formal NuSMV models. The initial evaluation
was very satisfying, but due to the low number of provided
workflow descriptions, we can not consider the evaluation
phase of our toolchain as completed yet. Furthermore, the
provided workflows mainly consist of often used tasks such
as pick and place applications. Thus, another criteria for an
ongoing evaluation should be to have more diversity in the
functional range of the workflow descriptions.

Although, we are highly encouraged to perform further
evaluation for a better proof of quality, we were definitely
able to proof the basic functioning of our toolchain. With
SAMY-BPMN and the SAMY-BPMN editor we have shown
that it is possible to create a description framework to
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Fig. 5. Example Use Case in SAMY-BPMN

distinctively create annotated workflow descriptions for the
robotics domain. With the ATL transformation unit we were
able to create an automatic transformation from our custom
description format SAMY-BPMN into verifiable code in
NuSMV.

All together, we consider our proposed work as a
lightweight software toolchain for modeling industrial work-
flows including robotics and transforming them into verifi-
able model representations.

VII. OUTLOOK

In future work, we definitely want to put a higher focus
on the creation of the verification properties. The reliability
and quality of the verification results depend on the formal
properties in the same amount as it does on the formal model.
In other words, the expressiveness of the verification results
directly correlate with the quality of the formal model and
the formal properties.

Another idea for future work is to bypass the need of
manual workflow description completely. Despite the amount
of automation in our toolchain, the user still has to describe
the workflow in the SAMY-BPMN editor by himself. This, at
the end, can still be a source of errors. Therefore, it would be
useful to directly be able to transform a robot program into

Fig. 6. Proposed Translation Scheme

verifiable code. This would extend our toolchain of automatic
model transformation by an automatic model creation.
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[6] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez, “Atl:
a qvt-like transformation language,” in Companion to the 21st ACM
SIGPLAN symposium on Object-oriented programming systems, lan-
guages, and applications, 2006, pp. 719–720.

[7] kiyo07, “Umlstatemachine2nusmv,” https://github.com/kiyo07/ UML-
StateMachine2NuSMV, 2015.

[8] M. Rathmair, T. Haspl, T. Komenda, B. Reiterer, and M. Hofbaur,
“A formal verification approach for robotic workflows,” in 2021 20th
International Conference on Advanced Robotics (ICAR). IEEE, 2021,
pp. 670–675.

[9] M. Rathmair, C. Luckeneder, T. Haspl, B. Reiterer, R. Hoch, M. Hof-
baur, and H. Kaindl, “Formal verification of safety properties of
collaborative robotic applications including variability,” in 2021 30th
IEEE International Conference on Robot & Human Interactive Com-
munication (RO-MAN). IEEE, 2021, pp. 1283–1288.

[10] K. Y. Rozier, “Linear temporal logic symbolic model checking,”
Computer Science Review, vol. 5, no. 2, pp. 163–203, 2011.

[11] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008.

[12] F. Vicentini, M. Askarpour, M. G. Rossi, and D. Mandrioli, “Safety
assessment of collaborative robotics through automated formal veri-
fication,” IEEE Transactions on Robotics, vol. 36, no. 1, pp. 42–61,
2019.

121


